NON-THERMAL PLASMA PROCESSING AND CHEMICAL CONVERSION OF HALONS: REACTOR CONSIDERATIONS AND PRELIMINARY RESULTS

A. W. Miziolek, R. G. Daniel, R. R. Skaggs Army Research Laboratory AMSRL-WM-BD Aberdeen Proving Ground, MD 21005-5066 USA

> Jen-Shih Chang McMaster University Hamilton, Ontario L8S 4M1 CANADA

L. A. Rosocha Los Alamos National Laboratory Los Alamos, NM 87544 USA

J. T. Herron National Institute of Standards and Technology Gaithersburg, MD 2()899 USA

ABSTRACT

There are a growing number of indicators that the stockpiles of Halons 1301 arid 1211 will eventually need to be eliminated as a precaution against any possible future release of these chemicals, which would result in a further threat to the stratospheric ozone layer. The current halon aggregate stockpile is on the order of millions of pounds of relatively chemically pure compounds. A small number of technologies already exist to destroy halons, and halon destruction has commenced in Australia. The authors' approach is aimed at exploring chemical conversion, rather than destruction, technology. This paper describes the approach of using non-thermal plasma (NTP)-based technology for chemical conversion. NTPs offer a unique variety of chemical reactivity in decomposition and final product formation since the halons can be treated in the presence of a number of different carrier gases such as N_2 , Ar. H_2 , and air. Furthermore, advanced NTP hybrid reactors can also introduce reactive radical species into the gas flow, which could result in the formation of desirable final products of high purity. This paper presents a discussion of NTP approaches as well as results of some preliminary experiments.

INTRODUCTION

The ultimate fate of halons now largely held in halon reserves is uncertain. The recent Cairo meeting of the Parties to the Montreal Protocol produced some of the strongest language yet with regards to their eventual fate with a call for "effective recovery, storage. management, and destruction of halons." The possibility, therefore. exists that at some future date halon use will be forbidden by international agreement and then the remaining halon stockpile will in effect become hazardous waste. which will need to be eliminated. Presently, millions of pounds of halons are stored throughout the DoD. At some point the issue will arise of how best to deal with the elimination of such a large amount of material.

One of the obvious choices will be whether to destroy this stockpile or to convert these relatively purc chemicals into other useful and nonozonc-depleting chemicals. In fact, technologics currently exist that can and are being used to deal with halons and other ozone-depleting substances (ODS). For example, Australia is using a thermal plasma arc technology to destroy halons. This technique has some major deficiencies including the generation of environmentally unacceptable byproducts as well as being fairly energy inefficient. In Japan they have developed an inductive-ly coupled, radio frequency plasma reactor in a pilot-scale plant where Halon 1301 (in combination with steam) produces acid gases that are subsequently reacted with calcium hydroxide to form calcium halides [1]. Still other approaches include the use of UV photodissociation to destroy CFCs and halons [2] as well as thermal and catalytic hydrodehalogenation as a means of converting halons to reusable products [3].

Our research team is exploring the use of non-thermal plasmas (NTP) as a means of disposing of the halon stockpiles. The last decade has seen great progress in the development of NTP reactor technology where now such NTP reactors are used in commercial air cleaners and purifiers. The authors' approach is to explore the use of NTPs not only as a means of high efficiency chemical destruction of halons, but also as a means of converting halons with high energy efficiency into commercially viable chemicals. Specifically. the chemical conversion of dilute halon gas streams in argon in a dielectric barrier (silent discharge) reactor configuration using GC/MS for the analysis of plasma reactor exhaust gases is being studied. This paper presents an overview of the NTP technology, a discussion of kinetic considerations, and some preliminary experimental results.

BACKGROUND ON NON-THERMAL PLASMAS

Figure 1 illustrates NTP reactors for gas-phase pollutant processing [4-11]. In an electrical discharge, a high voltage is applied across electrodes in the gas or along a surface adjacent to the gas. An electron-beam reactor requires an electron accelerator to produce the energetic electron beam (-100 keV - 1 MeV) that is injected into the process gas. The energetic plasma electrons are responsible for pollutant decomposition, either through direct electron collisions or indirectly through the creation of free radicals that attack the pollutants.

All three electric-discharge reactors — silent discharge (dielectric barrier), pulsed corona, and electrified packed bed—create transient electric-discharge streamers in the gas. The streamer is the source of energetic electrons and other active species. A relatively high voltage (determined by the reactor geometry, gas composition, and gas pressure) is required to cause electrical break-down in the gas. The necessary voltage is supplied by a drive circuit connected to the reactor. In corona, a non-homogeneous electric field is used to stabilize the discharge and prevent thermal arc formation. Silent discharges use charge buildup on a capacitive barrier to achieve a similar end result. An electrified packed bed is closely related to a barrier discharge.

A related discharge reactor **uses** streamers across a dielectric surface. Streamers can be thought of as cylindrical current filaments with typical radius $100 \,\mu\text{m}$. They are transient discharges (e.g., lasting only a few nanoseconds for oxygen or air), fed by ionization and detachment and then arrested when the electric field is reduced to the point where electron attachment becomes dominant.

For streamers in pure oxygen and air, the average electron energy and electron density are $T_e = 3-5 \text{ eV}$, [e] = 10^{14} /cm³, while a typical breakdown reduced electric field strength in the gas is E/N ~ 100 - 200 Td. Multiple streamers typically give accumulated plasma energy loadings of 10s-1000s J/liter atm. In an electron-beam reactor, the source of electrons (cathode) can be separate from the accelerating-field section (as in thermionic-cathode and plasma-cathode devices) or integrated with the accelerating-field section (as in a field-emission-cathode electron gun). Electron-beam reactors must use a foil or window to separate the vacuum section of the accelerator from the process gas. The electron beam penetrates the foil, depositing energy in the process gas by collisions and molecular excitation processes coupled to the creation of a large-volume non-thermal plasma. For typical electron-beam reactors, the mean electron energies can be much larger than those for discharge reactors (e.g., = 10eV for electron-beam, as compared to ~ few eV for discharges). Similar energy loadings can usually be obtained in both types of reactors.

Silent discharge (dielectric-barrier discharge)

Pulsed or DC corona

Figure I. Commonly employed NTP reactors.

ADVANCED PLASMA HYBRID SYSTEMS FOR HALON CONVERSION

As mentioned above, three approaches have bccn attempted using plasma technologies. One, a thermal plasma method using a dc (method used in Australia) and rf plasma [1] torches. Two. a non-thermal plasma method using pulsed corona discharge [12]. Three, an indirect plasma method using a plasma UV lamp [2]. All three methods have already demonstrated high destruction efficiency in bench-scale and pilot-scale tests. However, the energy efficiency of the above three approaches is not high, since pulsed corona power supplies, rf plasma torch and power supply, plasma UV source efficiency are all relatively low (<60-70%). Swan and Flowers [2] proposed to apply absorbent-UV hybrid system and Cliang and Yamamoto [13] used non-thermal plasma-absorbent hybrid system to overcome this problem. Swan and Flowers proposed that the absorbent would accumulate the low concentration ODS in the first stage and discharge it for UV treat-

ment for decomposition in second stage when ODS density becomes higher and where more energy efficient UV decomposition can be accomplished. Chang and Yamamoto treated ODS by a highly energy efficient non-thermal plasma in the first stage and unwanted gas discharge byproducts were treated in second stage by adsorbents.

For the fully developed non-thermal plasma-adsorbent/catalyst hybrid system, which would he used for halon treatment in this proposed approach, the energy efficient non-thermal plasma in combination with secondary adsorbents are expected to decompose halons to simple intermediate molecules. These would be further chemically converted to usable products with tandem operation of a non-thermal plasma-absorbent hybrid system [14]. In addition to these hybrid approaches, there is the possibility of directly injecting reactive species (such as NH₂ radicals from NH₃) using a process known as a corona radical shower (CRS).

EXPERIMENTAL

The experimental apparatus consists of a plasma reactor system, gas handling manifold, plasma diagnostics, and a GC/MS for exhaust gas analysis. The gas handling manifold is composed of mass flow controllers, a bubbler for addition of humidity to the process stream (not used in this study), and a mixing chamber. Gas mixtures are assumed to he fully homogenized before entering the plasma reactor cell. In these preliminary experiments, two gas mixtures were treated in the reactor. The first was 2.5 vol.% CF₃Br in argon and the second was 2.5 vol.% CF₃Br and 1.25 vol.% air in argon. The air was high purity (Zero Gas) as supplied by Matheson Gas Products.

The plasma reactor system, a silent discharge plasma reactor (Model SDPR-1), was manufactured for this laboratory by High Mesa Technologies /Coyote Aerospace of Los Alamos, **NM.** A simplified schematic of the system is shown in Figure 2. The system consists of **a** power supply and tuning circuit, cell electrical diagnostics, and the reaction cell. Electrical diagnostics are monitored on an **XY** oscilloscope and allow the calculation of the plasma power. In addition to the electrical diagnostics, the cell pressure, harrier temperature. gas inlet temperature, and gas outlet temperatures are monitored. Active cooling of the reaction cell is handled by two small fans, dependent on the gas mixture that determines the breakdown amplitude of the plasma. For all experiments, the plasma was run at a power of 110 W.

The reactor cell used in this study is a silent discharge plasma generated by a dielectric-ballasted, electric discharge. The reactor cell consists of two Pyrex-like glass plates, which serve as the dielectric barriers and are separated by **3** mm and confine the gas flow. On the outside of the plates has been deposited a nickel grid that serves as the electrode. A non-thermal, silent discharge plasma. consisting of many self-terminating micro-discharges, is generated in the gap between the two dielectric plates when high voltage AC power is applied to the electrodes at breakdown amplitude. The AC power is supplied by a sinusoidal power supply whose frequency has been preset to the system design of 4.0 kHz. This is coupled through a proprietary impedance-matched circuit to a high voltage step-up transformer, which drives the reactor cell.

Figure 2. Simplified block diagram of Silent Discharge Plasma Reactor system.

The exhaust gas is sampled either with a gas syringe or a sampling switch to introduce a sample into the GC/MS. A Hewlett-Packard Model 5890/5965A/5970 GC/FTIR/MS with supplied software is used to analyze the gas composition. Analysis of results are performed on an attached personal computer. In these experiments, a 1.0 mL sample was introduced to the inlet port of the GC via a gas sampling syringe. All compounds were ionized at a preset energy. Future experiments include plans to soften the ionization energy to allow exact identification of all stable species hy interfacing the SDPR reactor exhaust stream to **a** triple quadrupole mass spectrometer.

PRELIMINARY EXPERIMENTAL RESULTS

The principal compounds found in the exhaust stream were HF (see explanation below). CF_3 radical (a fragmentation product), and CF_3Br . **The** CF_3Br is either unreacted. which is unlikely due to the environment through which it passes, or a product of recombination reactions of radicals. Approximately 25% of the CF_3Br introduced passed through the reactor cell unchanged when the gas mix contained just halon and argon. This was reduced to 20% with the addition of air. with a consequent appearance of oxygen containing compounds such as CF_2O . Much of the HF detected is suspected of being generated in the GC/MS system **as** there is a known and unresolved leak in the vacuum system, which leads to **a** high water hackground evident in blank and calibration runs.

The CF₃ radical ion detected in the mass spectrometer has two primary sources, from CF₃Br and from C₂ and higher fluorocarbon compounds. A mass peak attributed to C_2F_6 (mass 138) constituted 0.2% of the total ion current. Other C₂ species present were C₂F₄, C₂F₅ (likely daughter from C₂F₅H), C₂F₅O (likely from C₂F₅OH), and C₂F₄Br. Hydrogen is present in the form of HCl, which is a known impurity in the CF₃Br, and whatever moisture may he present in the gas handling system. Hydrogen is undetected by the MS system. Efforts were made to dry the system prior to each experiment, but evidence of water's presence was always observed. Upon the addition of air to the gas stream, oxygenated species appeared in the analysis, with the predominant compound being CF₂O. While a trace amount was detected in the samples without air, 2.2% of the exhaust stream of the air containing samples was CF₂O. Summing contributions from daughter ions indicates that the CF₂O was present at a level of almost 4% of the exhaust stream. This may pose a problem as this is an extremely toxic compound. No C_3 or higher compounds were observed in any of the trials. Examination of gas blanks, sampled exhaust stream with the plasma off, also showed no compounds of C_2 or higher. HF was present in small amounts, but was attributed to the vacuum leak in the MS system. No oxygenated species were present in the blank samples, indicating that these were generated in the plasma environment. Adjusting the plasma conditions and gas composition should allow the tailoring of the exhaust stream composition to enhance the production of a desired compound. This will be easily accomplished as the majority of the halon presently employed in firefighting applications is stored in a relatively pure form, containing only trace impurities (such as 0.25% HCI, as mentioned previously).

KINETIC CONSIDERATIONS

Introduction

The destruction of CF_3Br and CF_2ClBr in NTPs is best treated as a two-step process. In the first, CF_3Br and CF_2ClBr are transformed by chemical attack or by electron collisions. In the second, the products of the initial reactions react with each other or are further oxidized or reduced by the ambient gas. In this section, the likely reactions that may occur for Halon 1301 and Halon 1211 in the presence of different carrier gases will be considered. The discussion will focus primarily on neutral reactions while ionic species as well as reactions arising from electron interaction with the halons will not be considered.

Initiating Reactions

Initiation is a consequence of electron impact processes. The products are ions, excited atomic or molecular states of the carrier gases, or dissociation products of the halons. The subsequent chemistry requires a knowledge of the cross sections of these processes as a function of energy. Following the initiation processes, the halon destruction process is probably dominated by chemical processes as is thought to be the case for the destruction of trichloroethylene in atmospheric pressure barrier discharges [15]. The action of the electrons is to make reactive species from the carrier gas which then act on the halons, which assumes that the halons are minor constituents of the gas flowing through the discharge. Electron-halon interactions would be important for halon rich gas streams.

Reactive Neutral Species Arising from Electron Interaction with the Carrier Gases

First, consider the purely chemical processes that might be of importance. Start with a list of all possible neutral reactive species likely to be produced in the discharge. In the case of pure argon, the active species will be the metastable excited $Ar({}^{3}P_{2,0})$, with excitation energies of 11.55 and I 1.72 eV. The rate constants for many reactions have been measured by Setser and co-workers [16], who, in general, found rate constants close to the collision rate. There are good data on product yields from Golde's group [17-19]. The latter concluded that the major channel in the reactions of $Ar({}^{3}P_{2,0})$ with the chlorofluoromethanes was molecular dissociation (they did not study any bromine-containing molecules).

In the case of nitrogen, the ground state of atomic nitrogen, $N(^4S)$ is unreactive, but there are two excited atomic states, $N(^2D)$ and $N(^2P)$ that could be reactive, although no data have been reported for reactions with bromine-containing species [20]. The only data of any relevance are for the reactions of $N(^2D)$. In the case of CF₄, the rate constant is $k \le 10^{-14} \text{ cm}^3$ molecule.' sec⁻¹,

probably all due to physical quenching. For CF_3H , k=1.0x10⁻¹³ cm³ moleculc⁻¹ sec⁻¹. The latter may be an insertion reaction leading to products CF_3 + NH. The comparable reactions of CF_3Br and CF_2ClBr with N(²D) could thus be:

 $CF_3Br + N(^2D) \rightarrow CF_3 + NBr$ $CF_2ClBr + N(^2D) \rightarrow CF_2Cl + NBr$

Although there are no real thermochemical data for these reactions. we can estimate from the comparable reaction $CF_3Cl + N(^2D) \rightarrow CF_3 + NCI$ that they are exothermic. $N(^2P)$ is in general less reactive than $N(^2D)$, hut there are no data of any kind to use as a basis for guessing.

There is also a whole manifold of excited molecular states. Of greatest interest, because of its metastability, is $N_2(A^3\Sigma_u^+)$. There is **a** large body of rate data available for reactions of this species with carbon-containing molecules. unfortunately none of which contains bromine [20]. The reaction with CF₃Cl is relatively slow, k=6x10⁻¹⁴ cm³ molecule⁻¹ for N₂($A^3\Sigma_u^+$, v=0), but is enhanced going to higher vibrational levels. In the case of reaction with CF₃I, a much greater rate constant is found. i.e., k=2.0x10⁻¹⁰ cm³ molecule⁻¹ sec⁻¹, and the mechanism is probably decomposition to CF₃ + 1. There is thus a real chance that CF₃Br and CF₂ClBr may be decomposed at a finite rate by reaction with N₂($A^3\Sigma_u^+$).

CF₃Br + N₂($A^{3}\Sigma_{u}^{+}$) → N₂ + CF₃ + Br CF₂ClBr + N₂($A^{3}\Sigma_{u}^{+}$) → N₂ + CF₂Cl + Br

For oxygen, the ground state of atomic oxygen, $O({}^{3}P)$, is unreactive at ambient temperatures. The first excited state, $O({}^{1}D)$, is in **part** quenched to $O({}^{3}P)$, and in part reacts, possibly by insertion, to yield products. In the case of CF₂Cl₂, ClO **has** been identified as a major product [21]. One might then expect BrO to be a product for the halon reactions. Excited molecular states of oxygen such as $O_{2}({}^{1}\Delta_{g})$ are probably unreactive. OH might also be considered since it will he present in air streams or most laboratory syslems. It also is unreactive. Thus, argon. nitrogen, and oxygen could provide reactive species to effect the destruction of the halons. Table 1 lists the possible initiating reactions for different carrier gases.

Secondary Reactions

Depending on the nature of the carrier gas and the initiating reactions. the chemistry following the initial events will consist of reactions of primary species with each other or, in the presence o lair. oxidation and possibly reduction. In argon, one expects dimerization and disproportionation of radicals to yield a series of haloalkanes or haloalkenes and the halogens Cl_2 , Br_2 , and ClBr. In addition to these radical reactions, one expects to see products of $N(^4S)$ reactions arising from reactions such *as*:

 $N(^{4}S) + NBr \rightarrow N_{2} + Br$

Reactions with the CF, radicals may be endothermic, although the thermochemical database is uncertain.

Reactive	CF ₃ Br	Source	CF ₂ ClBr	Source
Species	Products/Rate Constant		Products/Rate Constant	
$Ar(^{3}P)$	CF3 + Br	16-19	$CF_2Cl, CF_2Br CF_2, Cl, Br$	16-19
	k=3e-10		k≅4e-10?	
$N(^{4}S)$	Unreactive	26	Unreactive	26
$N(^{2}D)$	$CF_3 + NBr$	20	$CF_2Cl + NBr$	20
	?		?	
$N_2(A^3\Sigma_u^+)$	$CF_3 + Br$	20	CF ₂ Cl + Br	20
	k≅le-11?		k≅1e-11?	
$O(^{3}P)$	Unreactive	26	Unreactive	26
$O(^{1}D)$	$BrO + CF_3$?	21	$BrO/ClO + CF_2Cl/CF_2Br$?	21
	k=4e-11		k=1e-10	
$O_2(^1\Delta_g)$	Unreactive		Unreactive	
НО	Unreactive	26	Unreactive	26

TABLE 1. POTENTIAL CHEMICAL INITIATING REACTIONS FOR NON-THERMAL PLASMA PROCESSING OF CF₃BR AND CF₂CLBR IN ARGON, NITROGEN AND AIR.

The rate constant had been reported to be fast:

 $N(^{4}S) + CF_{3} \rightarrow NF + CF_{2}$ (22 kJ endothermic) [22] $N(^{4}S) + CF_{2} \rightarrow NF + CF$ (endothermic'?)[23]

In air, in addition, oxidation reactions will be important:

 $CF_3 + O \rightarrow CF_2O + F ?$ [24] $CF_2 + O \rightarrow Products$ [25] $CF_3 + O_2 \rightarrow CF_3O_2$ [24] $CF_2 + O_2 \rightarrow CF_2O_2$

Undesirable Products and Their Amelioration

The products of any imaginable sequence of reactions may include bad actors such as ClO_2 , F_2CO , Cl_2CO , etc. Some can be removed by scrubbing, others may require interdiction. The species might be removed by adding hydrogen, converting the halogens to the acids and scrubbing. Others might be removed by passing the effluent through a heated zone with added methane or other gas.

SUMMARY

NTPs offer the possibility of not only destroying the halon stockpiles with high energy efficiency, but also of producing desired commercially viable chemicals. This paper described our initial efforts in this field. The experimental results so far are too preliminary to indicate how

successful the NTP approach could be for practical processing of halon stockpiles. Further experimental and kinetic modeling work are needed to demonstrate the viability of this approach. Nevertheless. current NTP technology is very mature and offers a surprising number of options for parent compound destruction and/or chemical conversion.

ACKNOWLEDGMENT

The authors would like to acknowledge the Strategic Environmental Research and Development Program (SERDP) for support of their research **on** non-thermal plasmas as well **as** on halon replacements.

REFERENCES

- I. **K.** Mizuno, "Destruction of ODS by Inductively Coupled rf Plasma," UNEP 1995 ODS Disposal Technology Update, pp. 225-242, 1995.
- 2. M. Swan and J. Flowers, "UV Destruction of ODS," UNEP 1995 ODS Disposal Technology Update, pp. 215-224, 1995.
- 3. E. M. Kennedy, L. Kai, B. Z. Dlugogorski, and J. W. Bozzelli. "Thermal and Catalytic Hydrodehalogenation of Halon 1301 with Methane," *Proceedings*, Halon Options Technical Working Conference. Albuquerque, NM, pp. 1-6, 1997.
- 4. W. H. Glaze, J. W. Kang, and D. H. Chapin, "The Chemistry of Water Treatment Processes Involving Ozone. Hydrogen Peroxide and Ultraviolet Radiation," *Ozone: Science & Engineering*, 9, pp. 335-352, 1987.
- See articles in Non-Thermal Plusmu Techniques for Pollution Control. NATO AS/ Series. Vol. G34, Parts A & B, edited by B. M. Penctrante and S. E. Schultheis, Springer-Verlag, Berlin & Heidelberg. 1993.
- L. A. Rosocha, "Processing of Hazardous Chemicals Using Silent Electrical Discharge Plasmas," Chapter 11 in *Environmental Aspects in Plasma Science*, edited by W. Manheimer, L.E. Sugiyama, and T.H. Stix, American Institute of Physics Press, Woodbury. NY, 1997.
- 7. E. J. Clothiaux. J.A. Koropchack. and R.R. Moore, "Decomposition of an Organophosphorus Material in a Silent Electrical Discharge," *Plasma Chemistry and Plasma Processing* 4, pp. 15-20, 1984.
- 8. S. Masuda, "Pulse Corona-Induced Plasma Chemical Process: A Horizon of New Plasma Chemical Technologies," *Pur-r and Appl.* Chem. 60, pp. 727-731, 1988.
- 9. J.-S. Chang, P.A. Lawless, and T. Yamamoto. "Corona discharge processing," *IEEE Trans. Plasma Sci.* 19, pp. 1152-1166, 1991.
- A. Mizuno and H. Ito, "An Electrostatic Precipitator Using Packed Ferroelectric Pellet Layer for Dust Collection," *Proceedings of 3rd Int. Conf. on Electrostatic Precipitators*, pp. 617-624, 1987.
- J. C. Pearson and D. O. Ham. "Removal of SO₂ and NO, by Electron Beam Irradiation." *Rudiut. Phys. Chem.* 31. pp. 1-8, 1988.
- 12. G. Sathiamoorthy, B. R. Locke. W. C. Finney, R. J. Clark. and T. Yamamoto, "Halon Destruction in a Gas Phase Pulsed Streamer Corona Reactor," *J. Adv. Oxid. Tech.* (in press).

- J. S. Chang and T. Yamamoto, "Removal of Ozone Destruction Substances from Air Streams by Energetic Electron Induced Plasma- Adsorbent Filter Hybrid System," UNEP 1995 ODS Disposal Technology Update, p. 37, 1995.
- J. S. Chang, K. G. Kostov, K. Urashima, T. Yamamoto, Y. Okayasu, T. Kato, T. Iwaizumi, and K. Yoshimura. "Removal of NF₃ from Semiconductor Process Flue Gases by Tandem Packed Bed Plasma-Adsorbent Hybrid Systems," Donf. Record of 1998 IEEE Industri. App. Soc., pp. 1845-1852, 1998.
- D. Evans, L. A. Rosocha, G. K. Anderson, J. J. Coogan, and M. J. Kushner, "Plasma Remediation of Gas Streams Contaminated by Trichloroethylene," *J. Appl. Phys.*, 74, p. 5378, 1993.
- J. E. Velazco, J. H. Kolts, and D. W. Setser. "Rate Constants and Quenching Mechanisms for the Metastable States of Argon, Krypton. and Xenon," J. Chem. Phys., 69, p. 4357, 1978.
- J. Balamuta, M. F. Golde, and Y-S. Ho, "Product Distributions in the Reactions of Excited Noble-Gas Atoms with Hydrogen-Containing Compounds," J. Chem. Phys., 79, p. 2822, 1983.
- J. Balamuta. M. F. Golde, and A. M. Moyle, "Product Distribution in the Reactions of Excited Noble-Gas Atoms with Halogen-Containing Compounds," J. Chem. Phys., 82, p. 3169, 1985.
- W. Tao, M. F. Golde, G. H. Ho, and A. M. Moyle, "Energy Transfer from Metastable Electronically Excited N₂, Ar, Kr, and Xe to CH₃OH, H₂O₂, and N₂H₄," *J. Chem. Phys.*, 87, p. 1045, 1987.
- 20. J. T. Herron, "Evaluated Chemical Kinetics Data for Reactions of N(²D), N(²P), and N₂($A^{3}\Sigma_{u}^{+}$) in the Gas Phase," J. Phys. Chem. Data, in press, 1999.
- 21. K. Takahashi, R. Wada, Y. Matsumi, and M. Kawasaki, "Product Branching Ratios for O(³P) Atom and ClO Radical Formation in the Reactions of O(¹D) with Chlorinated Compounds." J. *Phys. Chem.* 100, p. 10145 (1996). (Results for CF₂Cl₂).
- 22. C. Tsai, S. M. Belanger, J. T. Kim. J. R. Lord. and D. L. McFadden, "Gas-Phase Atom-Radical Kinetics of Elementary CF3 Reactions with O and N Atoms," *J. Phys. Chem.* 93, p. 1916, 1989.
- 23. C-P. Tsai and D. L. McFadden, "Gas-Phase Atom-Radical Kinetics of N and O Atom Reactions with CF and CF₂ Radicals," *Chem. Phys. Lett.* 173, p. 241 (1990).
- 24. K. R. Ryan and I. C. Plumb, "Kinetics of the Reactions of CF3 with O(³P) and O₂ at 295 K," *J. Phys. Chem.* 86, p. 4678, 1982.
- 25. K. R. Ryan and I. C. Plumb, "Gas-Phase Reactions of CF₂ with O(³P) to Produce COF: Their Significance in Plasma Processing," *Plasma Chem. Plasma Process.*, 4, **p.** 271, 1984.
- 26. W. G. Mallard, F. G. Westley, J. T. Herron, and R. F. Hampson, "NIST Chemical Kinetics Database, Version 6.0," NIST Standard Reference Database 17, 1998.