Fire Endurance Testing * of WTC Tower Typical Floor Construction

John Gross, Bill Grosshandler, Monica Starnes

- Test results will provide fire endurance ratings to evaluate three primary factors
 - test scale
 - fireproofing thickness
 - thermal restraint

* ASTM E119 - Standard Test Methods for Fire Tests of Building Construction and Materials

Fire Endurance Testing of WTC Tower Typical Floor Construction

- Three tests will be performed...
 - 17 ft (5.2 m) span assembly, thermally restrained
 - 35 ft (10.7 m) span assembly, thermally restrained
 - 35 ft (10.7 m) span assembly, thermally unrestrained

Fire Endurance Tests

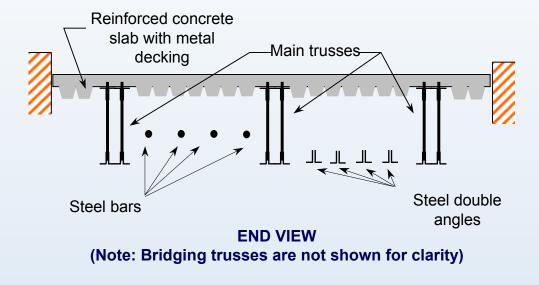
- Test 1: 17 ft (5.2 m) span assembly, thermally restrained
 - Represents current US practice for establishing a fire endurance rating of a building construction.
 - Typical of the floor assembly test furnaces used by the US testing laboratories that routinely conduct the ASTM E119 test.

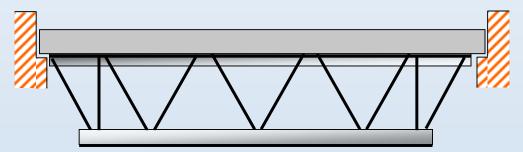
Fire Endurance Tests

- Test 2: 35 ft (10.7 m) span assembly, thermally restrained
 - Twice the scale of the first test. Represents a fullscale assembly of a 35 ft floor panel.
 - Allows direct comparison to Test 1 of the effect of test scale on fire endurance rating.
 - Includes individual rod and double angle structural members. Steel temperatures will be recorded for comparison of fireproofing thickness and the limiting criteria.

Fire Endurance Tests

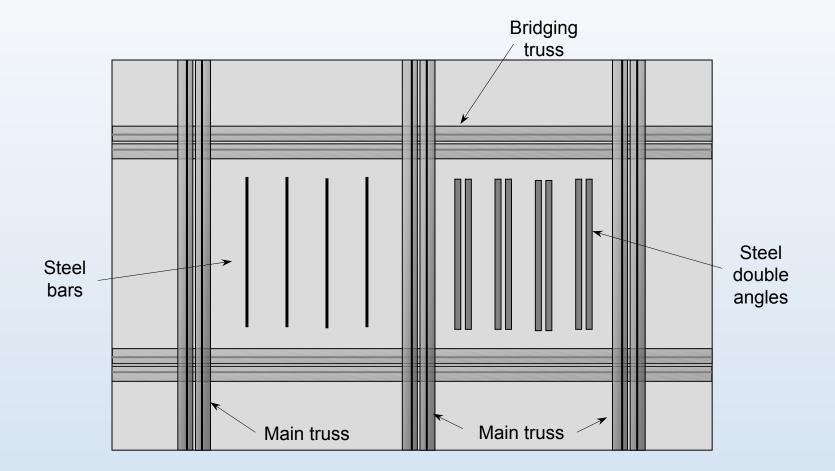
- Test 3: 35 ft (10.7 m) span assembly, thermally unrestrained
 - Allows direct comparison to Test 2 of the effect of thermal restraint on fire endurance rating.
 - Tests 2 and 3 will bound behavior of a floor system that is indeterminately restrained.


ASTM E119


Standard Test Methods for Fire Tests of Building Construction and Materials

- ASTM E119 prescribes a standard exposing fire of controlled extent and severity
- Performance is defined as the period of resistance to standard exposure before the first critical point in behavior (conditions of acceptance or end point conditions) is observed.
- Conditions of acceptance include (for floor systems)
 - Sustained applied load during classification period
 - Maximum temperature on unexposed side of the specimen
 - Maximum and average temperatures of the steel joists

Elevations of Test Configuration

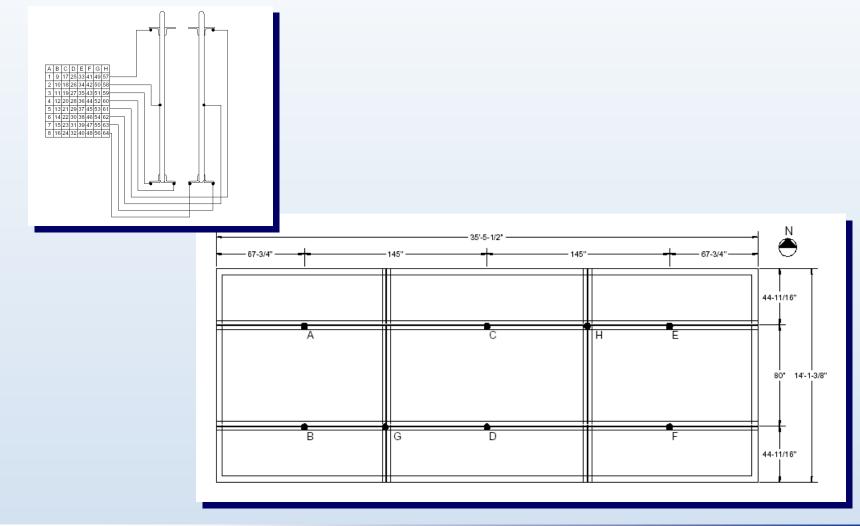


SIDE VIEW (Note: Bridging trusses are not shown for clarity)

Plan View of Test Configuration

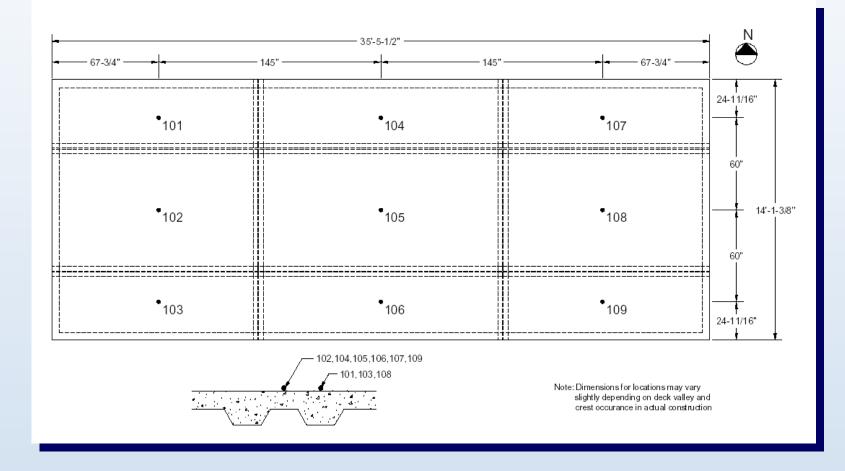
Instrumentation

- **Temperature Measurements** (exceed ASTM E119 requirements)
 - Measurement of the temperature of the steel along the length of the members
 - Measurement of the temperature of the unexposed surface (top) of the concrete slab
 - Measurement of the temperature of the bottom of the concrete slab (steel deck)
- **Deflection** (not required by ASTM E119)
 - Deflection measurements will be made at 9 locations on the unexposed side of the specimen as well as at mid-span on the bottom chord of both main trusses



Instrumentation (Cont'd)

- **Gas Temperatures** (not required by ASTM E119)
 - Gas temperatures will be continuously recorded at three locations using plate thermometer and aspiration thermocouples
- Heat Flux (not required by ASTM E119)
 - Radiative heat flux will be measured at lower surface of metal deck and to the bottom flange of the main trusses using wide-angle radiometers



Thermocouples on Main Trusses

Thermocouples on Unexposed Surface of Concrete Slab

ASTM E119 Conditions of Acceptance (or end point criteria)*

- Transmission of heat through the specimen shall not have been such as to raise the average temperature on its unexposed surface more than 250 °F (139 °C) above its initial temperature.
- The temperature of the steel shall not have exceeded 1300 °F (704 °C) at any location
- The average temperature of the steel recorded by four thermocouples at any section shall not have exceeded 1100 °F (593 °C)
- * Tests will be conducted until specimen fails to sustain the applied load (without damaging the furnace)

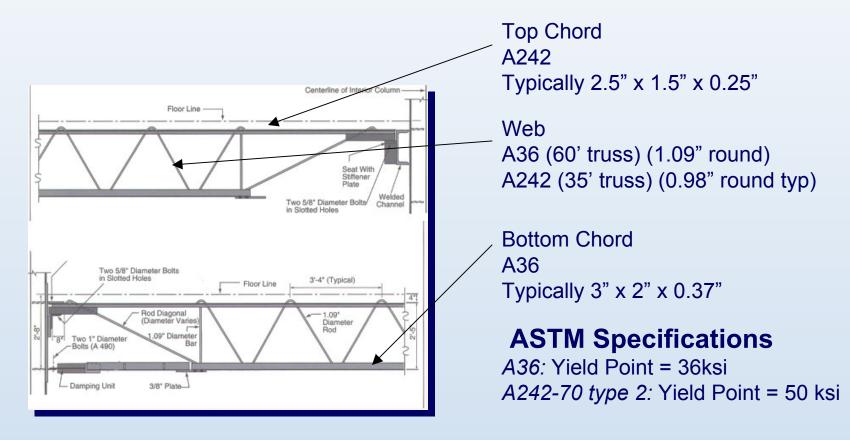
Schedule for Testing

- Start "Kick-off" meeting with Contractor held August 18, 2003
- Testing approximately 9 months
- Results shortly thereafter

May 2003 Progress Report: Fire Protection (Page 74)

- In October 1969, ..., the Port Authority stated, in a letter to the fireproofing contractor, that
 - "All Tower beams, spandrels, and bar joists requiring sprayon fireproofing are to have a $\frac{1}{2}$ " [1/2 in] covering of Cafco.
 - The above requirements must be adhered to in order to maintain the Class 1-A Fire Rating of the New York City Building Code."[1]

 [1] Letter dated October 30, 1969 from Robert J. Linn (Manager, Project Planning, The World Trade Center) to Mr. Louis DiBono (Mario & DiBono Plastering Co., Inc.).


May 2003 Progress Report: Fire Protection (Page 80)

- In 1999, the Port Authority established "guidelines regarding fireproofing repairs, replacement, and upgrades" for the towers. The guidelines for tenant spaces may be summarized as follows:
 - For full floors undergoing new construction or renovation, the bar joists should be fireproofed with 1-1/2 in of spray-on mineral fiber fireproofing. Refireproofing requires removal of existing material and controlled inspection.
 - For "tenant spaces less than a full floor undergoing new construction or renovation," the floor trusses "need only meet the original construction standard. Fireproofing shall be inspected and patched as required to the greater of 3/4 in or to match existing" if it has already been upgraded to 1-1/2 in.

Truss Specified Mechanical Properties

About 50 truss variants (60', 35', bridging trusses, 20+ variants per length

As-Built Properties

- Truss components typically meet contemporaneous specification. A36 components far exceed minimums.
- No obvious differences (chemistry/microstructure/mechanical) between steel specified as A36 and that specified as A242
- Truss steel would meet (chemistry and yield strength) present-day A572 (Type 2 or Type 4) Grade 50 steel

Selection of Key Test Parameters

- Fireproofing Thickness
- Steel Specification

Should the planned tests address the fire endurance rating of ...

- what was originally specified for the design?
 - 0.5 in of fireproofing per letter to DiBono
 - minimum steel strength (36 ksi; 50 ksi)
- as-built conditions at time of collapse?
 - 0.75 in of fireproofing per measurements
 - Supplied steel strength (over 55 ksi)

If test is for ...

Specified Conditions

- Will provide design information not available in the early 1960s
- Will establish minimum performance expectation for specified system

As-built Conditions

- Will provide as-built information for investigative purposes
- Will establish data on performance of as-built system at time of collapse

Other Considerations...

• Steel primer paint

Should the planned tests have primed or unprimed steel?

- WTC steel was primed
- Testing Laboratories generally require that steel not be primed or require the use of specific primers

