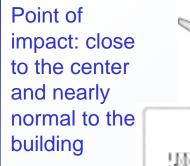
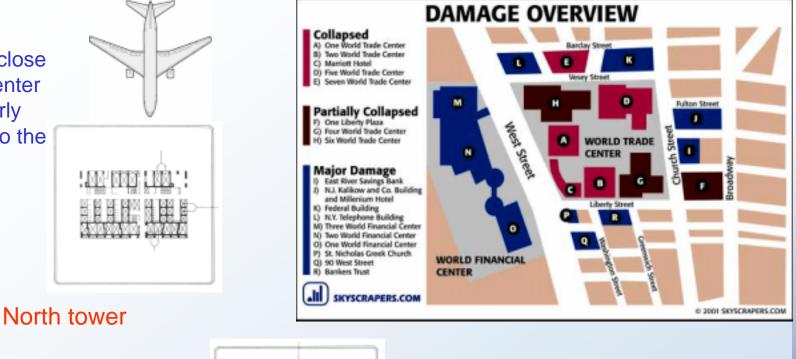

NIST Response to the World Trade Center Disaster

World Trade Center Investigation Plan

April 29, 2003

S. Shyam Sunder, Lead Investigator Bill Grosshandler, Associate Lead Investigator Building and Fire Research Laboratory National Institute of Standards and Technology U.S. Department of Commerce sunder@nist.gov





South tower: Hit at 9:03 AM Collapsed after 56 minutes

North tower: Hit at 8:46 AM Collapsed after 1 hour, 43 minutes

Point of impact: close to the corner and with an angle

Anecdotal Observations:

15-20 million sq. ft. lost on 9/11

17 million sq. ft. of vacant office space in downtown Manhattan

NIS

Plan Development Process

June 10, 2002:

June 24, 2002:

June 30, 2002:

August 21, 2002:

September 9, 2002:

- Proposed plan with project details available for public comment
- Public meeting in New York City to receive comments on scope of proposed plan
- Due date for public comments on proposed plan
- Refined plan published and adopted for implementation
- Funds transferred to NIST from FY 2002 emergency appropriation via FEMA

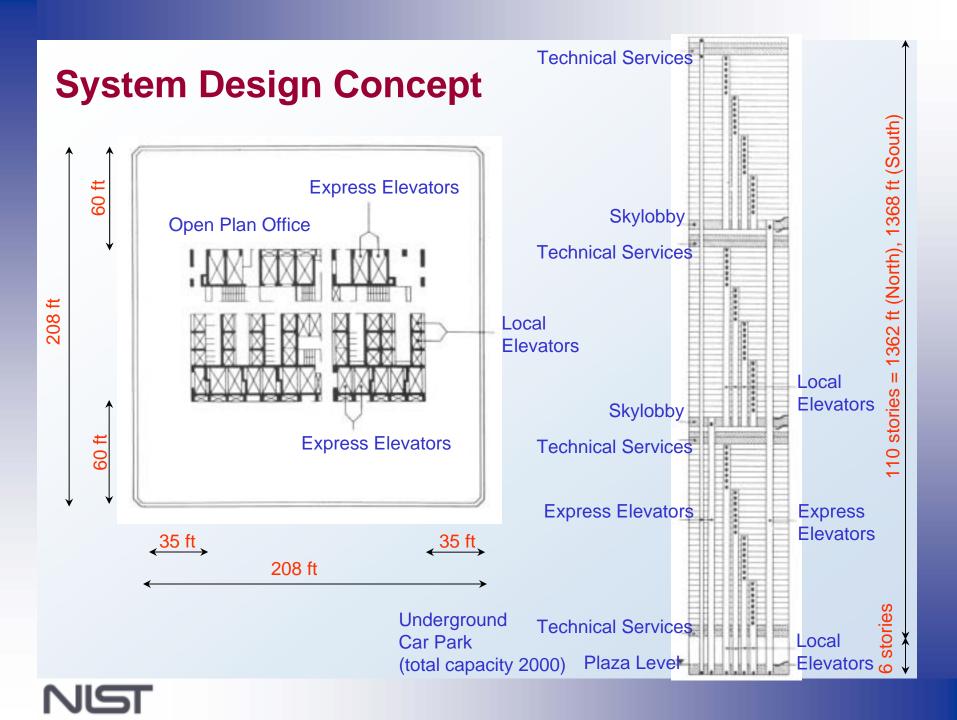
Goals

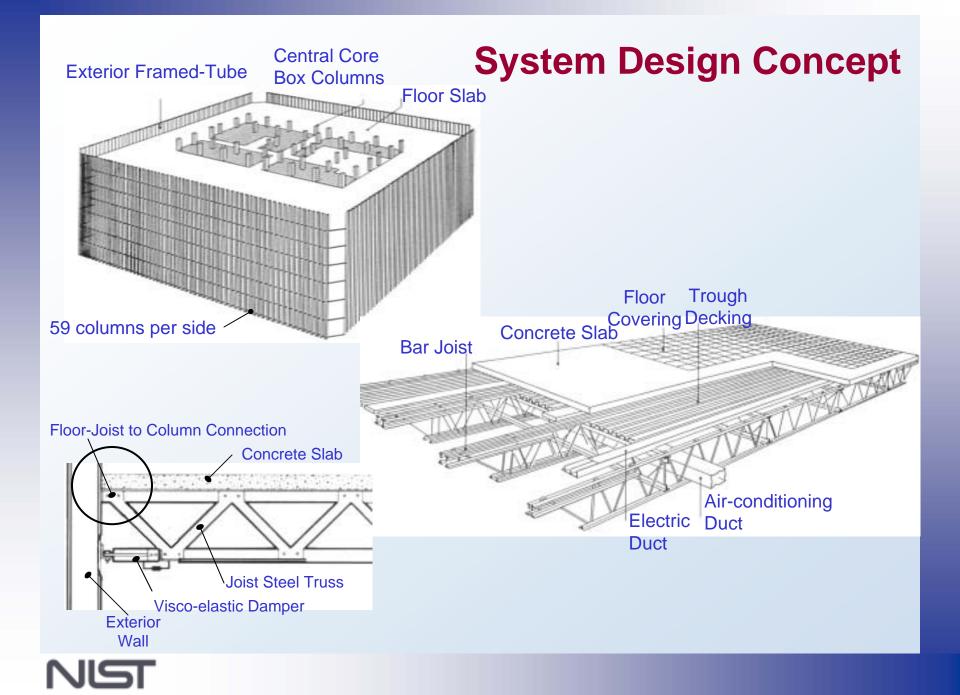
- To investigate the building construction, the materials used, and the technical conditions that contributed to the outcome of the World Trade Center disaster
- To serve as the basis for:
 - Improvements in the way buildings are designed, constructed, maintained, and used
 - Improved tools, guidance for industry and safety officials
 - Revisions to codes, standards, and practices
 - Improved public safety, and business and insurance stability

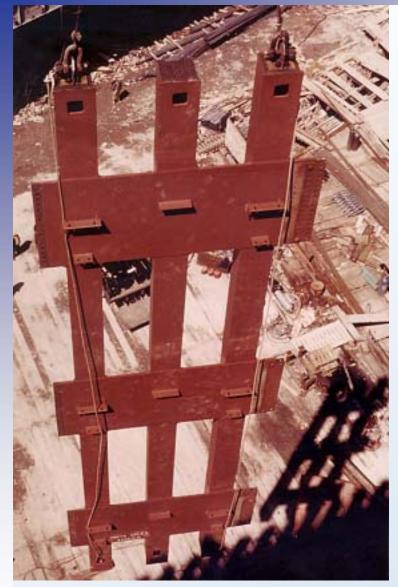
• Estimated Time-to-Completion:

- Final report in 24 months
- Interim progress reports and key project reports along the way

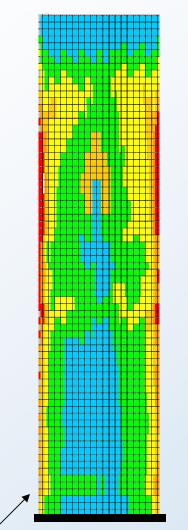
Objectives


- Determine technically, why and how the buildings WTC 1, 2, and 7 collapsed following the initial impact of the aircraft
- Determine why the injuries and fatalities were so low or high depending on location, including all technical aspects of fire protection, occupant behavior, evacuation, and emergency response
- Determine what procedures and practices were used in the design, construction, operation, and maintenance of the WTC buildings
- Identify, as specifically as possible, building and fire codes, standards, and practices that warrant revision

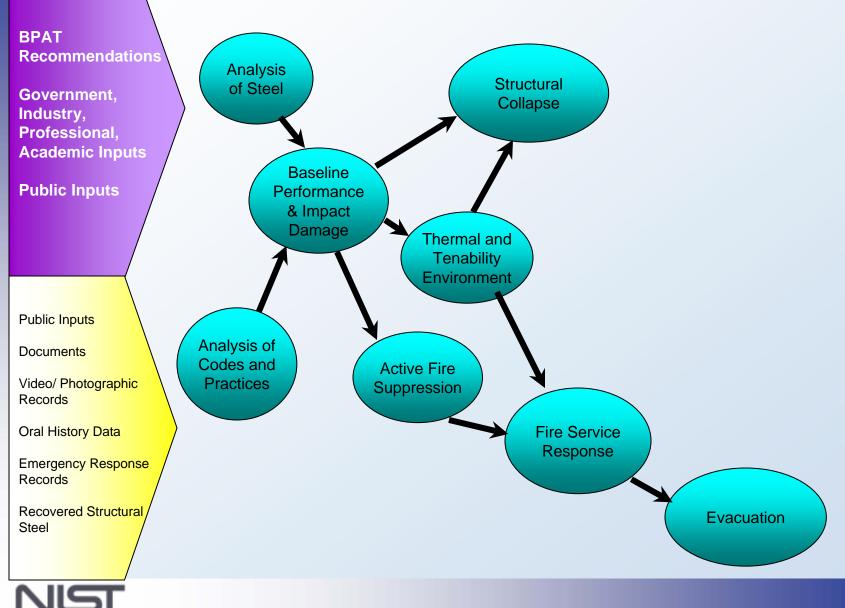


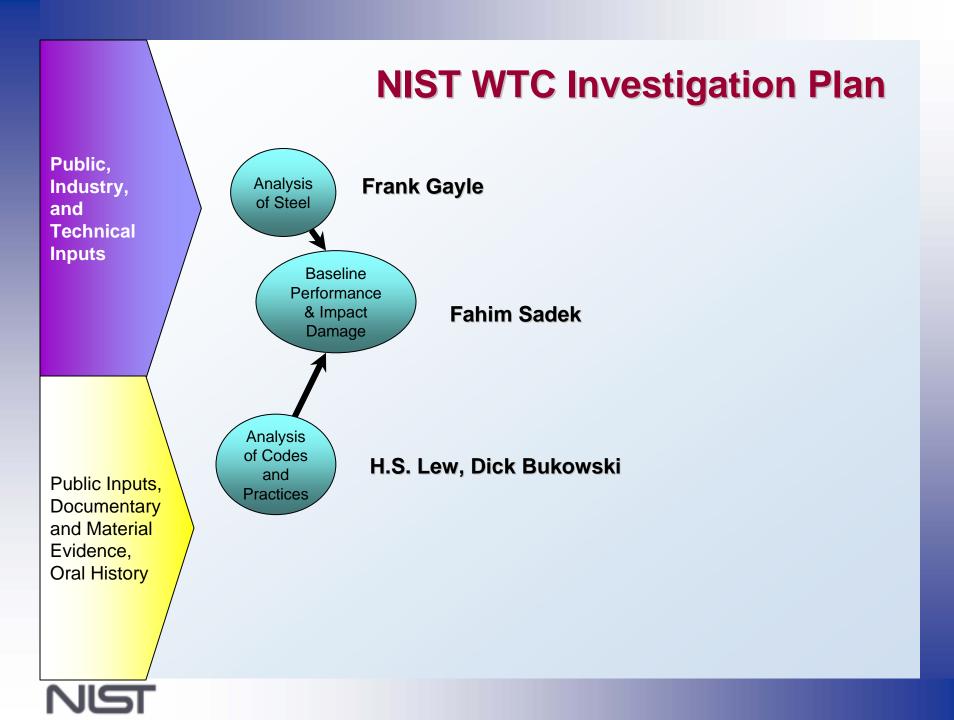

Guiding Principles

- Active, comprehensive, thorough, independent, and objective
- Fully informed of concerns and issues of all parties and within limits of available resources
- Open and inclusive process in planning and conducting investigation and in publishing and disseminating findings and recommendations
- Improve practice, standards, and codes and reduce future risks by focusing on:
 - Fact-finding and analysis of the facts
 - Validating and verifying existing knowledge
 - Creating new technical and/or scientific knowledge
- Non-technical issues outside scope: no findings of fault or negligence of any individual or organization
- Maintain ongoing liaison with professional community, public, and local authorities
- Project teams of NIST and external world-class technical experts



Structural Steel: WTC 1 North Face




- Gravity loads primary factor in <u>core</u> column design.
- 4 grades of steel (99% are 36 and 42 ksi yield strength)
- Conventional (albeit massive!)
 column & beam construction
- Wind loads primary factor in perimeter column design.
- 14 different grades of steel
 (36 to 100 ksi yield strength)
- Arrangement of steel neither symmetric nor the same for the two towers

Simulated distribution of column yield strengths

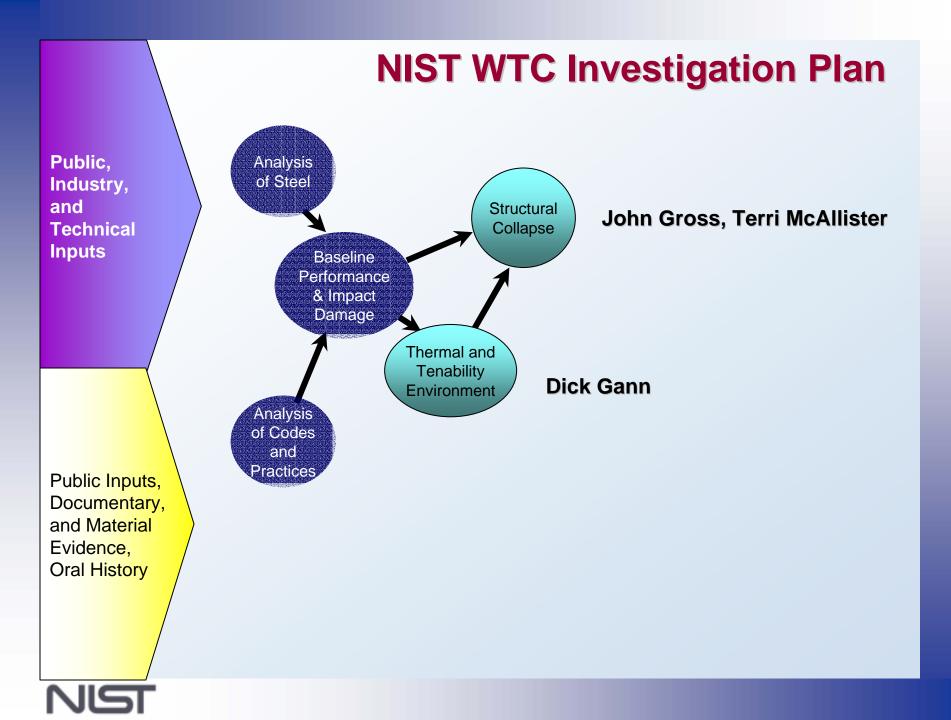
NIST WTC Investigation Projects

Analysis of Building and Fire Codes and Practices

- Review design calculations and project documents; project specifications and as-built drawings; establish design loads and methods used to proportion structural components; approval process for systems not covered by governing code and anticipated abnormal loads
- Review **building construction** (construction logs, change orders, test and inspection reports); document significant events during construction and over the life of the buildings
- Review active and passive fire protection features during construction and occupancy (fireproofing, egress, fire stops, compartmentation, enclosure shafts, sprinkler system, fire alarm)
- Review design, operation, maintenance, and inspection of **emergency access and evacuation systems**; U.S. versus international standards; standards, practices, and policies for firefighter lifts
- Compare design requirements versus code provisions (NYC, NYS, and national model codes) during design and now; comparison with provisions of selected other major U.S. city codes
- Review structural systems maintenance and modifications from initial occupancy to September 11, 2001; review modifications made following the 1993 bombing; focus on portions of building affected by aircraft impact
- Review fire protection systems maintenance and modifications from initial occupancy to September 11, 2001; focus on portions of building affected by aircraft impact

NIST

Baseline Structural Performance and Aircraft Impact Damage Analysis

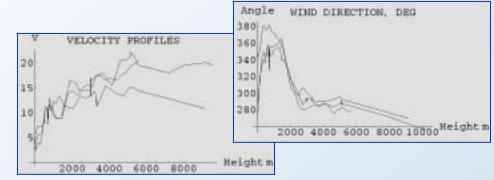

- Develop reference structural models of WTC 1 and WTC 2; capture intended behavior of structural system, including prefabricated column-spandrel panels, composite floor diaphragm, hat-truss, and connection details; major modifications during bid, construction, and occupancy
- Analyze baseline performance of WTC towers under design gravity and wind loads to estimate safety margins; compare original design wind loads with estimates of design wind loads from recent wind tunnel tests
- Analyze damage to structural system due to aircraft impact with WTC 1 and WTC 2; estimate collateral damage to fireproofing, fire protection system, and fire compartments; analyze component, subsystem, and system level structural damage; assess most probable damage states and influence of knowledge and random uncertainties
- Determine role of floor diaphragms and hat truss on structural integrity of WTC towers; analyze stability of undamaged towers with missing or damaged floor systems and/or without hat truss
- Determine safety margin of WTC 1 and WTC 2, immediately after aircraft impact and under service loads

Metallurgical and Mechanical Analysis of Structural Steel

- **Collect and catalog available structural steel**; identify location of steel pieces within the WTC buildings; document relevant steel specifications and specified properties for the WTC towers and WTC 7; obtain proprietary data from suppliers as needed
- **Document failure mechanisms and damage** based on visual observations of recovered steel, especially for available columns, connectors, and floor trusses
- Determine the metallurgical and mechanical properties of steel, weldments, and connections
 - Identify grades of steel used for different structural components
 - Room temperature properties to analyze baseline performance
 - High strain rate properties for aircraft impact analysis studies
 - Creep and high temperature properties to evaluate structural fire response
- Analyze the steel and primer paint metallographically to estimate maximum temperatures reached by available steel
- Compare steel properties obtained with applicable material specifications
 - Perimeter column-spandrel panels;
 - Composite floor truss system
 - Core columns

Reconstruction of Thermal and Tenability Environment

- Collect and analyze photographic and video images to guide initial conditions for modeling fires, rates of fire spread through buildings, and floors on which structural collapse may have begun; review eyewitness accounts of damage to buildings
- Gather data on internal construction materials/systems, furnishings/contents, and other fuel sources (oil storage tanks, aviation fuel); characterize types of combustibles and estimates of mass loading; compare data with prior surveys of similar occupancies
- Identify pathways for fire ventilation and compartment-to-compartment fire spread by compiling existing data on fire performance of floor, wall, and ceiling systems, and on the nature of openings (ducts, shafts, etc); conduct complementary experiments as needed
- Determine **thermal properties of structural insulation (fireproofing) systems** as a function of temperature, and effects of vibration, impact, and shock on thermal performance; estimate extent to which fireproofing was in place on September 11, 2001; assess whether chemical interaction between insulation and steel at elevated temperatures could degrade performance
- Extend capabilities of NIST's Fire Dynamics Simulator (FDS) to reconstruct temperature, thermal, and smoke fields (including floor spaces, stairwells); use reduced-scale experiments to validate FDS sub-models
- Reconstruct fully involved fires, with and without initial damage from aircraft or incident debris; assess probable fire paths and timeline of fire spread, influence of knowledge and random uncertainties; parameters include ignition mode/location, jet fuel and building contents, ventilation system, compartment damage, core pressurization, fire protection system, rate and extent of fire spread, extent of hot smoky and toxic conditions

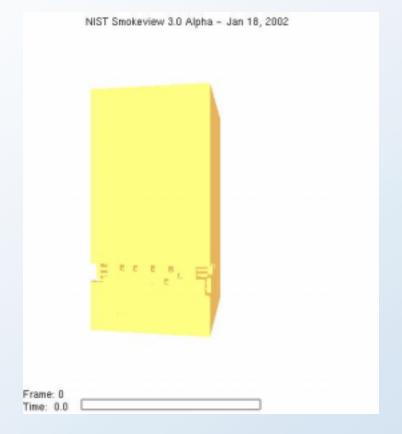

Structural Fire Response and Collapse Analysis

- Evaluate thermal-structural response of floor and column subsystems under service loads; model typical composite floor system, prefabricated column-spandrel panels, and core column systems; model typical connection supports; standard (ASTM E-119, ASTM E-1529) fires, and real fires based on fire dynamics simulations; unprotected steel, and steel with different fireproofing thicknesses; assess local failure of components and sub-systems using strength, serviceability, and stability criteria
- Evaluate thermal-structural response of WTC towers under service loads, without and with aircraft impact damage; model structural system to include fire-affected and impact damage regions; standard (ASTM E-119, ASTM E-1529) fires, and real fires based on fire dynamics simulations; unprotected steel, and steel with different fireproofing thicknesses; assess failure of subsystems and system using strength, serviceability, and stability criteria; determine safety margin of components and subsystems critical to system collapse initiation
- Conduct **tests of structural components and systems under fire conditions**; use tests to validate analysis models and provide response data otherwise unavailable
- Evaluate failure hypotheses for the WTC towers; identify candidate sequence of events for collapse initiation; assess probable collapse initiation sequences, and influence of knowledge and random uncertainties; evaluate role of floor diaphragms, connections, hat truss, and other key elements; **identify most probable structural collapse sequence**
- Document past fire performance of open-web steel bar joist systems; review available fire incident and insurance investigation reports; review available test reports (ASTM E-119) or others; domestic and international data; compare past performance with performance of bar joist floor system in WTC towers
- Analyze thermal-structural response of WTC 7 through collapse initiation; model structural system with refinement in fire-affected region; standard (ASTM E-119, ASTM E-1529) fires, and real fires based on fire dynamics simulations; determine safety margin of components and subsystems critical to system stability; assess failure of subsystems and system using strength, serviceability, and stability criteria; assess probable collapse initiation sequences, and influence of knowledge and random uncertainties; evaluate role of transfer trusses and other pivotal elements; identify most probable structural collapse sequence

NIST

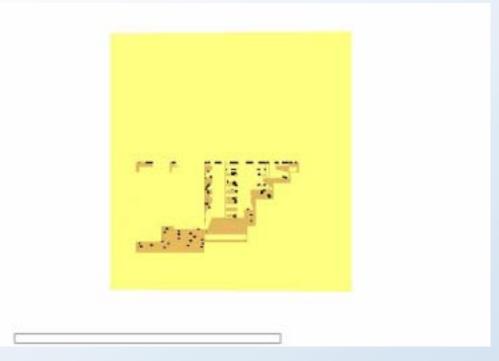
Simulation Tool for Re-creation of Fire and Smoke Movement (Rehm et al.)

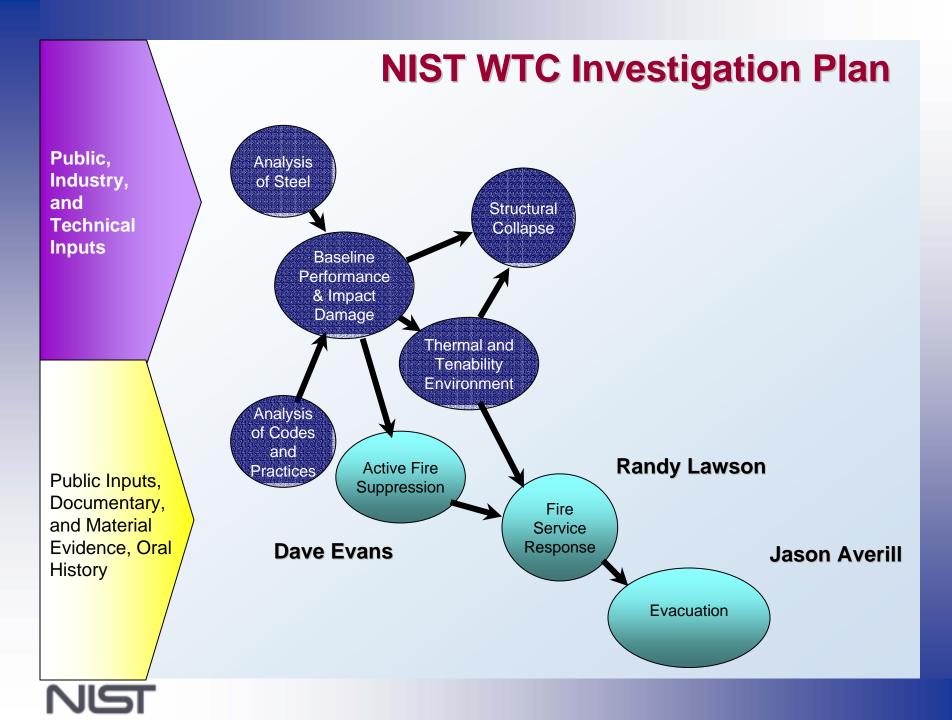
Three commercial flights reported data using the Addressing and Reporting System (ACARS)


NIST Smokeview 2.0Beta1_0831 - DO NOT CITE

Frame: O Time: 1.2				
	FDC	A		

LD2


South Tower Fireball


Seconds after impact. About 3000 kg fuel consumed.

Simulation Tool for Recreation of Fire and Smoke Movement

Investigation of Active Fire Protection Systems

- Document the design, installation, and normal operation of active fire protection systems (sprinkler system, fire water supply, power supply, pre-connected hoses, fire alarm, emergency communication systems, smoke management systems); review available fire inspection reports; review capacities, redundancies, and defense-in-depth
- Document the past performance of active fire protection systems during significant fires
- Estimate limits of performance for fully functional sprinkler systems as installed
- Review inspection records for active fire protection systems; document modifications made to the fire alarm system after the 1993 bombing incident
- Document **performance of active fire protection system on September 11, 2001**; assess system performance under similar fires without aircraft damage to the system

Occupant Behavior, Egress, and Emergency Communications

- **Collect new first-person data** from occupants and those with safety responsibilities, first responders, and families of victims affected by the WTC disaster via interviews and statistical surveys; focus on occupant behavior, human factors, egress, and emergency communication
- Compile and analyze first-person media accounts from survivors and families in coordination with other data collection efforts
- Collect archival records from prior WTC evacuation incidents and practice evacuations, including changes made to evacuation procedures, augmented with oral history data from fire safety directors
- Document pre-event data on egress components (stairs, lighting, back-up power, elevators), active fire
 protection systems, occupancy level and distribution on September 11, 2001, emergency communication
 systems, and emergency plans and drills
- Analyze data to study movement of people during evacuation, including decision-making and situation awareness, time-constrained evacuation strategies, emergency communications, fire protection and firefighting, role of fire wardens and fire safety directors, and issues concerning people with disabilities; develop evacuation timeline
- Evaluate evacuation designs and protocols; compare with code requirements and practices; compare observed evacuation data with predictions of alternate egress models and experience with prior evacuations; review occupant protection practices for tall buildings, considering different (e.g., phased, full) evacuation strategies

Fire Service Technologies and Guidelines

- Document emergency response data on first responder fatalities, command and control procedures, equipment performance, radio and 911 communications, dispatch logs, and positioning of emergency apparatus
- Document operations and functioning of communication systems, on-site emergency information systems, fire alarm panels, elevator control panels, standpipes and fire hoses, and other pre-positioned emergency equipment
- **Collect oral history data** from surviving first responders, those in control of emergency operations, and witnesses to the extent data has not been documented fully
- Analyze data to determine effects of key factors on responder success: influence of building design, influence of aircraft impact damage and fuel run-off; occupant egress as related to fire service operations; ability to fight large fires on upper floors of tall buildings; change in fire service practices due to 1993 bombing; pre-planning, training, and standard operating procedures during incident; firefighter accountability, location and tracking; fire and emergency response protocols for tall buildings; resources available for initial situation assessment and incident management, including possibility of structural collapse; communications and coordination with other authorities
- Identify alternative emergency response practices and technologies and R&D needs that could advance safety and effectiveness of first responders during massive fires in tall buildings: knowledge/information systems for command and control; elevator use by firefighters; firefighter tracking systems; interoperability of communication systems; fire growth and smoke hazard prediction; structural safety monitoring, assessment, and prediction; simulation tools for training

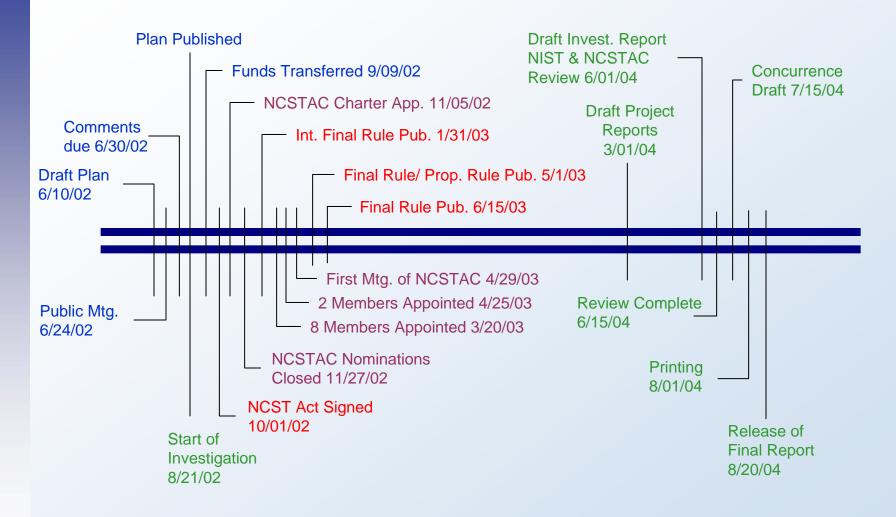
NIST

Lessons to be Derived

Lessons for Structural Fire Protection

- Dynamics of building fires and collapse vulnerability of buildings to fires
- General methodologies for fire safety design and retrofit of structures
- Behavior of fireproofing materials and connections used in steel structures
- Behavior of open-web steel trussed joists in fires
- Collapse mechanisms and role of pivotal components such as transfer girders and floor diaphragms

Lessons for Life Safety


- Firefighting technologies and practices for tall buildings
- Occupant behavior and evacuation technologies and practices for tall buildings
- Control of fire spread in buildings with potentially large open floor plans
- Command, control, and communication systems for fire service response

Lessons for Engineering Practice

- Evaluation process for innovative systems
- Margin of safety and redundancy to accommodate abnormal loads

WTC Investigation Timeline

Color Key: Investigation Plan Development Investigation NCST Act Implementation NCST Advisory Committee

Desired Outcomes

Make buildings safer

Enhance safety of fire and emergency responders

Better protect occupants and property in future

Better emergency response capabilities and procedures in future

Contact Information

Web site: <u>http://wtc.nist.gov</u>

E-mail: wtc@nist.gov

Facsimile: (301) 975-6122

WTC Technical Information Repository National Institute of Standards and Technology 100 Bureau Drive Stop 8610 Gaithersburg, MD 20899-8610

Thank You

