Advances in Infrastructure Delivery and Stewardship – R&D Perspective

James H. Garrett, Jr.

Thomas Lord Professor and Head, Civil and Environmental Engineering Co-Director, Center for Sensed Critical Infrastructure Systems (CenSCIR) Carnegie Mellon University

Civil & Environmental

FNGINEERING

Outline

- A Research Perspective on Infrastructure:
 - A nervous system for our infrastructure:
 - Why is this needed?
 - Implications for the Measurement Science needs?
- Challenges as per Workshop Baseline Document
- Some relevant project activity related to these challenges
- Summary

Civil & Environmental

FNGINEERING

A Research Perspective: Nervous systems for our infrastructure systems?

An Infrastructure Nervous System...

- Senses the usage, condition, and contextual environment of each infrastructure component within a system
- Able to **recognize "pain**" within the system, such as excessive stress, damage due to impact or corrosion, loss of support
- Maintains a **memory** over time and space (for future)
- Maintains a model of its current behavior
- Alerts decision makers about need for early action and assists them in exploring effective actions

Civil & Environmental

FNGINEERING

...Leads to Better Management of Infrastructure

- In Jan 2006, a bridge collapsed onto I-70
- Interstate 70 was closed for several days
- The bridge had been recently inspected and given a rating of 4 out of 10

Civil & Environmental

ENGINEERING

- Extensive corrosion damage to the pre-stressing cables and reinforcing bars in the concrete beam is believed to have contributed to the failure.
- The extent of this damage was not detected during visual inspection.
- More recently: I-35, I-95, Birmingham Bridge...

Carnegie Mellon

And bridges are the best of the infrastructure class....

Subject	2001	2005	2009
	Grade	Grade	Grade
Bridges	С	С	С
Dams	D	D	D
Drinking Water	D	D-	D-
National Power Grid	D+	D	D+
Navigable Waterways	D+	D-	D-
Roads	D+	D	D-
Solid Waste	C+	C+	C+
Transit	с-	D+	D
Wastewater	D	D-	D-

5 yr Investment Needs = \$2.2 Trillion

Source = ASCE.ORG website

Carnegie Mellon

Civil & Environmental

ENGINEERING

...Leads to More Sustainable Operations

- "If you can't measure it, you can't manage it"
 - Peter Drucker
- There are many claims being made about energy savings, water conservation practices, emissions reductions, etc.
- How do we know that a LEED Silver building will operate in an environmentally sustainable manner?
- How do we know that a high efficiency furnace continues to operate with high efficiency?
- We must measure the environmental performances over time and space to know how well the building is performing
 - E.g., energy usage, water usage, air quality, temperature, humidity

Civil & Environmental

ENGINEERING

...Leads to More Informed Future Design Activity

- Each instance of infrastructure will maintain detailed records of:
 - As designed and as-built records
 - Construction challenges associated with the designs
 - usage, performance and deterioration over time
 - Compliance with existing codes
- Collections of data about such instances provides:
 - extensive information useful for future design activity
 - High quality, contextual deterioration models
 - Sections of codes that may need more attention and study

Civil & Environmental

FNGINFFRING

... Leads to More Informed Delivery Process

- Sensing during the construction process provides
 - Detection of deviations between as-designed and as-built info
 - More accurate as-builts
 - Support for commissioning
 - Continuous determination of productivity measures
 - More accurate and more timely cost control information

Civil & Environmental

ENGINEERING

In Workshop Baseline Document, some needs:

- Cost-effective, field deployable sensing systems:
 - Inspection and monitoring
 - During construction and O&M
- Predictive models of system condition and performance
- Decision support tools that use this information to more economically and reliably deliver and manage infrastructure systems

Cen:

Recent research related to these needs...

- Cost-effective, field deployable sensing systems:
 - Inspection and monitoring
 - During construction and O&M
- Predictive models of system condition and performance
- Decision support tools that use this information to more economically and reliably deliver and manage infrastructure systems

Model-based Sensor-Assisted Construction Engineering and Management

Researchers: Burcu Akinci (CEE)

Advanced Sensor-Based Deviation Detection

- Construction deviations and defects occur frequently
 - Constitutes 8-12% of construction cost, when detected late (Burati and Farrington 1987; Josephson and Hammerlund 1998).
 - Defects detected in maintenance constitute 8% of construction cost. (Burati and Farrington 1987; Josephson and Hammerlund 1998).
 - 54% of the construction defects, attributed to human factors like unskilled workers or insufficient supervision of construction work (Opfer 1999)
- Current site inspection approaches need to be improved
 - in increasing the situation awareness
 - in identifying deviations and defects

Advanced Sensor-based Defect Detection and Management on Construction Sites

Automated material tracking and capturing product history

Implementation at a material supplier

Recent research related to these needs...

- Cost-effective, field deployable sensing systems:
 - Inspection and monitoring
 - During construction and O&M
- Predictive models of system condition and performance
- Decision support tools that use this information to more economically and reliably deliver and manage infrastructure systems

Piezoelectric Sensing and Time Reversal Signal Analysis for Monitoring Condition of Natural Gas Pipelines

Researchers: Moura (ECE), Oppenheim (CEE), Soibelman (CEE), Garrett (CEE), Sohn (CEE- KAIST) Sponsored by DOE NETL

CenSC

Types of Damage in Gas Pipelines

(a) Metal Loss; (b) Gouging; (c) Metal anomalies; (d) Buckling

Source: www.battelle.org/pipetechnology/MFL/Links/DefectTypes.htm

Carnegie Mellon

Objectives

- Demonstrate that a combination of piezoelectric sensors and time reversal signal processing can:
 - interrogate the steel walls of a natural gas pipeline
 - identify the existence of, location and extent of damage in the walls of that pipe

Guided Waves in Pipes

Carnegie Mellon

FNGINFFBING

Potential Solutions

Multiple modes and Dispersion

Adverse effects

Collar sensing device

Teletest system from Plant Integrity Ltd. http://www.plantintegrity.co.uk/

Advantages

Time Reversal techniques PZT wafer (Lead Zirconate Titanate)

Carnegie Mellon

Time Reversal Change Focusing

Transmit excitation, receive baseline signal

Back-transmit difference between baseline and signal received

Back-transmit difference between baseline and signal received

LIDAR Support for Bridge Inspection

Researchers: Akinci (CEE), Huber (CMU Robotics), Earls (PITT) Sponsored by PENNDOT and PITA

CenSC

Bridge Inspection Using Lidar Sensing

Assessment of bridge conditions over time

Assessment of bridge as-builts

Recent research related to these needs...

- Cost-effective, field deployable sensing systems:
 - Inspection and monitoring
 - During construction and O&M

• Predictive models of system condition and performance

• Decision support tools that use this information to more economically and reliably deliver and manage infrastructure systems

Precise Global Modeling

Focus on Points of Interest

ynite

Recent research related to these needs...

- Cost-effective, field deployable sensing systems:
 - Inspection and monitoring
 - During construction and O&M
- Predictive models of system condition and performance
- Decision support tools that use this information to more economically and reliably deliver and manage infrastructure systems

Spatial Data Mining To Improve Understanding and Management of Water Main Breaks

Researchers: Soibelman (CEE), Garrett (CEE) Oliviera (CEE) and Rajagopolan (CEE)

Sponsored by NSF and PITA

CenSC

Motivating context

- Consider two similar groups:
 cast iron pipe, 6" diameter, installed before 1967
- Same pipe characteristics, but different behavior

Spatial analysis of water main breaks

- The sort of questions that can be asked about spatial analysis of pipe break events:
 - Are breaks clustered?
 - Where?
 - What factors may cause clusters?
- How to perform exploratory spatial data analysis (ESDA) in order to identify significant spatial factors and interdependencies that explain deterioration?

Civil & Environmental

FNGINFFRING

Exploratory spatial data analysis (ESDA) example

Is there any clustering tendency? Where are the clusters? How large are the clusters? What causes the clusters?

Using Clusters to Decide to Repair or Replace

- Deterioration model includes not only temporal aspect, but also the spatial dimension of failure
- Cluster analysis can provide insight to
 - Decision making process for repair and replacement of pipe segments
 - Long term rehabilitation planning
- Using spatially referenced data (such as soil, traffic, businesses affected) to assess impact of failure locally
 - Availability of spatially referenced data from sources like Census, DOT
 - GIS used as a platform for data integration
 - Locality specific cost that includes both Utility and User cost (sum of which is total social cost)

Civil & Environmental

ENGINEERING

Temporal Analysis

• Calculate the rate of failure for each cluster (group of pipe segments) using data about failure rates for each cluster

• Calculate the optimal replacement time for each cluster, where optimal replacement time defined as time at which lowest total social cost was achieved

Cen

Carnegie Mellon

Cluster analysis vs conventional approach

	Total	Total (Social)	Clusters	
	Length	Replacement Cost	t	
Group	34,498	\$1,601,425		
Level 0	39,810	\$1,770,825	C11	
Level 1	17,316	\$1,003,560	C5	
			C9	
Level 2	11,645	\$1,170,416	C2	
			C4	
			C6	
			C7	
			C10	

The chart on the right compares the replacement time for clustering with conventional approach for grouping pipes

Delayed suggested replacement time indicates avoidance of unnecessary pipe segment replacements

Carnegie Mellon

<u>Carnegie Mellon</u> FNGINFFRING

Summary

- The future delivery, maintenance and operation of our facilities and infrastructure must include "nervous systems" consisting of:
 - Cost-effective, field-deployable sensor networks
 - Distributed data repositories and automated mining techniques
 - Intelligent decision support applications that make use of this data to build usable models for diagnosis and prediction
- We need much more and better information about the use, state and condition of our infrastructure so as to better deliver, operate and manage them

Carnegie Mellon

CenSCIR

Thank you! Questions?

Jim Garrett <u>garrett@cmu.edu</u> <u>www.ce.cmu.edu/~garrett</u>

