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9. Water and Wastewater Sector 

9.1. Introduction 

Water and wastewater systems play a critical role in our daily lives. They provide basic services for our 
homes, places of business, and industry. In the United States, most people take these services for granted 
because of the high level of service and reliability generally provided by water and wastewater utilities. It 
is not until a water main break or other disruption in service occurs, that we are reminded of the 
importance of water and wastewater systems.  

This chapter addresses disaster resilience of utility-scale water and wastewater systems. While water and 
wastewater infrastructure that serve only a small number of households, such as groundwater wells and 
septic systems, are not specifically addressed, the basic resilience concepts are also generally applicable 
to these individual systems. 

Utility-scale water and wastewater lifelines are often complex systems consisting of large distributed 
pipeline networks and localized facilities such as treatment plants and pump stations. The infrastructure 
for these systems was installed as communities developed and expanded over time. The American Society 
of Civil Engineers (ASCE) 2013 Report Card for America’s Infrastructure gave the nation’s water and 
wastewater systems a grade of D. A primary reason for this low grade is much of the water and 
wastewater infrastructure is reaching the end of its useful life; it is not uncommon for some system 
components to be over 100 years old.  

While some utilities are already taking steps to improve the resilience of their system, capital 
improvement programs of many others often focus on emergency repairs, increasing system capacity to 
meet population growth, or making system improvements to satisfy public health and environmental 
regulations. Replacement of buried pipelines is often delayed until water main breaks become frequent or 
wastewater pipeline groundwater infiltration rates create excessive demand on the treatment system. 
Communities have a perfect opportunity to couple resilience improvements with retrofit or replacement of 
aging infrastructure over the coming years to improve the resilience of water and wastewater 
infrastructure. 

9.1.1.  Social Needs and Systems Performance Goals 

The average person uses between 80–100 gallons of water per day. Personal uses include water for 
drinking and cooking, personal hygiene, flushing toilets, laundry, landscape irrigation, and many others. 
Many businesses and industries are also dependent on a continual supply of potable water and wastewater 
collection services. Without functioning water and wastewater systems the operation of restaurants, child 
care facilities, hotels, medical offices, food processing plants, paper mills, etc. is not possible. 
Additionally, water systems in urban and suburban areas provide emergency water supply for fire 
suppression. Chapter 2 discusses this societal dependence on water and wastewater systems and other 
lifelines in more detail. 

In the United States, communities are generally willing to accommodate short-term (on the order of a few 
days) disruptions in water and wastewater services resulting from man-made or natural disasters. 
However, longer-term disruptions are less tolerable. The Oregon Resilience Plan (OSSPAC, 2013) 
indicated if business cannot reoccupy facilities (including functioning water and wastewater systems) 
within one month they will be forced to move or dissolve. This timeline likely varies depending on the 
needs of individual communities and the severity of the disaster. As detailed in Section 9.3, water and 
wastewater utility providers need to work with customers and regulatory agencies to establish realistic 
performance goals for post-disaster level of service, evaluate their systems’ current status in relation to 
those goals, and then develop strategies to close the identified resilience gaps. 

9.1.2. Interdependencies 

As described in Chapter 4, the operation and repair of water and wastewater systems is highly dependent 
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on other lifeline sectors. Other sectors are dependent on water and wastewater systems. 

Water and Wastewater Systems depend on: 

 Transportation – Water and wastewater utilities are dependent on roadway and bridge transportation 
systems for staff to access facilities for operation and repairs. Disaster damage to transportation 
infrastructure has the potential to complicate and lengthen repair times, or even prevent repairs in 
certain areas until roadways and bridges are accessible. 

 Transportation – Water and wastewater buried pipelines are often co-located near other buried 
lifelines under or adjacent to roadways. Failure of pipelines may result in damage to the roadway 
(e.g., sinkhole from water main break or collapsed sewer pipeline) and impact to traffic when repairs 
are being made. Sometimes water and wastewater pipelines are co-located on bridges at river or other 
crossings. If not properly designed, relative movement between the bridge and surrounding soil could 
result in damage to the supported pipelines. Pipeline damage could result in damage to the bridge. For 
instance, if a supported water pipeline breaks due to relative movement between the bridge and 
surrounding soil, water flow from the broken pipe could cause scour of the soil supporting the bridge 
abutment and result in potential bridge collapse.  

 Transportation – Water and wastewater utilities generally keep on hand a limited stock of pipe, 
fittings, and other repair materials. Depending on the size of the disaster, this stock may be quickly 
depleted. Utilities will rely on transportation networks to obtain additional repair materials from 
suppliers and other utilities. Also, utilities rely on a semi-regular delivery of water and wastewater 
treatment process chemicals. Supply chain disruption could lead to difficulty in meeting water quality 
and wastewater treatment regulations. 

 Energy – Water and wastewater utilities rely on commercial electricity to run pumps, various 
components of processes equipment, and lab and office operations. Some of these functions have 
emergency backup generators, but overall power demands make it impractical to run a water or 
wastewater system entirely on backup generators. 

 Energy – Water and wastewater utilities rely on a continual supply of fuel for trucks, equipment, and 
emergency generators. Disruption in fuel production, storage, or delivery could severely impact a 
utility’s ability to continue limited operation on emergency generator power and perform repairs. 

 Communications and Information – Water and wastewater utilities often rely on cellular networks 
for communication amongst operations staff and contractors. If the cellular network is down for an 
extended period of time, complications and delay in repairs can occur. This was observed in the 2010 
Maule earthquake in Chile (Eidinger, 2012). 

 Customers – Water and wastewater utilities rely on customers to pay bills as a continued source of 
operating capital. Utilities will potentially experience significant capital expenditures in the aftermath 
of a disaster and customers may not have the ability to pay bills, placing a large financial burden on 
the utilities. 

Water and Wastewater Systems are required by: 

 Wastewater – Wastewater collection systems are dependent on adequate water flow rates to keep 
sewage flowing. If the water system is down, sewer pipelines may quickly become plugged. 

 Communications and Information – Air conditioning system cooling towers require water to keep 
sensitive electronic equipment in central offices at safe operating temperatures. 

 Hospitals – Hospitals generally have a limited emergency water supply and ability to hold 
wastewater, but need water and wastewater services restored quickly to remain operational. 

 Fire Departments – Fire Departments require a water supply with adequate fire flow and pressure for 
fire suppression.  

 Commercial Buildings – Commercial buildings require a water supply with adequate fire flow and 
pressure for sprinkler systems; otherwise a fire watch may be necessary. Fire watch programs are 
expensive to maintain and may be cost prohibitive for any extended duration. 
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 Restaurants – Restaurants need water and wastewater service for cooking and cleaning. 
 Hotels – Hotels need water and wastewater services for guest use and laundry. 
 Agriculture –Horticulture crops and livestock need water for irrigation in areas where precipitation is 

insufficient.  
 Residential – Residential water and wastewater use includes drinking, food preparation, bathing, etc.  

These items illustrate how highly interdependent water and wastewater systems are with other lifeline 
systems and how dependent communities are on water and wastewater services to maintain normalcy. 

9.2. Water Infrastructure 

This section describes basic components of water and wastewater systems. Performance observations 
from past disaster events characterize some key disaster vulnerabilities in water and wastewater systems, 
especially for the high-seismicity regions of the western US, and areas around Charleston, South Carolina 
and Memphis, Tennessee. While seismic hazards can broadly impact water and wastewater systems given 
that earthquakes regularly cause damage to buried lifelines (e.g., water distribution and wastewater 
collection systems), other hazards can have major impacts on aboveground and below grade (unburied) 
facilities like treatment plants and pump stations. In fact, water and wastewater treatment facilities are 
vulnerable to flood hazards because they are often located in or near flood hazard areas by design, given 
their functional dependency on natural water resources. It is important to appropriately consider all 
identified hazards when evaluating disaster resilience of water and wastewater systems. System 
interdependencies (e.g., loss of commercial electrical power in a wind event) can have a significant 
impact on operability of water and wastewater systems (Elliott, T. and Tang, A., 2009). 

9.2.1. Water Systems 

Water systems provide potable water for household, commercial, and industrial use. Water is obtained 
from groundwater or surface water sources, treated to satisfy public health standards, and distributed to 
consumers by a network of pipelines. Some water utilities have their own supply and treatment 
infrastructure, while others buy wholesale water from neighboring agencies. 

Water systems are composed of five general infrastructure categories: 1) Supply (i.e., groundwater wells 
and surface water), 2) transmission, 3) treatment, 4) pumping, and 5) storage. The basic function of each 
of these categories is briefly described below. 

9.2.1.1. Supply 

Groundwater. Rainfall and snowmelt infiltrate into the ground to recharge groundwater aquifers. 
Groundwater wells tap into aquifers and supply water to individual households or municipal water 
providers. A well system consists of the groundwater aquifer, well casing and screen, pump and motor, 
power supply, electrical equipment and controls, connecting piping, and possibly a well-house structure. 
Typically wells are cased with a steel pipe to keep its sides from caving in. Screens in the well casing at 
the depth of the aquifer allow water to enter the casing. A submersible or surface-mounted pump conveys 
water to the transmission system. 

Surface Water. Rainfall and snowmelt runoff that does not infiltrate into the ground collects in streams, 
rivers, and lakes, and is sometimes impounded by dams. Water intake systems vary depending on source 
type. Increased turbidity (suspended solids) of surface water supplies can decrease the amount of raw 
water a treatment plant is able to process and may cause surface water sources to become temporarily 
unusable. 

Typical damage to water supplies includes: 

 Flooding can cause contamination of surface and ground water sources. Floodwaters are rarely 
“clean” and generally include contaminants like petroleum, nutrient/organic matter, bacteria, 
protozoa, and mold spores that pose significant health risks.  
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 Earthquake-induced permanent ground displacement can cause well casing and well discharge piping 
damage. The force of moving ground can bend well casings and brake well discharge piping. 

 Increased turbidity of surface waters as a result of flooding can overwhelm water treatment systems. 
Water treatment processes include removal of particulates; however, their processes are based on a 
limited measure of turbidity existing prior to treatment. Floodwaters can have significantly increased 
turbidity that tax water systems and lead to treatment delays. Similarly, seismic events can trigger 
landslides which also impact turbidity. In the 2008 Wenchuan China earthquake, many landslides 
occurred in the mountainous region and led to increased turbidity in local waterways.  

 In the 2011 Tohoku Japan earthquake, a tsunami inundated several freshwater intake facilities with 
seawater. These water intakes were unusable for a long period of time due to the high concentration 
of salts in the water (Miyajima, 2012). This type of salt water infiltration of water treatment systems 
is often experienced after storm surge events and as a result of coastal flooding in general.  

 Reservoirs behind dams often serve as water supply features, but dam failure can present a secondary 
hazard in the wake of events including earthquakes, heavy rainfall, and flooding events.  
 Concentrated rainfall or precipitation and flooding can result in the most common means of dam 

failure: overtopping. While dams can control floods, many are specifically designed for other 
uses (e.g., water supply facilities), and therefore may not be equipped to contain large volumes of 
quickly accumulating surface water runoff. Additionally, older and poorly maintained dams are 
more vulnerable to overtopping or failure as the result of heavy precipitation and flooding.  

 In the 1971 San Fernando earthquake in Southern California, the Lower San Fernando Dam 
experienced a landslide and near failure. The event lowered the dam’s crest about 30 ft and put 
80,000 people at significant risk while the impounded water level was being lowered. These types 
of dam failures are rare, but present a significant life-safety risk to anyone downstream of a dam. 
Dams are critical infrastructure components that need to be designed to withstand extreme events. 

9.2.1.2. Transmission 

Water system transmission and distribution pipelines are a significant asset class for water utilities. Large 
water utilities may have a network consisting of thousands of miles of pipelines. Typically these pipelines 
operate under pressure and are buried 2.5–6 feet or deeper underground, making them difficult to inspect 
and expensive and disruptive to repair. Pipeline material and joint type significantly influence the 
performance of a pipeline when it is located in an area subjected to permanent ground deformation 
occurring in an earthquake or landslide. Table 9-1 summarizes commonly in-place and currently used 
pipeline materials and joint types, along with their applicable American Water Works Association 
(AWWA) standard. Materials and joint types with no designated standard are no longer manufactured, but 
represent a significant portion of the installed pipelines in the US. 
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Table 9-1: Commonly Used Water Pipeline Materials, Standards, and Vulnerability To Ground 
Deformation (AWWA, 1994) 

Material Type and Diameter AWWA Standard Joint Type 

Low Vulnerability 

Ductile Iron C100 series Bell-and-spigot, rubber gasket, restrained 

Polyethylene C906 Fused 

Steel C200 series Arc welded 

Steel No designation Riveted 

Steel C200 series Bell-and-spigot, rubber gasket, restrained 

Low to Moderate Vulnerability 

Concrete cylinder C300, C303 Bell-and-spigot, restrained 

Ductile iron C100 series Bell-and-spigot, rubber gasket, unrestrained 

Polyvinyl chloride C900, C905 Bell-and-spigot, restrained 

Moderate Vulnerability 

Asbestos cement (> 8-in. diameter) C400 series Coupled 

Cast iron (> 8-in. diameter) No designation Bell-and-spigot, rubber gasket 

Polyvinyl chloride C900, C905 Bell-and-spigot, unrestrained 

Steel C200 series Bell-and-spigot, rubber gasket, unrestrained 

Moderate to High Vulnerability 

Asbestos cement (≤ 8-in. diameter) C400 series Coupled 

Cast iron (≤ 8-in. diameter) No designation Bell-and-spigot, rubber gasket 

Concrete cylinder C300, C303 Bell-and-spigot, unrestrained 

Steel No designation Gas welded 

High Vulnerability 

Cast iron No designation Bell-and-spigot, leaded or mortared 

Transmission Pipelines. Large diameter (> 12 in) transmission pipelines carry raw water from a source to 
the treatment plant, and treated water to storage facilities and community sectors before branching out 
into smaller diameter distribution pipelines. Transmission pipelines can be thought of as the backbone of 
the pipeline system. 

Distribution Pipelines. Smaller diameter (≤ 12 in) distribution pipelines carry treated water from 
transmission pipelines to neighborhoods and industrial areas. For some smaller utilities, major 
transmission lines may also fall in this diameter range. Service connections branch off distribution 
pipelines to supply individual customers. The portion of the service connection before the water meter is 
typically maintained by the water utility and the portion after the water meter is the responsibility of the 
individual customer.  

Buried pipelines are less vulnerable to some types of hazards (e.g., wind), but seismic events often result 
in widespread damage of buried infrastructure. Flood forces can also impact buried systems. Typical 
damage to water pipelines includes: 

 Buried water pipelines can become exposed as a result of landslides (particularly in steeper terrain) or 
erosion associated with flood hazards. In these instances, pipe leaks, breaks and uncoupling of pipes 
are common. Breaks and leaks in buried water pipelines are one of the largest earthquake damage 
mechanisms in water systems.  
 “Leak” commonly refers to relatively minor damage to a pipe barrel or joint that results in minor 

to moderate water loss, but does not significantly impair the distribution system’s function.  
 “Break” commonly refers to major damage to a pipe barrel or joint that results in major water loss 

that may cause loss of pressure in a zone or nearby tanks to completely drain.  
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9.3. Performance Goals 

The large and distributed nature of water and wastewater systems, combined with their interdependence 
on other lifelines, limits the practicality of maintaining 100 percent operational capacity in the aftermath 
of a major natural disaster. This section identifies a recommended level of service performance goals for 
water and wastewater systems.  

We provide a recommended level of service performance goals as a starting point; they need to be 
discussed with individual utilities and communities before they are adopted. It is important to consider the 
uniqueness of the infrastructure of individual utilities and the specific needs of their customers when 
adopting system performance goals for a specific community. It is critical that all water and wastewater 
stakeholders be engaged in establishing community-specific level of service performance goals for each 
of the three different hazard levels (routine, expected, and extreme) discussed in Section 2.1.2. This group 
of stakeholders should include representation from: 

 Residential customers 
 Business customers 
 Industrial customers (if applicable) 
 Water wholesale customers (if applicable) 
 Hospital customers (if applicable) 
 Firefighters 
 Local government officials 
 Local emergency management officials 
 Drinking water regulators (Health Authority, etc.) 
 Wastewater regulators (Dept. of Environmental Quality, Environmental Protection Agency, etc.) 
 Water and wastewater utility operators and engineers 
 Consulting engineers 
 Interdependent lifelines (power, liquid fuel, transportation, etc.) 

The process of establishing performance goals involves a discussion amongst the stakeholders about their 
expectations for the availability of water and wastewater systems during post-disaster response and 
recover phases for different hazard levels (e.g., routine, expected, and extreme). The assumed expectation 
of the general public is that for routine disasters there would be little, if any, interruption of service for 
water and wastewater lifelines. A dialogue is required between utilities and customers to determine the 
appropriate level of service performance goals for expected and extreme events.  

There may be elements in a system that are so critical to public safety that they need to be designed to 
remain operational after an extreme event. For example, failure of a water supply impoundment dam 
would present a significant life-safety hazard to downstream residents, and should be designed for an 
extreme event.  

Interdependencies of water and wastewater systems with other lifelines also need to be considered when 
developing performance goals. For instance, availability of a reliable supply of liquid fuel impacts how 
long systems can run on backup emergency generators and impacts the vehicles and equipment needed by 
repair crews. Delivery of liquid fuels is in turn dependent on the status of the highway and bridge 
transportation network. 

Table 9-4 and Table 9-5 provide recommended water and wastewater system performance goals for post-
disaster response and recovery for an expected wind or seismic event. Performance goals are broken down 
into functional categories (i.e., water for fire suppression at key supply points, treatment plants operating 
to meet regulatory requirements, etc.) and further broken down into target timelines to restore the 
functional categories to 30 percent, 60 percent, and 90 percent operational status.  
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Table 9-4: Detailed Infrastructure System Resilience Matrix – Water 

Disturbance  Restoration times 
(1)  Hazard Any  (2) 30% Restored

Hazard Level  Expected  60% Restored
Affected Area Community  90% Restored
Disruption Level Moderate  (3) X Current

 

Functional Category:  
Cluster 

(4) 
Support 
Needed

(5) 
Target 
Goal 

Overall Recovery Time for Hazard and Level Listed 
Phase 1 -- 
Response 

Phase 2 -- 
Workforce 

Phase 3 -- 
Community 

Days 
0 

Days
1 

Days
1-3 

Wks
1-4 

Wks 
4-8 

Wks 
8-12 

Mos 
4 

Mos
4-36

Mos
36+ 

Source  1  
Potable water at supply (WTP, wells, impoundment)   30%  60% 90%    X    
Water for fire suppression at key supply points   90%     X           
Transmission (inculding Substations)  1  
Backbone transmission facilities (pipelines, pump stations, and 
reservoirs) 

  
90%         X       

Distribution    
Critical Facilities   1          
Hospitals, EOC, Police Station, Fire Stations     60% 90%   X     
Emergency Housing  1          
Emergency Shelters     60% 90%   X     
Housing/Neighborhoods  2          
Drink water available at community distribution centers      60% 90%        
Water for fire suppression at fire hydrants        90%     X   
Community Recovery Infrastructure   3          
All other clusters       30% 90%       X   

Footnotes: 
1 Specify hazard being considered 

Specify level -- Routine, Expected, Extreme 
Specify the size of the area affected - localized, community, regional 
Specify severity of disruption - minor, moderate, severe 

2 30% 60% 90% Restoration times relate to number of elements of each cluster 
3 X Estimated restoration time for current conditions based on design standards and current inventory 

Relates to each cluster or category and represents the level of restoration of service to that cluster or category 
Listing for each category should represent the full range for the related clusters 
Category recovery times will be shown on the Summary Matrix 
"X" represents the recovery time anticipated to achieve a 90% recovery level for the current conditions  

4 Indicate levels of support anticipated by plan 
R Regional 
S State 
MS Multi-state 
C Civil Corporate Citizenship  

5 Indicate minimum performance category for all new construction.  
See Section 3.2.6 



DISASTER RESILIENCE FRAMEWORK 
50% Draft for Norman, OK Workshop 

20 October 2014 
Water and Wastewater Sector, Regulatory Environment 

 
Chapter 9, Page 20 of 33 

Table 9-5: Detailed Infrastructure System Resilience Matrix – Wastewater 

Disturbance  Restoration times 
(1)  Hazard Any  (2) 30% Restored

Hazard Level  Expected  60% Restored
Affected Area Community  90% Restored
Disruption Level Moderate  (3) X Current

 

Functional Category:  
Cluster 

(4) 
Support 
Needed

(5) 
Target 
Goal 

Overall Recovery Time for Hazard and Level Listed 
Phase 1 -- 
Response 

Phase 2 -- 
Workforce 

Phase 3 -- 
Community 

Days 
0 

Days
1 

Days
1-3 

Wks
1-4 

Wks 
4-8 

Wks 
8-12 

Mos 
4 

Mos
4-36

Mos
36+

Treatment Plants    
Treatment plants operating with primary treatment and 
disinfection 

    60% 90%      

Treatment plants operating to meet regulatory requirements      30%   60% 90% X 
Trunk Lines    
Backbone collection facilities (major trunklines and pump 
stations) 

     30%  60% 90%  X 

Collection Lines    
Critical Facilities             
Hospitals, EOC, Police Station, Fire Stations     30% 90%    X  
Emergency Housing            
Emergency Shelters     30% 90%    X  
Housing/Neighborhoods            
Threats to public health and safety controlled by containing & 
routing raw sewage away from public 

   30%  60% 90%   X  

Community Recovery Infrastructure             
All other clusters      30%  60%  90% X 

Footnotes: 
1 Specify hazard being considered 

Specify level -- Routine, Expected, Extreme 
Specify the size of the area affected - localized, community, regional 
Specify severity of disruption - minor, moderate, severe 

2 30% 60% 90% Restoration times relate to number of elements of each cluster 
3 X Estimated restoration time for current conditions based on design standards and current inventory 

Relates to each cluster or category and represents the level of restoration of service to that cluster or category 
Listing for each category should represent the full range for the related clusters 
Category recovery times will be shown on the Summary Matrix 
"X" represents the recovery time anticipated to achieve a 90% recovery level for the current conditions  

4 Indicate levels of support anticipated by plan 
R Regional 
S State 
MS Multi-state 
C Civil Corporate Citizenship  

5 Indicate minimum performance category for all new construction.  
See Section 3.2.6 

It is assumed that the financial burden associated with upgrading all components of an entire system to be 
more disaster resilient would overwhelm the short-term capital improvement budgets of most utilities. 
Therefore, performance goals have been established around the concept of a hardened backbone system. 
This backbone network should be capable of supplying key health and safety related community needs 
shortly after a disaster, while more extensive repairs are being completed on the remainder of the system. 
Performance goals are based on a balance of societal needs and realistic expectations of system 
performance.  

9.4. Regulatory Environment 

Water and wastewater utilities are subject to rules and regulations that are generally intended to protect 
public health and safety and the environment. These regulatory requirements are administered by Federal, 
State, and Local governmental agencies. 
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9.4.1. Federal 

United States Environmental Protection Agency (EPA) 

 Safe Drinking Water Act 
 Contaminant Level Limits – EPA sets limits on levels of certain chemical and microbial 

contaminants in drinking water. 
 Underground Injection Control (UIC) – EPA regulates construction, operation, permitting, and 

closure of injection wells that place fluids underground for storage or disposal. 
 Clean Water Act 
 Analytical Methods – EPA publishes laboratory test procedures for use by industry and 

municipalities to analyze the chemical, physical, and biological components of wastewater. 
 Effluent Limitations Guidelines – EPA establishes regulations for industrial wastewater 

discharges to surface waters and publicly owned treatment works. 
 National Pollutant Discharge Elimination System (NPDES) – EPA controls water pollution by 

regulating point sources of pollutant discharge through the NPDES permit system. 

9.4.2. State 

 State Drinking Water Programs (e.g., Oregon Health Authority, Drinking Water Services). States 
ensure water systems meet Safe Drinking Water Act standards. They ensure water systems test for 
contaminants, review plans for water system improvements, conduct on-site inspections and sanitary 
surveys, provide training and technical assistance, and take action against water systems not meeting 
standards. 

 State Water Quality Programs (e.g., Oregon Department of Environmental Quality, Water Quality 
Division). States ensure water systems meet water quality standards. They develop and implement 
water quality standards, regulate sewage treatment systems and industrial dischargers, collect and 
evaluate water quality data, provide training and technical assistance, and take action against 
wastewater systems not meeting standards. 

9.4.3. Local 

Individual municipalities or utility districts may elect to impose regulatory standards in excess of Federal 
and State standards. In practice this is seldom done due to the increased cost to customers associated with 
meeting higher than minimum regulatory standards. 

9.5. Standards and Codes 

The industry uses codes, standards, and guidelines to establish minimum acceptable criteria for design, 
assessment, and construction. Table 9-6 summarizes available codes, standards, and guidelines for design, 
assessment, and retrofit of water systems components. Table 9-7 provides a similar summary for 
wastewater systems.  
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Table 9-6: Water System Codes, Standards, and Guidelines 

Component Organization* Code, Standard, or Guideline 

General ALA Seismic Fragility Formulations for Water Systems (2001) 

Guidelines for Implementing Performance Assessments of Water Systems (2005) 

AWWA Minimizing Earthquake Damage, A Guide for Water Utilities (1994) 

G430-09 Security Practices for Operation and Management 

J100-10 Risk Analysis and Management for Critical Asset Protection (RAMCAP) 
Standard for Risk and Resilience Management of Water and Wastewater Systems 

M19 Emergency Planning for Water Utilities 

M60 Drought Preparedness and Response 

ICC 2012 International Building Code or applicable jurisdictional building code (for buildings 
and other structures)  

MCEER MCEER-08-0009 Fragility Analysis of Water Supply Systems (2008) 

TCLEE Monograph 22 Seismic Screening Checklists for Water and Wastewater Facilities (2002) 

Supply AWWA A100-06 Water Wells 

M21 Groundwater 

Transmission ACI 346-09 Specification for Cast-in-Place Concrete Pipe 

ALA Guidelines for the Design of Buried Steel Pipe (2001) 

Seismic Guidelines for Water Pipelines (2005) 

ASCE Guidelines for Seismic Design of Oil and Gas Pipeline Systems (1984) 

AWWA C200-12 Steel Water Pipe 6 Inch (150 mm) and Larger 

C300-11 Reinforced Concrete Pressure Pipe, Steel-Cylinder Type 

C301-07 Prestressed Concrete Pressure Pipe, Steel-Cylinder Type 

C302-11 Reinforced Concrete Pressure Pipe, Noncylinder Type 

C303-08 Concrete Pressure Pipe, Bar-Wrapped, Steel Cylinder Type 

C304-07 Design of Prestressed Concrete Cylinder Pipe 

C600-10 Installation of Ductile-Iron Mains and Their Appurtenances 

C604-06 Installation of Steel Water Pipe – 4 In. (100 mm) and Large 

C905-10 Polyvinyl Chloride (PVC) Pressure Pipe & Fabricated Fittings, 14 in. Through 
48 in. (350 mm Through 1,200 mm) for Water Transmission and Distribution 

C906-07 Polyethylene (PE) Pressure Pipe & Fittings 4 In (100 mm) Through 63 In (1,575 
mm) for Water Distribution and Transmission 

C909-09 Molecularly Oriented Polyvinyl Chloride (PVCO) Pressure Pipe, 4” – 24” (100 
mm Through 600 mm) for Water, Wastewater, and Reclaimed Water Service 

M9 Concrete Pressure Pipe 

M11 Steel Pipe: A Guide for Design and Installation 

M23 PVC Pipe – Design and Installation 

M31 Distribution System Requirements for Fire Protection 

M41 Ductile-Iron Pipe and Fittings 

M42 Steel Water Storage Tanks 

M55 PE Pipe – Design and Installation 

MCEER Monograph Series No. 3 Response of Buried Pipelines Subject to Earthquakes (1999) 

Monograph Series No. 4 Seismic Design of Buried and Offshore Pipelines (2012) 

TCLEE Monograph 15 Guidelines for the Seismic Evaluation and Upgrade of Water Transmission 
Facilities (1999) 

Treatment ACI, AWWA Storage tank documents indicated below, as applicable 

ALA Seismic Design and Retrofit of Piping Systems (2002) 

WEF MOP 28 Upgrading and Retrofitting Water and Wastewater Treatment Plants 

Pumping ALA Seismic Design and Retrofit of Piping Systems (2002) 
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Component Organization* Code, Standard, or Guideline 

Storage WEF MOP 28 Upgrading and Retrofitting Water and Wastewater Treatment Plants 

ACI 350.3-06 Seismic Design of Liquid-Containing Concrete Structures and Commentary 

350.4R-04 Design Considerations for Environmental Engineering Concrete Structures 

371R-08 Guide for the Analysis, Design, and Construction of Elevated Concrete and 
Composite Steel-Concrete Water Storage Tanks 

372R-03 Design and Construction of Circular Wire- and Strand-Wrapped Prestressed 
Concrete Structures 

AWWA D100-11 Welded Carbon Steel Tanks for Water Storage 

D110-13 Wire- and Strand-Wound, Circular, Prestressed Concrete Tanks 

D115-06 Tendon-Prestressed Concrete Water Tanks 

Table 9-7: Wastewater System Codes, Standards, and Guidelines 

Component Organization3 Code, Standard, or Guideline 

General ALA Wastewater System Performance Assessment Guideline (2004) 

AWWA J100-10 Risk Analysis and Management for Critical Asset Protection (RAMCAP) 
Standard for Risk and Resilience Management of Water and Wastewater Systems 

WEF Emergency Planning, Response, and Recovery 

Guide for Municipal Wet Weather Strategies 

MOP FD-17 Prevention and Control of Sewer System Overflows 

ICC 2012 International Building Code or applicable jurisdictional building code (for buildings 
and other structures)  

TCLEE Monograph 22 Seismic Screening Checklists for Water and Wastewater Facilities (2002) 

Collection ACI 346-09 Specification for Cast-in-Place Concrete Pipe 

ALA Guidelines for the Design of Buried Steel Pipe (2001) 

ASCE Guidelines for Seismic Design of Oil and Gas Pipeline Systems (1984) 

MCEER Monograph Series No. 3 Response of Buried Pipelines Subject to Earthquakes (1999) 

Monograph Series No. 4 Seismic Design of Buried and Offshore Pipelines (2012) 

WEF MOP FD-5 Gravity Sanitary Sewer Design and Construction 

MOP FD-6 Existing Sewer Evaluation and Rehabilitation 

Treatment ACI 350-06 Code Requirements for Environmental Engineering Concrete Structures and 
Commentary 

350.3-06 Seismic Design of Liquid-Containing Concrete Structures and Commentary 

350.4R-04 Design Considerations for Environmental Engineering Concrete Structures 

372R-03 Design and Construction of Circular Wire- and Strand-Wrapped Prestressed 
Concrete Structures 

ALA Seismic Design and Retrofit of Piping Systems (2002) 

WEF MOP 8 Design of Municipal Wastewater Treatment Plants 

MOP 28 Upgrading and Retrofitting Water and Wastewater Treatment Plants 

Pumping ALA Seismic Design and Retrofit of Piping Systems (2002) 

One shortcoming is that codes and standards do not take into account differences in expected lifespan of 
infrastructure when defining the design hazard level. Pipelines and other components of water and 
wastewater systems often have a service lifespan of 100 years, compared with the typical service lifespan 
of 50 years for buildings. Therefore, the implied level of reliability of a pipeline designed for a particular 
hazard level (i.e., 500-year return period earthquake) is less than that of a building designed for the same 

                                                      
3 ACI is American Concrete Institute. ASCE is American Society of Civil Engineers. AWWA is American Water Works 
Association. ICC is International Code Council. MCEER is Multidisciplinary Center for Earthquake Engineering Research. 
TCLEE is Technical Council on Lifeline Earthquake Engineering. WEF is Water Environment Federation.  
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hazard level due to longer expected service life of the pipeline (i.e., a pipeline in the ground for 100 years 
is more likely to experience the design earthquake than one in the ground for 50 years). 

9.5.1. New Construction 

9.5.1.1. Implied or Stated Performance Levels for Expected Hazard Levels 

Design of new aboveground structures (i.e., treatment plant office and lab buildings, pump stations, 
process tanks, water storage tanks and reservoirs, etc.) is typically governed by local building codes, or 
design standards that prescribe a similar wind and seismic hazard as the local building code. Design loads 
are prescribed by a consensus-based standard, Minimum Design Loads for Buildings and Other Structures 
(ASCE, 2010). This standard uses the concept of Risk Category to increase the design force level for 
important structures. Typical buildings are assigned to Risk Category II. Water and wastewater treatment 
facilities are assigned to Risk Category III, because failure of these facilities can cause disruption to 
civilian life and potentially cause public health risks. Water storage facilities and pump stations required 
to maintain water pressure for fire suppression are assigned to the highest category, Risk Category IV.  

The building code intends that structures designed as Risk Category III or IV should remain operational 
or require only minor repairs to be put back into operation following a design level (expected) wind or 
seismic event. By designing for this performance target for the expected level event it is assumed that 
water and wastewater systems would remain operational under a routine level event and may experience 
moderate to major damage during an extreme level event. 

For the design of new underground pipelines there is a lack of a standard unifying code for water and 
wastewater systems. This is especially true for seismic design of buried water and wastewater pipelines or 
buried pipelines that may be impacted by landslides induced by flooding. Often the Chief Engineer of a 
particular utility is responsible for establishing design practices for their agency. While these agency-
specific design practices are generally based on industry recommendations, variability in standards used 
by utilities results in variability between utilities in the intended system reliability for natural and man-
made hazards. 

Some utilities develop their own standards to specifically address significant local hazards. For example, 
the San Francisco Public Utilities Commission (SFPUC) developed its own internal standard that outlines 
level of service performance goals following a major Bay Area earthquake and specific requirements for 
design and retrofit of aboveground and underground infrastructure. The SFPUC Engineering Standard 
General Seismic Requirements for Design of New Facilities and Upgrade of Existing Facilities (SFPUC, 
2006) establishes design criteria that in many cases are more stringent than building codes and/ or 
industry standards, but are intended to ensure the SFPUC is able to achieve its basic level of service 
performance goal of delivering winter day demand to their wholesale customers within 24 hours after a 
major earthquake. 

9.5.1.2. Recovery Levels 

The performance level implied by codes and standards for new construction provides an indication of the 
recovery level (timeframe) expected for individual system components. The timeframe required for a 
water or wastewater system to return to normal operating status following a major disaster is highly 
dependent on the recovery time for individual system components and the system’s specific 
characteristics (e.g., type and number of components, age of construction, system redundancy, etc.). For 
instance, if a pump is damaged by an earthquake and will take six months to repair, but a redundant pump 
is undamaged, the system recovery time is not impacted by the six month repair time. Estimating system 
recovery times for a specific hazard requires in-depth engineering and operational knowledge of the 
system. 
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Table 9-8 summarizes water and wastewater system component performance and recovery levels for 
earthquake hazard levels as implied by current codes and standards for new construction. Predicted 
recovery times are based on individual system components. 

Table 9-8: Water and Wastewater System Component Performance and Recovery Levels for Various 
Earthquake Hazard Levels as Implied by Current Codes and Standards for New Construction 

System Component Hazard Level Performance Level Recovery Level 

Structures (pump 
stations, treatment 
plants, office/lab 
buildings, tanks, 
reservoirs, etc.) 

Routine (50 year return 
period earthquake) 

Safe and operational Resume 100% service within 
days 

Expected (500 year return 
period earthquake) 

Risk Category III (I=1.25) – Safe and 
usable during repair 

Resume 100% service within 
months 

Risk Category IV (I=1.5) – Safe and 
operational 

Resume 100% service within 
days 

Extreme (2500 year return 
period earthquake) 

Risk Category III (I=1.25) – Safe and 
not usable 

Resume 100% service within 
years 

Risk Category IV (I=1.5) – Safe and 
usable during repair or not usable 

Resume 100% service within 
months to years 

Nonstructural 
components (process, 
lab, mechanical, 
electrical, and 
plumbing equipment, 
etc.) 

Routine (50 year return 
period earthquake) 

Safe and operational Resume 100% service within 
days 

Expected (500 year return 
period earthquake) 

Risk Category III (I=1.25) – Safe and 
usable during repair 

Resume 100% service within 
months 

Risk Category IV (I=1.5) – Safe and 
operational 

Resume 100% service within 
days 

Extreme (2500 year return 
period earthquake) 

Risk Category III (I=1.25) – Safe and 
not usable 

Resume 100% service within 
years 

Risk Category IV (I=1.5) – Safe and 
usable during repair or not usable 

Resume 100% service within 
months to years 

Pipelines Routine (50 year return 
period earthquake) 

Operational Resume 100% service within 
days 

Expected (500 year return 
period earthquake) 

Operational to not usable Resume 100% service within 
months 

Extreme (2500 year return 
period earthquake) 

Not usable Resume 100% service within 
years 

9.5.2. Existing Construction 

9.5.2.1. Implied or Stated Performance Levels for Expected Hazard Levels 

The design seismic hazard level has been refined over time as the engineering and seismology 
communities understanding of the seismicity of the United States has improved. A significant portion of 
water and wastewater system components in the high seismicity regions of the western and central United 
States were designed and constructed considering a significantly lower seismic hazard than used by 
current codes and standards. 

Expected seismic performance of water and wastewater system components is dependent on the hazard 
level and codes and standards used in original design. System components built prior to the mid-1970s are 
generally expected to perform poorly in earthquakes, because design codes and standards used at that time 
lacked the detailed requirements that reflect our current understanding of earthquake behavior of 
structures. System components built after the early 2000s are generally expected to perform similar to 
new construction as described above. Performance of system components built between the mid-1970s 
and early 2000s is dependent on the code edition and seismic hazard used in design. Structures that satisfy 
the benchmark building criteria of ASCE 41-13 (ASCE, 2013), and where there has not been a significant 
increase in seismicity, are generally expected to perform similar to new construction as described above.  
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Expected performance of nonstructural components should be evaluated on a case-by-case basis, as 
engineers have only recently started to pay close attention to seismic design and construction of 
nonstructural components. Expected performance of pipelines should be evaluated on a system-by-system 
basis because performance of pipelines is dependent on pipe type, joint type, and earthquake ground 
movement parameters. 

9.5.2.2. Recovery Levels 

In general, the recovery timeframe for system components will decrease for newer construction or retrofit. 
The Oregon Resilience Plan (OSSPAC, 2013) estimated the restoration time for pre-1975 structures to be 
18 months to three years, 1975–1993 structures to be three to six months, and 1994 to present structures 
to be one to three months. 

9.6. Resilience Assessment Methodology 

9.6.1. Assessment Methodology 

Section 9.2 describes the basic components of water and wastewater systems and observations of where 
these systems failed in past disasters. System performance is also highly dependent on the current 
condition of the system and standards used in its design. This information about past disaster performance 
of similar systems, combined with knowledge of current condition and original design standards of the 
system, helps a utility estimate the expected level of service they would be able to provide after a major 
disaster. There is likely to be a gap in the level of service a system would provide if a major disaster 
occurred today versus community-established performance goals. It is likely the capital expenditure 
required to close this performance gap far exceeds the short-term capital improvement project budgets of 
the utility. However, the resilience of any system can be improved incrementally over time by 
appropriately considering design criteria to reduce the impact of natural and man-made hazards in design 
of new and upgrade of existing infrastructure. 

To estimate the level of service a water or wastewater system would provide after a given scenario 
disaster, an assessment of expected damage to the system and restoration times is required. For instance, 
the Oregon Resilience Plan indicates the current estimated time to restore water and wastewater services 
after an expected level earthquake in the Willamette Valley (including Portland, Salem, and Eugene) is 
from one month to one year, and along the Oregon Coast the estimated time is from one to three years. 
Comparing these restoration estimates with a community’s post-disaster level of service goals provides an 
indication of the resilience gap (OSSPAC, 2013). 

The level of detail of this assessment can take one of three basic forms:  

 Tier 1 – A high level assessment of performance by persons knowledgeable about the system and 
anticipated hazard (chief engineer, operations manager, etc.) 

 Tier 2 – A more refined assessment based on typical system inventory (i.e., pipe type, length and soil 
type) using generalized component fragilities 

 Tier 3 – A detailed assessment of all components in a system, specific component fragilities, and the 
intra-dependencies of system components.  

To appropriately characterize the current disaster resilience of water and wastewater systems, each service 
provider should undergo a Tier 1 assessment. If potential resilience vulnerabilities are identified they 
should undergo a more refined Tier 2 or 3 assessment. Several methodologies and tools are available to 
conduct these resilience assessments, a few of which are described below. 

HAZUS-MH is a multi-hazard (flood, earthquake, and hurricane) loss estimation tool developed by the 
Federal Emergency Management Agency (FEMA) for use in pre-disaster mitigation, emergency 
preparedness, and response and recovery planning (FEMA, 2012). Communities can use this tool to 
characterize their hazard exposure, estimate losses to the water and wastewater systems, and estimate 
repair costs and duration. 
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AWWA J100-10 Risk Analysis and Management for Critical Asset Protection (RAMCAP) Standard for 
Risk and Resilience Management of Water and Wastewater Systems (AWWA, 2010) provides another 
methodology for conducting multi-hazard system resilience assessments. The RAMCAP Plus process was 
originally developed by the American Society of Mechanical Engineers – Innovative Technologies 
Institute (ASME-ITI) and is intended to be a consistent and comparable methodology for evaluating 
risk/resilience across various critical infrastructure sectors. It consists of a seven-step process for 
analyzing and managing risks associated with malevolent attacks and naturally occurring hazards 
(earthquake, hurricane, tornado, and flood). 

1. Asset Characterization 
2. Threat Characterization 
3. Consequence Analysis 
4. Vulnerability Analysis 
5. Threat Analysis 
6. Risk/Resilience Analysis 
7. Risk/Resilience Management 

AWWA J100-10 includes an optional Utility Resilience Index (URI). The URI includes two indices: 

 An operational resilience index is based on a series of indicators that reflect a utility’s organizational 
preparedness and capabilities to respond and restore critical functions/services following an incident. 

 A financial resilience index is based on a series of indicators that reflect a utility’s financial 
preparedness and capabilities to respond and restore critical functions/services following an incident.  

URI can be used as a benchmark to evaluate potential resilience improvement projects and as a measure 
to track a utility’s progress over time towards achieving resilience performance goals. 

The EPA developed the Water Health and Economic Analysis Tool (WHEAT) to assist water and 
wastewater utilities in quantifying an adverse event’s: 1) public health consequences, 2) utility-level 
financial consequences, and 3) direct and indirect regional economic consequences (EPA, 2014). This 
tool was developed to assist utilities in performing step 3 (consequence analysis) of the RAMCAP Plus 
process. WHEAT version 3.0 supports consequence analyses for three scenarios: 1) loss of one or more 
assets, 2) release of a stored hazardous gas, and 3) intentional contamination of a drinking water 
distribution system.  

The EPA also developed the Vulnerability Self-Assessment Tool (VSAT) to assist water and wastewater 
utilities perform security threat and natural hazard risk assessments (EPA, 2010). The tool was developed 
to assist utilities in updating their Emergency Response Plans (ERPs). VSAT software uses an eight-step 
process to guide users through a risk assessment consistent with the 2007 RAMCAP framework. 

1. Analysis setup and utility information 
2. Asset identification 
3. Countermeasure evaluation 
4. Threat identification 
5. Baseline assessment 
6. Improvement assessment (propose new countermeasures) 
7. Cost/Risk evaluations 
8. Summaries and reports 

An example Tier 1 plus (more detailed than Tier 1 but not as detailed as Tier 2) resilience assessment 
procedure for water systems, used in developing the Oregon Resilience Plan, is outlined below. 

9.6.1.1. Tier 1 Plus Resilience Assessment: 

1. Identify the appropriate earthquake hazard level 
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For buried pipelines: 

2. Compile an inventory of system pipelines including pipe material, joint type, and length. 
3. Superimpose the pipeline distribution system onto maps of the scenario hazard (peak ground 

acceleration, liquefaction potential, and landslide potential).  
4. Use empirical relationships developed by the American Lifelines Alliance (ALA) to predict the 

number of breaks and leaks in the distribution system. 
5. Estimate the time required to repair the predicted number of breaks and leaks based on historical crew 

productivity data. Modify this repair time, as appropriate, based on discussions of the expected 
damage states of interdependent lifelines (transportation, liquid fuel, etc.). 

For aboveground infrastructure: 

6. Compile an inventory of system components (tanks, pump stations, treatment plants, etc.) including 
type of construction, date of original construction and any subsequent retrofits. 

7. Estimate the level of damage predicted for the aboveground water system components based on 
observations from past earthquakes, the seismic hazard prescribed by the building code at the time of 
original construction or retrofit, and the professional judgment of engineers knowledgeable in the 
seismic performance of water systems. 

8. Estimate the time required to repair the predicted damage to aboveground infrastructure. Modify this 
repair time, as appropriate, based on discussions of the expected damage states of interdependent 
lifelines (transportation, liquid fuel, etc.) 

For the system: 

9. Determine the expected repair time for the system based on the repair times for buried pipelines and 
aboveground infrastructure estimated in steps 5 and 8. 

10. Compare this estimate of repair time for the system to the performance goals established by the 
community to determine the resilience gap. 

These different resilience assessment approaches should be evaluated and refined into one consistent 
methodology prior to implementation of nationwide water and wastewater system resilience assessments.  

Note that recovery time for utilities that purchase water from wholesale suppliers is highly dependent on 
the recovery time of the supplying utility. Wholesale water suppliers should work with their customers to 
assess the expected damage and restorations times from the source to the final individual customers. In 
this case, water and wastewater system resilience assessments may require a regional approach to 
appropriately characterize the expected performance of the system of systems in a major disaster. 

9.6.2. Strategies for New Construction 

Water and wastewater providers should consider resilience performance goals in all new construction 
projects. Projects should be designed to satisfy current code requirements or exceed code requirements 
where code minimum standards are not anticipated to provide a final product that would be expected to 
meet the utility’s resilience performance goals. The incremental cost of designing and constructing for 
improved disaster resilience is generally a relatively small percentage of total project costs.  

9.6.3. Strategies for Existing Construction 

Water and wastewater providers should consider resilience improvements to existing infrastructure as part 
of the capital improvement planning process. The process of conducting system resilience assessments 
will likely identify key pipelines and facilities that significantly impact the overall resilience of a system. 
These components should be evaluated in greater detail. Providers should evaluate a number of potential 
strategies, including retrofit or replacement of existing components, or building redundant components, in 
anticipation of failure of existing components. Retrofit of existing infrastructure or new redundant 
components should be designed such that the final product would be expected to meet the utility’s 
resilience performance goals. 
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9.6.4. Addressing Resilience Performance Gaps 

Once water and wastewater providers have worked with the community to establish resilience 
performance goals and completed baseline resilience assessments, there may be a number of goals not 
currently met due to the expected performance of system components, financial resources of the utility, 
interdependencies with other lifelines, etc. These performance gaps are likely to be addressed by a phased 
program (perhaps over as long as a 50-year time horizon) of new construction, retrofit of existing system 
components to better withstand disasters, modifications to emergency response plans, coordination with 
interdependent lifeline providers, and other strategies. It is expected that these resilience enhancements 
will be coupled with other system improvements to maximize the benefit of limited financial resources.  

For instance, it can be difficult to justify replacing hundreds of miles of water pipelines based on 
earthquake resilience considerations alone, but coupled with replacement of aging and failing pipelines, 
the incremental cost of using more earthquake resistant pipe materials and joints is relatively minor. For 
major resilience improvements to take place on a shorter timeline a more extensive campaign of public 
outreach and education would be required. 

9.7. Tools Needed for Resilience 

9.7.1. Standards and Codes 

Good design references are available for seismic design of water pipelines. However, there is no 
nationally adopted design standard that requires utilities to consider seismic design for their pipeline 
installations. The US water and wastewater industries need to develop and adopt design standards for new 
pipelines and retrofit standards for existing pipelines. 

9.7.2. Practice and Research Needs 

9.7.2.1. Current Research 

 The Los Angeles Department of Water and Power (LADWP) and the Portland Water Bureau (PWB) 
are conducting demonstration projects with Kubota earthquake-resistant ductile iron pipe (ERDIP). 
This type of pipe has been used successfully in Japan for 40 years and recent earthquakes have 
demonstrated its superb performance with no documented breaks or leaks. LADWP and PWB have 
installed this pipe in two locations to become familiar with design and installation of ERDIP, evaluate 
field installation procedures, and enable a first-hand evaluation on the use of ERDIP to improve the 
resilience of the LADWP and PWB water distribution systems. 

 Researchers are conducting large-scale experiments to fill gaps in the knowledge database on seismic 
performance of newer pipeline materials like restrained joint polyvinyl chloride. 

 Academic researchers (O’Rourke, 2014) are beginning to investigate the next generation of disaster 
resilient pipelines. Hybrid pipelines like FlexSteel®, a steel reinforced and polyethylene lined pipe, 
are being evaluated for resistance to earthquakes and other disasters. 

9.7.2.2. Future Development Needs 

 Benefit cost analysis is a useful method to provide economic justification for resilience improvement 
projects. However, most current tools do not adequately consider indirect economic losses. It is 
recommended that a tool be developed that explicitly considers indirect economic losses. This will 
allow communities to make informed decisions regarding the economic benefit of various resilience 
improvement project options and provide utilities with another means to justify the benefits of capital 
improvement expenditures. 

 Seismic design of buried infrastructure is highly dependent on geotechnical engineering predictions 
of peak ground displacement. Refinements to these peak ground displacement prediction models 
based on data gathered in recent earthquakes would be helpful in prioritizing areas for retrofit of 
existing pipelines or installation of new pipelines that are more tolerant of ground movement.  
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Water Quality Impacts: Communities should consider potential adverse water source quality impacts of a 
disaster. Runoff following wildfire has the potential to increase surface water source turbidity and render 
the water source unusable for drinking water. Man-made hazards, flooding, and earthquake events have 
potential to generate fuel spills from storage tanks, releases of untreated wastewater, and other adverse 
impacts for source water quality. 

Resiliency Assessment: Utilities should be required to complete a resiliency assessment as part of 
periodic master planning updates and develop plans to mitigate identified resiliency deficiencies. It is 
recommended that current resilience assessment methods be evaluated and refined into one consistent 
methodology prior to implementation of nationwide resilience assessments. A strategy must also be 
developed to minimize potential liability concerns a utility may have if a disaster was to strike after a 
potential deficiency had been identified but before a utility had adequate time to address the deficiency. 

Capital Improvement Planning and Asset Management: Utilities should be encouraged to consider 
disaster resilience in establishing priorities for capital improvement projects and asset management. It 
may not be economical to complete a project from a disaster resilience perspective alone, but the 
incremental cost of considering disaster resilience in planned retrofit and replacement projects is minor 
compared to the added resilience benefit. Using this phased approach to resilience improvement projects 
will greatly improve the resilience of a community’s water and wastewater infrastructure over a period of 
years, while minimizing the financial burden of these improvements. 

Facility Site Planning: Utilities should be encouraged to consider disaster resilience in site planning for 
new facilities and prior to significant capital improvement projects at existing facilities. New facilities 
should not be located in disaster prone locations, such as floodplain or tsunami inundation zones. 
Additionally, it may not be a wise economic investment to complete multi-hazard resilience upgrades to 
facilities in these disaster prone locations unless the locational hazard is also addressed. 

Redundancy: The City of Sendai, Japan installed 21 buried water tanks after the 1995 Kobe earthquake. 
To prevent the tank from draining due to damage elsewhere in the system, these tanks include earthquake 
shutoff valves that close automatically when strong ground shaking is detected. The water saved in these 
tanks is then used as a source of potable water immediately after the earthquake. The majority of these 
tanks and earthquake valves performed well in the 2011 Tohoku earthquake and were able to serve as a 
water source for the local community after the earthquake. However, two tanks were in the tsunami 
inundation zone and therefore, not usable as a potable source after the earthquake and tsunami (Tang & 
Edwards, 2014). US utilities should consider various options, such as these added storage tanks, to 
improve system redundancy. 

Redundancy: Redundant systems are inherently more resilient. In Japan, many water utilities are 
implementing loop transmission main systems to increase system redundancy. Water and wastewater 
utilities should evaluate this loop system approach, addition of isolation valves, and other methods to 
improve system redundancy. This is especially important for backbone system pipelines that serve critical 
locations (hospitals, large industrial customers, etc.) and need to be robust and redundant. 

Consequence-based planning: When conducting precovery planning (pre-disaster and recovery) it is 
recommended that a consequence-based approach be adopted. By thoroughly considering the downstream 
physical, societal, and economic impacts of a given action from a disaster resilience perspective the 
optimum decision can be reached. 

Scenario Development: When developing design and assessment standards for disaster resilience it is 
important to consider the appropriate hazard level. A system could be designed to remain operational after 
an extremely rare event, but the economic cost of system upgrades and required new infrastructure would 
be prohibitively costly. However, the system should be designed to have enough resilience to remain 
operational after a minor, semi-frequently occurring disaster (i.e., 50 year return period earthquake). 
Scenario development and consequence-based planning should be closely linked. The components of a 
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system where the consequence of failure is much higher should be designed for a less frequently 
occurring (more extreme) disaster. It is recommended that water and wastewater backbone components be 
designed or retrofit to be operational after an extreme level event. 

Rating System: The water and wastewater industry should be encouraged to develop a disaster resiliency 
rating system to track how utilities are performing with respect to improvements in system resilience. 

Disaster Response Plan: Utilities should be encouraged to create or update their disaster response plans 
based on community-established response and recovery goals. Community-wide training events should be 
conducted to exercise these plans and work out issues prior to implementing them in an actual disaster. 

The Water and Wastewater Agency Response Network (WARN) is an established intrastate contractual 
relationship for sharing resources necessary to respond to a disaster. The WARN system is currently 
limited to intrastate mutual aid. However, disasters such as a potential Cascadia Subduction Zone 
earthquake in the Pacific Northwest have potential to significantly impact multistate regions and 
overwhelm local resources. It is recommended that the WARN system be expanded to facilitate easier 
sharing of resources across state lines. 

Regulatory Compliance: Communities should work with regulatory agencies before a disaster to 
establish acceptable practices and operational standards for use during the disaster response phase. 
Planning should address questions like, “Will it be acceptable to discharge raw sewage to receiving 
bodies of water?” 

Temporary Sanitary Services: Communities should work with utilities and public health agencies to 
identify, before the event, who will be responsible for temporary sanitation services (e.g., portable toilets). 

Temporary Water Supply: Communities should work with utilities to plan for water supply at key 
distribution points for firefighting and distribution of emergency drinking water. This may require 
installation of valves and hydrants prior to the event to improve access after the event. 

Public and Business Community Education: The general public and business community need to be 
educated about the potential risks and expected downtime for water and wastewater systems resulting 
from a disaster. Utility customers need to understand the potential economic consequences of inaction 
before they will be willing to support potential rate increases to pay for resilience improvements to water 
and wastewater systems.  

Emergency Kit: It should be recommended that community members and employers maintain emergency 
kits with water and personal sanitation supplies adequate for the expected duration of service interruption. 

Business Continuity Plan: Utilities should develop business continuity plans that include on-call 
contracts or agreements with contractors, consultants, and essential suppliers (fuel, equipment, repair 
materials, process chemicals, etc.). Utilities should evaluate if current emergency response contingency 
funds are adequate for the level of damage predicted by an analysis of the system for the disaster 
scenarios adopted by the community and modify funding levels as appropriate. 
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