NIST Disaster Resilience Framework

**Communication and Information Systems** 

Presenter: David Mizzen Applied Research Associates

# **Chapter Goals**

#### Provide guidance to:

- 1. Understand potential vulnerabilities/damage to infrastructure observed in the past
- 2. Provide example performance goals to be developed by community to identify resilience gaps and prioritize changes
- 3. Provide guidance to close the resilience gaps (mitigate failures and/or recovery plans)

# **Example Dependencies**

- Access, Fuel, Security
- Power/Energy
  - External electric power for charging cell phones
  - Air conditioning in Central Offices to cool equipment
- Transportation
  - needed to make repairs
- Water
  - Cooling systems
    - Cannot enter Central Offices without functioning water



#### **Overview of Infrastructure**

- Landline Telephone Systems
  - Central Offices
  - Distribution Lines
  - Digital Loop Carrier Remote Terminals (DLC RTs)
  - CATV Uninterruptible Power Supply (UPS)
  - Internet Systems
    - Internet Exchange Points (IXP)
- Backbone connecting "network of networks"
  - Cellular/Mobile Systems
    - Cell towers, external power

# Central Office Performance Comparison

City of New York Completed Study in 2013

- Compared performance and recovery of 2 Central Offices during Hurricane Sandy
- 140 West Street
  - Hardened after WTC Building 7 collapsed onto it on 9/11
  - 104 Broad Street
    - ~1 mile away from 140 West



# **Performance of Central Offices**

| Strategies/Results             | 140 West Street                                                                        | 104 Broad Street                                                             |
|--------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Building Structure             | Hardened after 9/11/2001                                                               | Not hardened                                                                 |
| Critical Equipment             | <ul> <li>Elevated electrical<br/>switchgear, standby power</li> </ul>                  | <ul> <li>Electrical switchgear,<br/>standby power in<br/>basement</li> </ul> |
| Wires                          | <ul><li>Copper encased in plastic casing</li><li>Fiber optic cable also used</li></ul> | <ul> <li>Encased in lead casing</li> </ul>                                   |
| Flood Protection               | Pumps                                                                                  | • N/A                                                                        |
| <b>Operational (min)</b>       | <24 hours                                                                              | 11 Days                                                                      |
| Needs to become<br>Operational | Temporary fuel tanks                                                                   | <ul> <li>Replacement generators,<br/>switchgear, HVAC</li> </ul>             |

#### **Example Performance Goals**

| Functional Category: Cluster    | (4)<br>Support<br>Needed | (5)<br>Target<br>Goal | Expected Hazard Level |       |                      |     |     |                   |     |      |     |
|---------------------------------|--------------------------|-----------------------|-----------------------|-------|----------------------|-----|-----|-------------------|-----|------|-----|
|                                 |                          |                       | Phase 1 – Short Term  |       | Phase 2 Intermediate |     |     | Phase 3 Long Term |     |      |     |
|                                 |                          |                       | Days                  | Days  | Days                 | ¥ks | Vks | ¥ks               | Mos | Mos  | Mos |
|                                 |                          |                       | 0                     | 1     | 1-3                  | 1-4 | 4-8 | 8-12              | 4   | 4-24 | 24+ |
| Core and Central Offices        |                          | A                     |                       | Resil | ience                |     |     |                   |     |      |     |
| Central Offices                 |                          |                       | 90%                   | Ga    | nc                   | ×   |     |                   |     |      |     |
| Buildings Containing Exchanges  |                          |                       | 90%                   | Ga    | h2                   | Х   |     |                   |     |      |     |
| Internet Exchange Point (IXP)   |                          |                       | 90% -                 | K     | <b>X</b>             | Х   |     |                   |     |      |     |
| Distribution Nodes              |                          | A                     |                       |       |                      |     |     |                   |     |      |     |
| Free Standing Cell Phone Towers |                          |                       | 90%                   |       |                      | Х   |     |                   |     |      |     |
| Towers Mounted on Buildings     |                          | 7                     | 90%                   |       |                      | ×   |     |                   |     |      |     |
| Last Mile                       |                          |                       |                       |       |                      |     |     |                   |     |      |     |
| Critical Facilities             |                          | 1                     |                       |       |                      |     |     |                   |     |      |     |

Example Performance Goals Established by Community Example Anticipated Performance Established by Community



# **Strategies for Implementing Community Resilience Plans**

- Raise critical/electrical equipment
- Watertight doors
  - Performed well in 2011 Japan earthquake & tsunami
- Adequately mount critical equipment
- Provide adequate standby power
- Eliminate single points of failure
- Cell on Light Truck (COLT)
  - Restored service <24 hours at hospital after Joplin 2011 tornado



engineering laboratory

## **Services for Critical Facilities**

- Government Emergency Telecommunication Service (GETS)
  - Prioritized landline service for users supporting national security and emergency preparedness/response after disaster event
- Wireless Priority Service (WPS)
  - Prioritizes cell phone service for users supporting national security and emergency preparedness/response after disaster event
- Telecommunications Service Priority (TSP)
  - Prioritizes participants when they need additional lines or service restoration (not just after disasters)

### **Standby Power Considerations**

- Placement and Protection
- Permanent or Temporary
  - Permanent can be costly, require maintenance & testing
  - Temporary has logistical challenges
  - Fuel, natural gas, other?
    - Fuel can be scare after event
    - Natural gas often shutdown prior to events to avoid fire, explosion





#### **Breakout Groups**

 Is the approach used in the framework helpful to communities/service providers for resilience planning and implementation?

– How would you use the approach?

- Would you integrate it with existing plans?
- What are the gaps in the approach and content?
- How will integrating the framework impact your disaster recovery plans? Day-to-day operations?

