Plenary Session Chapter 7 – Energy Systems

Presented by: Scott Tezak TRC Solutions

Stuart McCafferty NIST Disaster Resilience Fellow GridIntellect

Chapter 7 – Energy Systems

Energy and Power Sector elements at the forefront of the Resilience discussion

Aligning Resilience efforts with current Sector activities

- Reliability
- Energy Assurance

Current performance levels of the Sector

- Electric Power
- Liquid Fuels
- Natural Gas
- Emergency and Standby power

Performance goals

Regulatory environment and codes/standards

Strategies for implementing community resilience plans

engineering laboratory

Resilience and Energy Systems

Presidential Policy Directive 21 Four R's of Resilience

Current State: Electric Power Example

- Key Sector Elements
 - Generation
 - Transmission
 - Distribution
- All elements are subject to multiple different hazards
- Disparate performance based on hazard or sector element and geographic location of the elements/assets
- Challenges with understanding hazards and impacts
 - No consistent definition of hazards (one stakeholder's extreme hazard is another stakeholder's routine event)
 - Performance expectations between suppliers and users are not uniform or consistent

Performance Goals Scoring Example

Functional Category: Cluster	(4) Support Needed	(5) Target Goal	Overall Recovery Time for Hazard and Level Listed Expected Hazard Level											
												Phase 1 – Short- Term Days		
				0	1	1-3	1-4	4-8	8-12	4	4-24			
Power - Electric Utilities														
Generation				1										
Critical Facilities and Infrastructure Systems	R/C		90%	Х										
Emergency Housing and Support Systems	R/C		90%	Х										
Housing and Neighborhood infrastructure	R/C		90%		Х									
Community Recovery Infrastructure	R/C		90%		Х									
Transmission (including Substations)		1												
Critical Response Facilities and Support Systems														
Hospitals, Police and Fire Stations / Emergency			0.0%	X				Restoration times						
Operations Centers			9070					(2)	30%	6 I	Restored	d		
Disaster debris / recycling centers/ Related			60%	90%	Х				60%	6 I	Restored	d		
									90%	Restored				

Example Matrix

- Power Generation 4 Subcategories
- Transmission 9 Subcategories
- Distribution 9 Subcategories

Х

(3)

Current

External Considerations

Impacts from Emerging Technologies

Smart Grid Technologies

- Ubiquitous communications enables situational awareness and command and control
- Distribution Automation
- Substation Automation
- Demand Side Management
- Renewable Energy Integration
- Internet of Things (IoT)

Energy Storage

Renewable Energy + Storage
= Energy Resiliency Killer App

Microgrids

- Well-defined boundaries
- Grid-connected or islanded

Implementation Strategies

CALeap – California Local Energy Assurance Planning

> Common methodology for

developing plan for

resiliency, energy

management, and restoration

DOE Energy Assurance Program

> Guidelines for managing energy resilience

National Association of State Energy Officials (NASEO) State Energy Assurance Guidelines

> More guidelines for managing energy resilience

Methodology

ENERGY.GOV

Office of Electricity Delivery & Energy Reliability

engineering laboratory

Implementation Strategies

NIST Disaster **Resilience Framework**

- Community resiliency focus
- Variety of domains
 - Energy
 - **Buildings** and transportation
 - Communications
 - Water and waste water
- Tools, metrics, etc

The Disaster Resilience Framework will identify typical performance goals; existing standards, codes, and practices to enhance resilience; and gaps that must be addressed to enhance community resilience. The first version of the Framework will provide the basis for convening a Disaster Resilience Standards Panel (DRSP) representing the broad spectrum of the stakeholder community to further develop and refine the Framework

Credit: NIS

Framework Goals

- The Disaster Resilience Framework will aim to: Define community-based disaster resilience for the built environment
- Identify consistent performance goals and metrics for buildings and infrastructure and lifeline systems to enhance community resilience,
- Identify existing standards, codes, guidelines, and tools that can be implemented to enhance resilience, and
- · Identify gaps in current standards, codes, and tools that if successfully addressed. can lead to enhanced resilience.

The Framework will consider: (1) societal needs; (2) performance goals for buildings and Infrastructure lifelines, including their return to functionality; (3) emergency communication systems and plans; and (4) economic factors. The Disaster Resilience Framework will provide a starting point for stakeholders to advance from current practice to resilience-based approaches that can be adapted by communities of varying size and complexity.

Current Framework document

The 75% working draft represents the input received to date. We encourage your input and comments on the 75% draft document by March 9, 2015 to be considered for the final draft for public comma

Prevened by Google Translate

Credit:NIS

Contact General Information 301-975-6051 Telephone

Stenhen Cauffman 100 Bureau Dr. Gaithersburg, MD 20899-8611 resilience@nist.gov

Needs from this Workshop

- Is the approach on point?
- Is it helpful to communities dealing with resilience issues in the Energy Sector?
- What gaps/perceived gaps exist in our approach?
- Will these performance metrics, if implemented, create resiliency in the Sector?
- Will the plan laid out here impact your day-today business?