Chapter 5 Buildings

Presenter: Robert Pekelnicky, PE, SE Degenkolb Engineers

Reliability vs. Resiliency

Safe \neq Usable

Photo courtesy of Degenkolb Engineers

Example Performance Matrix

Expected Hazard Level

Functional Category: Cluster

Critical Facilities

Emergency Operation Centers	90\%							X	
First Responder Facilities	90\%							X	
Acute Care Hospitals	90\%							X	
Non-ambulatory Occupants (prisons, nursing homes, etc.)	90\%							X	
Emergency Housing									
Temporary Emergency Shelters	30\%	90\%							X
Single and Multi-family Housing (Shelter in place)	60\%			90\%					X
Housing/Neighborhoods									
Critical Retail		30\%	60\%	90\%					X
Religious and Spiritual Centers			30\%	60\%	90\%				X
Single and Multi-family Housing (Full Function)			30\%		60\%		90\%		X
Schools			30\%	60\%	90\%				X
Hotels \& Motels			30\%		60\%	90\%			X

Community Recovery

Businesses - Manufacturing				30%	60%	90%			X
Businesses - Commodity Services				30%	60%		90%		X
Businesses - Service Professions				30%		60%		90%	X
Conference \& Event Venues				30%		60%		90%	X

Building Performance Levels

A - Safe \&
 Operational

B - Safe \& Usable During Repair

C - Safe \& Not Usable

D - Unsafe

Interdependencies

- Power and water critical
- Most buildings need people to make them functional (i.e. the workers) - they must be able to get to the building

Photos courtesy of Degenkolb Engineers

- Adjacent buildings can pose hazards

New Buildings

- Current standards do not explicitly deal with function protection for every hazard
- Code architectural, structural, mechanical requirements are sometimes not in alignment
- New building standards are easier to change than existing building requirements

Existing Buildings

- Codes, standards, and building practice constantly evolving
- Structural Standards are typically not retroactive
- Retrofit often costly and disruptive

Photos courtesy of Degenkolb Engineers

Strategies

- Local communities can tailor to their hazards and resilience desires
- Provide power and water self-sufficiency
- Prioritize what buildings are critical
- Balance mandatory, triggered, and voluntary upgrades

Breakout Discussion Topics

- What are your experiences with building vulnerabilities that affect resilience?
- Are there elements within the building sector that have been overlooked in the framework?
- How can interdependences between critical buildings and other infrastructure be addressed?
- Can the recommendations in this chapter be implemented? If not, what changes are needed?

