

The DuraMAT Consortium:

Integrating National Lab Expertise with Industry Needs to Improve PV Module Durability

4th Atlas/NIST Workshop on Photovoltaic Materials Durability

Jonathan Trinastic, AAAS Policy Fellow December 5, 2017

energy.gov/solar-office

- Reliability Challenges and SunShot Cost Goals
- DuraMAT Consortium Overview
- Examples of DuraMAT Technical Work
- Ways to Be Involved

The Growth of the PV Industry

Reliability and Durability Challenges Remain

- Variability in performance based on manufacturer and bill of materials
- Same nameplate label, different BOM
- Can material quality differentiate products?

energy.gov/solar-office

Source: DNV-GL, PV Reliability Scorecard 2017

Reliability and Durability Research Challenges

- Can we connect **specific bills of materials** and **climates** to degradation patterns?
- Do new materials introduce new (and old) degradation modes?
- Develop more accurate and shortened accelerated tests?
- Can physical models describe the degradation mechanisms induced by accelerated tests and field exposure?

Role of Durability and Lifetime to Reach SunShot Goals

Includes 5 Year MACRS.

6

U.S. Department Of Energy

energy.gov/solar-office

The Durable Module Materials Consortium (DuraMAT)

- 5-year Energy Materials Network consortium focused on precompetitive research into module packaging
- Who Is Involved
 - <u>PV industry</u>: R&D goals
 - <u>National Labs</u>: capability expertise
 - <u>Universities</u>: research infrastructure
- **Goal:** Accelerate PV module material design and improve durability
- Industrial Advisory Board (IAB)
 - 13 members, open to new members
 - Guides scope of funded projects and research focus

National Lab Core Capabilities: Just the Beginning

U.S. Department Of Energy

National Lab Capabilities to Understand Reliability

energy.gov/solar-office

Module Testing

Combinatorial Accelerated Testing Project: Backsheet degradation

Why a Data Hub?

A centralized data hub enhances:

Aids in **data standardization** while providing flexibility to data providers. Contributes data with high **acquisition cost** as generated by DuraMat.

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

How Can National Labs Help Address Reliability?

- The 'big data' challenge to understanding degradation
- Climate/stressor/material combinations and interactions

Distribution of solar power plants in the Lower 48 states (as of December 2016)

PV Time Series Data in the Hub

- Slice and examine performance in time scales from minutes to years.
- Upgrade of current PVDAQ time-series database
- Location, climate, and material metadata.

Cross-compare system performance.

Public Website

Data Analytics: Clear Sky Detection

Given measured solar irradiance and expected clear sky irradiance, can we automatically detect clear versus cloudy sky periods?

- Important for downstream data analyses e.g., correctly filtering out cloudy / noisy points can significantly change degradation rate calculation
- 98% accuracy in predicting clear sky events

DuraMAT Activities Over the Past Year

Funded Durability Research

Multifunctional Coating Characterization (WattGlass)

- Examine climate-related reliability and economic viability of anti-reflection/anti-soiling coating
- Foundational science to understand chemistry of anti-soiling coatings and potential PID mitigation

Capability Area & Teaming

<u>Materials Characterization</u> (SLAC): characterize surface chemistry that leads to effective soiling removal

<u>Technoeconomic Analysis</u> (NREL): assess economic advantage of coatings by climate <u>Accelerated Soiling Testing</u> (Sandia)

Direct Imaging of Stress in c-Si Modules (ASU)

• Demonstrate x-ray topography as non-destructive method to monitor crack evolution as function of stressors

Capability Area & Teaming

<u>Module Testing</u> (NREL): mechanical testing and EL/PL measurements to connect to topography results

<u>Predictive Simulation</u> (Sandia): develop model of stress distribution using finite element analysis to complement topography data

- Expanding DuraMAT Capabilities
 - Are there capabilities from industry, universities, or national labs that you could contribute to the DuraMAT network?
 - What other capabilities would you like to see?
- DuraMAT Research Funding
 - Are there **R&D projects** that you could propose to DuraMAT funding opportunities to work with the capability network?
- Data
 - What dream dataset would you like to see in the Data Hub?
 - What types of analytic tools would be most helpful?
 - What dataset related to module durability would you be open to contributing to the Hub?

<u>Contact</u>: jonathan.trinastic@ee.doe.gov

18

Thank You! Questions?

www.duramat.org datahub.duramat.org

jonathan.trinastic@ee.doe.gov

Energy Materials Network

Sandia National Laboratories

SLAC Mention

energy.gov/solar-office