

BIOMOLECULAR MEASUREMENT DIVISION

Human Identification from Hair Keratins

- Development of a more comprehensive and extensible hair peptide spectral library

MATERIAL MEASUREMENT LABORATORY

Motivation: Can GVPs Be Used as Alternative Evidence without SNPs?

SNP: <u>Single Nucleotide Polymorphism</u>; SAP: <u>Single Amino Acid Polymorphism</u>; GVP: <u>Genetically Variant Peptide</u>

NIST Custom Workflow

Paper 🙃 Open Access 🙃 🛊

Sensitive Method for the Confident Identification of Genetically Variant Peptides in Human Hair Keratin^{*}

Zheng Zhang M.D. 🐹, Meghan C. Burke Ph.D., William E. Wallace Ph.D., Yuxue Liang Ph.D., Sergey L. Sheetlin Ph.D., Yuri <u>A. Mirok</u>hin Ph.D., Dmitrii V. Tchekhovskoi Ph.D., Stephen E. Stein Ph.D.

First published 31 October 2019 | https://doi.org/10.1111/1556-4029.14229 | Citations: 2

Full-Text @ NIST Library

* Support received from the NIST Special Programs Office Trace Evidence Research Program.

* Certain commercial equipment instruments or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

SECTIONS

🏋 PDF 🔧 TOOLS < SHARE

Abstract

Recent reports have demonstrated that genetically variant peptides derived from human hair shaft proteins can be used to differentiate individuals of different biogeographic origins. We report a method involving direct extraction of hair shaft proteins more sensitive than previously published methods regarding GVP detection. It involves one step for protein extraction and was found to provide reproducible results. A detailed proteomic analysis of this data is presented that led to the following four results: (i) A

- Manuscript published in the Journal of Forensic Sciences
- Public release of human head hair keratin library on <u>chemdata.nist.gov</u>

Libraries of Peptide Tandem Mass Spectra

Including CPTAC data

	Library	Instrument Label/PTM	Species	Build date mm-dd- yyyy	Spectra	Peptides	Link
Hs	Human	lon Trap	H. sapiens	05-29- 2014	340,357	207,910	Download
		Orbitrap - HCD	H. sapiens	05-19- 2020	911,783 3 libraries	605,677	Download
		Orbitrap - HCD iTRAQ-4	H. sapiens	11-26- 2014	1,201,632 2 parts	390,009	Download
		Orbitrap - HCD iTRAQ-4 Phospho	H. sapiens	11-26- 2014	223,340	67,533	Download
		Orbitrap Fusion Lumos - HCD	H. sapiens (synthetic)	05-30- 2017	696,692	188,805	Download
		Orbitrap - HCD Phospho	H. sapiens	02-14- 2019	66,922	27,400	Download
		Orbitrap Fusion Lumos - HCD	H. sapiens (hair)	09-17- 2019	6,280	2,240	Download Go to Se

Impact

Originating from Rich Press' Outreach Report – A Solution to a Hairy Problem in Forensic Science

- Original reporting in *Science*, *Popular Mechanics*, *Forensic Magazine*
- Science article included an interview with NIST MSDC staff
- Blog post in *News in Proteomics Research*, the leading blog in proteomics
- Reprinted in *Evidence Technology Magazine*

Wiley Almetric Score for JFS paper

In the top 5% of all research outputs scored by Altmetric

Three Steps for Building a More Comprehensive Hair MS Library

1. Synthetic GVPs

- 2. Minor Modifications of Hair Peptides
 - GVPs, post-translational modifications, chemical modifications

3. Main Human Library Expanded with Hair Peptides

• Synthetic GVPs

$\odot \mbox{Published GVPs}$

- Type I hair cuticular keratins
- Type II hair cuticular keratins
- Other hair proteins

 \odot Total 164 "pairwise" sequences synthesized by New England Peptide

- GVPs
- Their regular non-variant sequences
- Detailed information is available in excel sheets

\odot Arrived as two batches

- First 96 well vials
 - Quality checked
- Second 68 well vials
 - Waiting to be checked

• Method Comparison: Minor Modifications of Hair Peptides

O Direct Extraction (Direct) Method

Modified NaOH-based SDS Repeated Extraction (NaOH+SDS) Method

NIST Direct Extraction method

NaOH+SDS method

Total Cluster Number of DeltaMass Values in Two Methods

Method	# of DeltaMass	Counts	
Direct	421	37126	Hore Sensitive
NaOH+SDS	273	24220	

DeltaMass is the difference in precursor mass between matched query and library spectra in hybrid search. It reflects a chemical or post-translational modification or an amino acid substitution in the query spectrum.

Histogram of Peptide Modifications

Histogram of Peptide Modifications

- 1) Major modifications (from Top_30 list in above two histograms) are similar in the compared two methods
- 2) Minor modifications usually are more varied, as the analyses go deeper, with 10 fractions separately analyzed and the results combined we want to see every modification of the hair, this depth of analysis has never been performed before

Example Minor Modifications that favor Direct Method*

		Direct				NaOH+SDS			
Winor Wods	Rank	DeltaMass	Count	%	Rank	DeltaMass	Count	%	
Tris or other artifacts			-	•					
Tris adduct	22	104.05	335	0.71	88	104.046	42	0.14	
Desulferization + CAM + DTT	23	120.025	312	0.66	86	120.024	44	0.14	
Tris + Amidation	24	103.067	293	0.62	93	103.063	40	0.13	
Cations									
Cation:Fe[II]	31	53.92	243	0.51	62	53.917	67	0.22	
Sodiated	35	21.985	228	0.48	55	21.984	82	0.27	
Cation:Zn[II] / Cation:Cu[I]	84	61.916	68	0.14	-	-	-	-	
Unique GVP									
Gly->His	76	80.039	77	0.16	-	-	-	-	

*note: Detailed analysis is available in excel sheets and separate ppxt files

Example Minor Modifications that favor NaOH+SDS Method*

	Direct				NaOH+SDS			
	Rank	DeltaMass	Count	%	Rank	DeltaMass	Count	%
Semi-tryptics or In-source?								
Loss of I/L	55	-113.083	122	0.26	39	-113.084	109	0.36
Loss of V	196	-99.066	29	0.06	41	-99.068	105	0.34
Loss of A	100	-71.035	55	0.12	66	-71.037	59	0.19
Ubiquitinylation								
"GG"	-	-	-	-	68	114.042	57	0.19
Unique artifact due to added NaOH								
Loss of CAM and loss of Sulfur	-	-	-	-	43	-88.993	101	0.33
Unique artifact due to added ß-ME								
+ Mercaptoethanol (ME)	-	-	-	-	81	60.002	46	0.15

*note: Detailed analysis is available in excel sheets and separate ppxt files

Main Library Recently Expanded with Additional Verified Hair

Peptides

СНЕМПАТА	NISTGOV			Q,
Mass Spectrometr	ry Data Center			Sitemap
	Home MS Data Center BMD at MML MI	ML at NIS	r NIST	
ace: • cdownload • humanhcd2016050	3			
ss Spectrometry Data center		p	eptidew:lib:humanhcd20	160503
Libraries/Tools/Service Publications Thermochemical data tables Download	Consensus Human HCD Libraries Peptide Libraries (May 19, 2020)	Table + Con + Pi 20 + D	of Contents sensus Human HCD Lil eptide Libraries (May 19 020) ecoy Libraries (May 19,	<pre>braries), 2020)</pre>
Peptide Libraries Software Download Libraries 	The consensus human HCD libraries were created using more than 10,000 raw files			
Oligosaccharide Libraries Human Milk Mammalian Milk	 available of Proteomexchange - Thttp://www.proteomexchange.org generated at the Mass Spectrometry Data Center of the National Institute (NIST). 	te of Stan	ndards and Technolog	ах
Team Contact: 💌 massspec@nist.gov	The libraries in the msp and NIST binary formats were updated on May 19, 202 consensus spectra contain 86% more peptides than the previous version with 4 positive IDs returned for typical samples at FDR=0.01. Previous versions are a	20. The n 4-15% in vailable (ew libraries of crease in the number on request.	r of
	Methods used for building the libraries are presented at the ASMS 2020 confer- Filtering and optimization of peptide tandem mass spectral libraries. Authors: Sergey L. Sheetlin, Guanghui Wang, Dmitrii V. Tchekhovskoi , Zheng Z The poster is available for download (447.36 KiB)	ence: Zhang, S	tephen E. Stein Activ	vate V
	File - Description	Size	Link	Jetting

The impact of COVID-19

- Due to lab shutdown in March, second batch of synthetic GVPs as well as other donor's hair are waiting for measurement on orbitrap mass spectrometer
- Instrument currently occupied with SARS-CoV-2 spike protein measurements
- Z.Z. invited speaker at Green Mountain DNA
 Conference (postponed to July 2021 from July 2020)

Collaborations and Stakeholders

- Lawrence Livermore National Laboratory– Deon Anex
- FBI– Joseph Donfack
- IARPA Proteos– Kristen Jordan
 - Skin keratins

Advances in Dynamic Vapor Sampling Towards Reliable Field Deployment

<u>Megan Harries</u>, Cheryle Beuning, Adam Friss, Kavita Jeerage, Tara Lovestead, Jason Widegren

Fluid Characterization Group, NIST Boulder

Vapor sampling in the field

Cleaner: which is why we use it for fire debris analysis and many environmental analyses

Safer: does not require direct contact or even close proximity to a sample, with the right sampling probe

Non-destructive: a big advantage in evidence analysis or when sample availability is limited

Low-volatility samples are difficult & require preconcentration

Indirect measurement: requires good fundamental understanding of sample properties

Requires sample stability: hours-days-weeks between collection and laboratory analysis

Environmental whole-air sampling

Cargo screening

Personal exposure badges

NIST's dynamic vapor capture technology (since 2009)

A headspace preconcentration method that uses an adsorbent capillary trap chilled to low temperatures to enhance efficiency + stabilize analytes

Advantages

- Cheap setup w/ many adsorbent phases readily available
- Small sample quantities (mg)
- Fast (minutes to days)
- Sample temps 30-300 °C
- Low-volatility compounds (TNT, plasticizers)
- Reactive compounds are preserved in cryostat
- Quantitative (vapor pressure!)

Bruno, T.J. J. Chromatogr. Sci., 47, 569-574, 2009.

Lovestead, T. M., Bruno, T. J., Detecting gravesoil with headspace analysis with adsorption on short porous layer open tubular (PLOT) columns. *Forens Sci Int* 2011, *204*, 156-161. Nichols, J. E., Harries, M. E., et al., Analysis of arson fire debris by low temperature dynamic headspace adsorption porous layer open tubular columns. J Chromatogr A 2014, 1334, 126-138. Lovestead, T. M., Bruno, T. J., Trace Headspace Sampling for Quantitative Analysis of Explosives with Cryoadsorption on Short Alumina Porous Layer Open Tubular Columns. Anal Chem 2010, 82, 5621-5627. Lovestead, T. M., Bruno, T. J., Detection of poultry spoilage markers from headspace analysis with cryoadsorption on a short alumina PLOT column. Food Chem 2010, 121, 1274-1282. Lovestead, T. M., Bruno, T. J., Determination of cannabinoid vapor pressures to aid in vapor phase detection of intoxication. Forensic Chemistry 2017, 5 (Supplement C), 79-85.

DVME (Dynamic Vapor Microextraction)

Key Innovations:

- Miniature vapor-equilibration vessel (the "saturator") minimizes temperature gradients, internal volume, and equilibration time
- Capillary vapor trap minimizes internal volume
- Helium carrier gas minimizes non-ideal mixture behavior
- **Direct pressure measurement** inside the saturator enables us to account for overpressure caused by viscous flow

New state-of-the-art!

Fast (< 15 min), low uncertainty (2% at 1 Pa) measurement with only ~20 mg of sample!

M. E. Harries, C. N. Beuning, B. L. Johnston, T. M. Lovestead, J. A. Widegren. Rapid Vapor Collection Method for Vapor Pressure Measurements of Low-Volatility Compounds. Anal. Chem. in review.

DVME for terpenoid vapor pressures (preliminary data)

- Terpenoids, cannabinoids, and metabolites are all potential target molecules in the development of a reliable field test for recent cannabis use
- We need data: vapor pressures, partition coefficients, VLE

Portable vapor capture device

- Robust, sturdy, hand-portable
- Powered by compressed air
- A probe to enable sampling from a distance
- Capable of rapid sampling times (higher flow rate)
- Field-based sample elution and capillary reactivation

compression fitt

Bruno, T.J., Field portable low temperature porous layer open tubular cryoadsorption headspace sampling and analysis part I: Instrumentation, Journal of Chromatography A 1429, 2016, Pages 65-71. Harries, M.E., Bukovsky-Reyes, S., Bruno, T. J., Field portable low temperature porous layer open tubular cryoadsorption headspace sampling and analysis part II: Applications, Journal of Chromatography A, 1429, 72-78, 2016.

Bunker study

Challenges:

- Large, open system
- Not well mixed equilibration unlikely
- Mother nature

Sources of compressed air:

- Diesel compressors
- SCBA canister
- House air

Bunker study

Four experiments

Naphthalene	Pure compound	Check device functioning
Explosives-related	4-part mixture	Solvents and plasticizers Vapor pressures 5*10 ⁻⁴ – 0.084 kPa
Protein decomposition markers	8-part mixture	Sulfur compounds Diamines putrescine and cadaverine Vapor pressures 3 – 38 mm Hg
Gasoline	Highly complex	≈ ruptured fuel tank

Range of test conditions

 $T_{ambient} = 3 \text{ to } 37 \text{ °C}$ $T_{bunker} = 2.2 \text{ to } 43 \text{ °C}$ RH = 9 % to 92 %Sample times = 30 s - 20 min

Test compound volatility 5* 10⁻⁴ kPa to 5 kPa

Findings

- Strong bunker background signal: degrading polyurethane foam insulation
- Higher temps eased detection
- Humidity > 90% increased sampling time; humid compressed air caused interruption to refrigeration
- Diethyl phthalate (lowest-volatility compound)
- Gasoline in 3 seconds
- Costs of compressed air power outweigh the benefits

Redesigned portable device

- Battery-operated design is lighter and more portable
- Better flow rate and temperature control
- Thermoelectric cooler capable of -20 °C eliminates heavy/loud vortex tube
- PWM-diaphragm pump provides a range of flow rates and eliminates the vacuum generator
- Advanced data logging capabilities
- Redesign capillary wafer materials for better heat transfer

Stability of DVME samples over time

Effect of storage on collected vapor samples

Methods

- Sample: 50% weathered gasoline range of volatilities and carbon classes
- Storage: heat-sealed Kapak/Ampac evidence bags (polyester/PE) @ room temp
- Long-term study: 0, 6, 13, 20 weeks

- **GC-MS** Analysis
- Carbon number distribution .
- Compare carbon class distribution • (17 SIM ions)
- Principal Component Analysis (PCA) .
- Total usable signal .

Analysis by carbon number

- Stability strongly affected by molecular size/volatility
- Clear influence of storage interval
- Dramatic changes in 6 weeks led to design of short-term study

Analysis by carbon number: short term study

- Time points: 0, 24, 168, 336 hours
- High explanation of variance and high scatter
- Decreases in total GC-MS signal were observed with time

Analysis by hydrocarbon class

- SIM ions: 57, 71, 85, 99, 55, 69, 83, 91, 105, 119, 117, 118, 131, 132, 128, 142, 156 m/z
- Scatter within time points increases with storage time
- 13 wk shift toward polycyclics is consistent with carbon number analysis

Analysis by hydrocarbon class: short term study

- Changes not observed in 24 hours; shifts emerge after 168 hours
- This analysis is more sensitive to changes than the carbon number analysis

Conclusions + future work

- Dynamic vapor microextraction (DVME) can measure VP of low-volatility, reactive species with unprecedented uncertainty < 2 %
- Future measurements of cannabis compounds will provide a foundation for developing cannabis breath collection devices
- Field deployment of NIST device, while successful, indicated areas for improvement incorporated into 2nd generation design
- PCA provides a method to reduce the dimensionality of chromatographic data by analysis of compound class (SIM) or carbon number (TIC)
- Samples were stable after 24 h of room temperature storage, but low MWs are lost after storage ≥ 7 days
- These methods can be applied when vapor samples are collected in a field setting and preserved until analysis.
- Confidence in sample stability and property data are both important considerations in field sampling of vapors

Thanks

Adam J. Broerman

Dr. Thomas J. Bruno

NIST Special Programs Office

National Institute of Justice

National Research Council Fellowship*

Contact

megan.harries@nist.gov

*Apply for an NRC postdoc:

https://sites.nationalacademies.org/PGA/RAP/index.htm/

Bulk and Micro-Scale Trace Element Analysis of Glass SRMs Using Modern Nuclear Analytical Methods and LA-ICP-MS

<u>Nicholas Sharp</u>¹, Jamie L. Weaver¹, Maria Vega Martinez¹, Ruthmara Corzo¹, Rick Paul¹, Jose Almirall², and Eric Steel¹

1 National Institute of Standards and Technology

2 Florida International University

CHEMICAL SCIENCE DIVISION

Outline

- 1) Background
- 2) Project Goals
- 3) Creating a new Standard Reference Material
- 4) Laser Ablation Inductively-Coupled Plasma Mass Spectrometry Overview
- 5) Neutron Activation Analysis Overview
- 6) Preliminary comparison of LA-ICP-MS and NAA of SRMs 610, 614, and 1831

BACKGROUND

NIST is the USA's metrology lab and is responsible for providing traceable Standard Reference Materials (SRMs) to the US community

NIST Center for Neutron Research (NCNR)

Analysis of glass samples is done in labs all around the country

AML Complex¹

PROJECT GOALS

- Analysis of glass fragments relies on the use of NIST-SRMs for instrument calibration (LA-ICP-MS)
 - Many trace elements are measured which **have not** been assigned certified, reference and/or information values
 - No glass SRMs were designed for micro-scale analyses
- This project aims to address this gap by:
 - 1. <u>Quantifying</u> Trace Element Concentration on a bulk and microscopic levels
 - 2. Determining level of <u>heterogeneity</u> of the trace elements in the glasses on the bulk and microscopic levels

WHY WORRY ABOUT STANDARDS?

- Standards define the minimal level of uncertainty a measurement can achieve
- Other SRMs can be used as quality control checks
 - Using an SRM outside of its CoA parameters, or for elements that are not certified, can give false positives or negatives
 - False QC checks can cost laboratories \$\$\$ and hurt trustworthiness

NEW FORENSIC GLASS SRM

Goal is to combine bulk and micro methods

Primary methods are required for element certification

Initial characterization with LA-ICP-MS for forensic purposes and NAA for bulk non-destructive analyses

LA-ICP-MS

Laser

Applied Spectra* J200 LA 213 nm Nd:YAG laser

Analysis parameters: 100 % energy (2.73 mJ), 10 Hz, 100 µm spot size, 60 second dwell, 0.9 L/min carrier gas (Helium) flow rate

ICP-MS

NIST

Thermo iCAP Q ICP-MS

Single-point calibration using FGS2 as the calibration standard (with drift correction)

Analysis parameters: 1500 W plasma power, 0.7 L/min nebulizer gas (Argon) flow rate, 10 to 15 ms dwell (depending on element)

*Any mention of commercial products is for information only; it does not imply recommendation or endorsement by NIST.

NAA OVERVIEW

A neutron is captured by the analyte nucleus

The analyte nucleus is converted into a radioactive isotope of the initial element

The gamma-rays emitted from the decay of the radioisotope are measured and the analyte is quantified

6-5

MURR reactor core

copyright Steve Morris

IRRADIATION PROCESS

PRELIMINARY DATA

• Excellent agreement in 610

614 has lower
concentration of elements,
beginning to see
heterogeneity issues

 1831 was not certified for anything outside of weight % elements

	610 (LA=38, NAA=4)		614 (LA=5, NAA=4)		1831 (LA=38, NAA=4)	
	Conc (mg/kg)	En score (LA vs NAA)	Conc (mg/kg)	En score (LA vs NAA)	Conc (mg/kg)	En score (LA vs NAA)
Rb	425.7	0.001	0.855	N/A	(6.11)	-1.40
La	(440)	0.008	0.83*	-6.58	(2.12)	-1.77
Ce	(453)	-0.001	(0.813)	-1.33	(4.54)	-1.47
Hf	(435)	0.002	(0.711)	-5.15	(1.1)	-0.56
Cr	415	0.001	(1.19)	1.09	(1.71)	N/A
Sb	415.3	0.000	1.06*	-1.76	(0.26)	N/A
Со	390*	0.011	0.73*	-1.56	(0.241)	N/A
Zn	433*	0.006	(2.79)	-0.85	(7.90)	N/A
W	(444)	0.004	(0.806)	N/A	N/A	N/A
Th	457.2	0.003	0.748	N/A	N/A	N/A

- *: Not certified in SRM CoA
- N/A: not analyzed
- (): "consensus" values from literature, GeoREM, and this research En-score from ISO 13528
 En > |1| is not a match according to ASTM 2927 (±4σ or ±4*3%)

CONCLUSIONS

The forensic glass examination community is currently using a calibration standard (FGS 1 and 2) designed for microsampling for use in ASTM E2927-16e1 with demonstrated success and predictable bias and precision performance

The existing NIST 1831, 1830, 610-4 SRMs were not designed for micro-sampling and some elements of interest to forensic glass examiners are not certified and show heterogeneity issues

New calibration standards that are designed for micro sampling have been created and the process to certify them as Standard Reference Materials (SRMs) suitable for micro-analyses by techniques such as LA-ICP-MS is currently being explored

An interlaboratory series of exercises has been funded by NIJ and are being coordinated at FIU to evaluate the utility of the new standards for forensic glass analysis

Funding acknowledgments:

Funding for this project was provided through NIST Forensics (Special Programs Office).

Also through NIJ announcement # NIJ-2018-13600 - April 23rd, 2018

GLASS FORENSICS TEAM

Left to right: Maria Vega, Ruthmara Corzo, Nick Sharp, Jamie

Weaver, and Eric Steel

Not pictured: Pam Chu and Jose Almirall

Comments or suggestions:

nicholas.sharp@nist.gov jamie.weaver@nist.gov Ruthmara.corzo@nist.gov

An Interlaboratory Study Evaluating the Interpretation of Forensic Glass Evidence Using Refractive Index Measurements and Elemental Composition

- Ruthmara Corzo
- Materials Measurement Science Division

MATERIAL MEASUREMENT LABORATORY

Glass as Forensic Evidence

- Ubiquity of glass makes it a commonly encountered type of forensic evidence in crime scenes (hit-andruns, burglaries)
 - Soda-lime float glass (automotive and architectural) is the most common type of glass encountered in crime scenes

Casework Comparison of Glass Fragments

- Refractive index measurements and/or elemental analysis is conducted on Known sample and Questioned sample
 - Physicochemical properties of the K and Q are compared to determine if the Q sample could have originated from the K source
- Standard methods for techniques used in casework:
 - ASTM E2926: Micro X-ray Fluorescence Spectrometry (μXRF)
 - ASTM E2927: Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)
 - ASTM 1967: Refractive Index
- No standard method for Laser Induced Breakdown Spectroscopy (LIBS)
- Hypothesis testing (match criterion) is used to compare the Known and Questioned samples

Evidence Interpretation

Verbal Scale

- Includes: Physical Match, Association, Exclusion, and Inconclusive
- $\circ~$ Multiple levels for an Association
 - Level of Association depends on discrimination power of technique used and the presence of usual characteristics in glass specimens

Numerical Approaches (Require a Database)

- o Random Match Probability (RMP): estimated by false inclusion rate
- Frequency of Occurrence: Known sample is compared to every sample in database and the number of matches is reported
- Likelihood Ratio: continuous approach that compares the probability of the evidence given two competing hypotheses (Association vs. Exclusion)

Glass Interpretation Working Group (GIWG)

- Interlaboratory study led by Dr. Almirall group at Florida International University (FIU)
- Three exercises designed as a mock forensic case
 - Blind samples from vehicle windshield
- Seventeen participating laboratories
 - \circ µXRF: 7 participants
 - LIBS: 5 participants
 - Refractive Index: 11 participants
- Objectives:
 - Evaluate the significance of a match
 - Collect and evaluate existing glass databases for interpretative purposes
 - Assess statistical models for the numerical evaluation of glass evidence
 - Establish a common reporting language
 - Develop new float glass standards (Corning Inc.)

Interlaboratory Exercise 1

Sample	Make	Model	Year	Remarks
K1 _{inner & outer}	Mitsubishi	Galant	2009	Same make/model/year as Q1
K2 _{inner & outer}	Subaru	Impreza	2008	Outer pane same as Q2
Q1 _{outer}	Mitsubishi	Galant	2009	Same make/model/year as K1
Q2 _{outer}	Subaru	Impreza	2008	Same as K2 outer

- Participants received **2 Known** samples and **2 Questioned** samples (3 fragments for each source)
 - K2/Q2_{outer} originated from the same source
 - K1/Q2 and K2/Q1 originated from different sources (easily distinguished by elemental composition)
 - K1/Q1 originated from similar sources (difficult to distinguish by elemental composition)

Exercise 1 Results

Technique	False Exclusion (%)	False Inclusion (%)
μXRF (range overlap, ± 3s)	0	8.3 %
LIBS (varied match criteria)	0	16.7 %
Refractive Index (varied match criteria)	0	34.1 %

- For μXRF and LIBS, all false inclusions were comparisons between glass from similar vehicles (same make/year)
- Refractive index was unable to distinguish glass from vehicles with different make/year
- Refractive index provided complementarity to elemental techniques
 - Most labs found reproducible differences between glass from similar vehicles

Exercise 1 Findings

- Reporting language varied between labs (need for standardization)
- Most labs simply stated whether K and Q were "Associated" or "Excluded"
 - "The Questioned sample originated from the Known source, or another source with the same characteristics as the Known source"
- Few labs provided a numerical interpretation and/or verbal scale
 - \circ µXRF: verbal scale (one lab)
 - Refractive Index: frequency (one lab)
 - \circ LIBS: none
- Refractive index can provide complementary information to elemental techniques

Interlaboratory Exercises 2 and 3

Exercise 2

Sample	Make	Model	Year	Remarks
K1 _{inner & outer}	Honda	Civic	2006	K1 same as Q1
Q1 _{inner & outer}	Honda	Civic	2006	2 fragments same as K1 inner, 1 fragment same as K1 outer
Q2 _{outer}	BMW	2 Series	2014	Different than K1

Exercise 3

Sample	Make	Model	Year	Remarks
K1 _{inner & outer}	Honda	Civic	2007	K1 outer same as Q1
Q1 _{outer}	Honda	Civic	2007	Q1 same as K1 outer
Q2 _{outer}	Mercedes	R-Class	2009	Different than K1

R. Corzo, et al. Forensic Chemistry, 2020 submitted.

Interlaboratory Exercises 2 and 3 Results

Exercise 2

Technique	False Exclusion (%)	False Inclusion (%)
μXRF (range overlap, ± 3s)	16.7 %	0
LIBS (varied match criteria)	0	0
Refractive Index (varied match criteria)	0	0

Exercise 3

Technique	False Exclusion (%)	False Inclusion (%)
μXRF (range overlap, ± 3s)	0	0
LIBS (varied match criteria)	0	0
Refractive Index (varied match criteria)	0	0

Exercises 2 and 3 Findings

- More labs used verbal scales and/or numerical interpretation approaches
 - XRF: frequency (one lab), verbal scale (two labs)
 - LIBS: verbal scale (one lab)
 - Refractive Index: frequency (three labs), LR (one lab)
- For Exercise 2, 6/17 labs increased support for an association because of the presence of Q specimens that matched both K panes
- Potential for sharing XRF glass databases was evaluated (using element ratios)
 - High false exclusion rate between labs (100% false exclusion)
 - Normalizing to SRM 1831 improved results, but false exclusion rate was still unacceptable (77%)
- Poor precision observed for LIBS
 - \circ 2 labs excluded element ratios with RSDs > 20 %

GIWG Overall Findings

- > 92 % correct association for all techniques
- 82 %, 86 %, and 96 % discrimination for refractive index, LIBS, and μXRF, respectively
- Few labs use a verbal scale and/or numerical interpretation approaches
 - "The Q originated from K source or another glass source with the same characteristics as the K"
- µXRF
 - Development of shared database remains a challenge (database comprised of Known specimens may be feasible)
 - Quantitative database would be ideal (potential to combine XRF and LA-ICP-MS databases)
- LIBS
 - Poor precision needs to be addressed
 - Need for standardized methodology (different match criteria used between labs)
- Refractive Index
 - Available databases, but underutilized in forensic community (3/11 labs used a database to calculate frequency)
 - o Can provide additional discrimination to elemental techniques
 - Different match criteria used between labs (updated ASTM method recommends range overlap for comparisons)

R. Corzo, et al. Forensic Chemistry, 2020 submitted. R. Corzo, et al. Talanta, 2018 (186) 655-651. T. Hoffman, et al. Forensic Chemistry, 2018 (11) 65-76.

Glass Collection Set for Quantitative XRF Database

- Windshield (laminated) glass from 99 vehicles (198 panes)
- OEM windshields collected from salvage yard
- Modern glass formulations
 - Vehicles were manufactured between 2013-2019
- Quantitative analysis using fundamental parameters method (standardless approach)
 - Use of standards can improve accuracy: three new float glass standards manufactured by Corning

Soda-lime float glass Polyvinyl film Soda-lime float glass

LA-ICP-MS vs. µXRF for 25 Vehicle Glass Samples

Conclusions

- Glass Interpretation Working Group (GIWG)
 - \circ Interpretation of evidence varies widely across practitioners
 - $\circ~$ Verbal scales and databases are underutilized
 - OSAC interpretation guide that aims to standardize a verbal scale used in trace evidence
- Development of Quantitative µXRF Glass Database
 - $\circ~$ Potential to combine μXRF and LA-ICP-MS databases
 - Database needs to be validated to evaluate agreement between μXRF and LA-ICP-MS
 - Additional reference materials and/or other quantitative approaches (e.g., multivariate calibration) can potentially improve results
- Overall Aims:
 - Reach a consensus for the interpretation of glass evidence
 - Encourage practitioners to use more objective methods to evidence interpretation

Acknowledgements

- GIWG led by Dr. Jose Almirall at Florida International University (FIU)
- Funding to FIU:
 - NIJ: awards 2015-DN-BX-K049 and 2018-DU-BX-0194
 - NSF: award 1739805
- New float glass standards manufactured by Corning Inc.
- GIWG Participating Labs:
 - Michigan State Police, Grand Rapids Forensic Laboratory
 - West Virginia University
 - Florida Department of Law Enforcement
 - o Institute of Environmental Science and Research
 - o Bundeskriminalamt
 - Centre of Forensic Sciences
 - Sacramento County DA's Office, Laboratory of Forensic Services

- Missouri State Highway Patrol Crime Lab
- Kansas City Police Crime Laboratory
- Microtrace LLC
- o Landeskriminalamt Sachsen
- Health Sciences Authority, Singapore
- Minnesota Bureau of Criminal Apprehension
- Tennessee Bureau of Investigation
- Oregon State Police Forensic Laboratory
- Applied Spectra Incorporated

A Standard Methodology for Analysis of Paint by FTIR

Presenter: Stephanie Watson **Team**: William J. Hickling, Kimberly Kha, and LiPiin Sung Infrastructure Materials Group, Engineering Laboratory

MML Sponsor: Marcela Najarro, MML Forensics Project

November 6, 2020

Outline

- Infrastructures Materials Group-Research Focus
- Trace Paint Project Background
- •Automotive Coatings
 - Fourier-transform Infrared Spectroscopy (FTIR)
- •Standard Set of Spectra for Common Binders
- •Conclusions/Future Work

Infrastructure Materials Group – Aron Newman Leader

- **IMG Overview**: Improving infrastructure resilience for acute and chronic hazards requires understanding the characteristics of materialsconcrete and polymers.
- Focus on high performance materials related to infrastructure (e.g. polymer insulation of wires, PVC pipes, sealants, fiber reinforced concrete foundations, and PV applications)
 - Service Life Prediction
 - Materials Selection and Assessment
 - Metrology development to track degradation of materials and systems

Trace Evidence-Paint Project Background

- Trace evidence is often the **forensic evidence of last resort** due to cost, time and the inability to predict the efficacy of the evidence
- Trace evidence can help explain crime scenes and identify criminals, but often the results yield a class of evidence
 - In paint evidence, the class may be manufacturer or year of vehicle, rarely an individual vehicle
- Analysis of trace evidence relies on experience of analyst and visual comparisons of materials

Can comparison become more quantitative and rigorous leading to stronger correlations?

Trace Evidence-Paint Project Goals

- Provide approaches to quantitatively identify and compare trace evidence materials
- Provide methods, reference materials, and data to test and support existing methods and technologies
- Develop rigorous approaches to microanalytical spectroscopies and microscopies to allow for quantitative comparison with calculable uncertainties on these comparisons
- Combine statistically complex multi-dimensional physical and chemical data into one overarching quantitative comparison with defined uncertainties
- Engage with the forensics community to identify research gaps, including review of literature, tour forensics laboratories (FBI-Wright and VA State-Weimer), and participate in appropriate standard committee (OSAC Materials (Trace) Subcommittee)

Provide standardized guide for identification FTIR - Improving methods Decreasing uncertainty Increase efficiency, accuracy Ultimately, striving for individual identification

Automotive Coating Samples

Composed of multiple layers of polymeric binders

- Clear coat physical/chemical protection
- Base coat appearance (color, etc.)
- Surface primer surface uniformity, chip resistance
- Primer chip resistance
- Electrocoat corrosion protection for substrate
- Substrate typically metal, sometimes plastic

Fourier-transform Infrared Spectroscopy

- Relies on the interaction of molecules and atoms with infrared light
- Produces a characteristic spectrum dependent on the bonding environment
- Well-suited for analyzing binders due to changes, differences in bonding
 - C-C vs C=C
 - C-N vs C-O
 - C=N vs C=O vs C=C

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Automotive Coatings

Coatings layers are mostly composed of polymeric binders

Binder Type Identified	Number of Spectra	
Acrylic Melamine	33	
Acrylic Urethane Melamine Styrene	13	
Acrylic Styrene	6	
Ероху	45	
Polyester Melamine	17	
"Oxithane"-type	6	

10

Epoxy Binders

Polyester Melamine Binders

- 1549 cm⁻¹, 814 cm⁻¹: in-plane deformation of the triazine ring and out-of-plane triazine ring vibration, respectively
- 1238 cm⁻¹, 1304 cm⁻¹: C=O stretches of isophthalic acid, typical in Polyester Melamine binders
- 731 cm⁻¹: Hydrogens on aromatic ring of isophthalate

Acrylic Styrene Binders

A provide the second state of the sec

Acrylic

- aliphatic ester
 1389 cm⁻¹: methyl (-CH₃) group bending
- 1454 cm⁻¹: methylene (-CH₂-) scissor bend

Styrene

Acrylic Melamine (blue) and Acrylic Melamine Styrene (red) Binders

Previously mentioned bands used to

Melamine

О

ID these binders appear

سر NH

Acrylic

- Overlap demonstrates FTIR sensitivity to bonding environment
- Red spectrum shows bands for styrene, absent in blue spectrum

m

Styrene

Acrylic Urethane Melamine Styrene Binders NIST

Urethane (red) vs Oxithane Modification (blue) NGT

- Since 1987, distinguishable type of acrylic-urethane clear coat binders used compared to older generations
- Intensity @ ~1690 cm⁻¹ ≥ intensity @ ~1730 cm⁻¹ ≈ intensity @ ~1470 cm⁻¹

Scion (2016)

- 1510 cm⁻¹, 1606 cm⁻¹: C=C stretching of the para-disubstituted aromatic ring in bisphenol A
- 829 cm⁻¹: out-of-plane bending of adjacent H on para-disub aromatic ring
- 1238 cm⁻¹, 1038 cm⁻¹: benzene and aliphatic C-O stretches of epoxy backbone

Scion (2016)

- 1549 cm⁻¹, 814 cm⁻¹: in-plane deformation of the triazine ring and out-of-plane triazine ring vibration, respectively
- 1238 cm⁻¹, 1304 cm⁻¹: C=O stretches of isophthalic acid, typical in Polyester Melamine binders
- 731 cm⁻¹: Hydrogens on aromatic ring of isophthalate

- 1070 cm⁻¹, 1120 cm⁻¹, 1265 cm⁻¹: Alkyd trio (ester C-O), 1265 dominates
- 1383 cm⁻¹, 1466 cm⁻¹: methyl (-CH₃) and methylene (-CH₂-) bending, respectively
- 712 cm⁻¹, 742 cm⁻¹: aromatic ring bending, out-of-plane bending of adjacent hydrogens, respectively
- Nothing @ 1550/815 cm⁻¹ and 1510 cm⁻¹

Conclusions

- FTIR is invaluable regarding the analysis and identification of automotive binder chemistries
- Identification relies on tandem absorption band presence for identification
 - Melamine: 815 cm⁻¹ and 1550 cm⁻¹, if only one present cannot conclusively say melamine is present in that sample
- Future Work
- Define oxithane modification
 - By understanding this modification, more analyses could be utilized
- Raman standard spectra?
 - Raman spectroscopy often used in conjunction with FTIR

Hybrid thermal desorption-ambient mass spectrometry developments for the trace detection of explosives

Thomas P. Forbes

Surface and Trace Chemical Analysis Group Materials Measurement Science Division Correspondence: thomas.forbes@nist.gov

Forensics@NIST 2020

National Institute of Standards and Technology U.S. Department of Commerce MATERIAL MEASUREMENT LABORATORY

Trace Detection of Explosives

2

- Checkpoint screening: defense, customs & border protection, transportation agencies
 Forensic & criminal investigations
- Expanding list of explosive and related energetic materials
 - 2019 Annual List of Explosive Materials by the ATF included close to <u>240 compounds &</u> <u>mixtures</u>
- The open source Global Terrorism Database reveals a surge in attacks using homemade explosives (HMEs) or improvised explosive devices (IEDs) in recent years

Trace Detection of Explosives

The wide range of physicochemical properties presents difficulties for analytical techniques

Inorganic-based low explosives:

- Black & smokeless powders
- Flash powders
- Pyrotechnic mixtures
- Tertiary fuel-oxidizer mixtures

Remain among most abused IED charges in US

* from the 2017 U.S. Bomb Data Center (USBDC) Annual Explosives Incident Report (EIR), <u>www.atf.gov</u>

Detection, Identification, & Differentiation NGT

• Swipe sampling: used for both high-throughput screening to forensic analysis

Detection, Identification, & Differentiation NGT

- Major hurdle common inorganic oxidizers are nonvolatile, low vapor pressures
 - Common temperatures for organic species are insufficient for thermal desorption
 - Constant elevated temperature detrimental to labile organic species

Forbes, T.P., Krauss, S.T., Gillen, G. (2020) Trends in Analytical Chemistry, 131, 116023. (https://doi.org/10.1016/j.trac.2020.116023)

Strategies for Analysis

1. Colorimetrics Acidic reagent

Physical Dissolution

2. Capillary electrophoresis Liquid extraction ambient MS

 3. Physical Desorption High temperature thermal desorption High power plasma

Direct Sampling
 Raman spectroscopy/SERS
 FTIR spectroscopy

Forbes, T.P., Krauss, S.T., Gillen, G. (2020) *Trends in Analytical Chemistry*, **131**, 116023. (<u>https://doi.org/10.1016/j.trac.2020.116023</u>)

Hybrid Thermal Desorption-Ambient MS NIST

- Ambient ionization MS of explosives
 - Class of techniques and platforms providing great utility for explosives detection¹

DART for wipe-based sample collections

- Coupling with a resistance-based thermal desorber²⁻³
- Demonstrated with drugs,²⁻⁴ metabolites,² rodenticides,⁵ and evidence packaging⁶
- 1. Forbes, T.P. and Sisco, E. (2018) Analyst, 143(9), 1948-1969. (https://doi.org/10.1039/C7AN02066J)
- 2. Sisco, E., Forbes, T.P., Staymates, M., Gillen, G. (2016) Analytical Methods, 8(35), 6494-6499. (https://doi.org/10.1039/C6AY01851C)
- 3. Sisco, E., Staymates, M., Forbes, T.P. (2020) Analyst, 145(7), 2743-2750. (https://doi.org/10.1039/D0AN00031K)
- 4. Sisco, E., Verkouteren, J.R., Staymates, J., Lawrence, J. (2017) Forensic Chemistry, 4, 108-115. (https://doi.org/10.1016/j.forc.2017.04.001)
- 5. Robinson, E.L. and Sisco, E. (2019) Journal of Forensic Sciences, 64(4), 1026-1033. (<u>https://doi.org/10.1111/1556-4029.13978</u>)
- 6. Sisco, E., Robinson, E.L., Burns, A., Mead, R. (2019) Forensic Science International, 304, 109939. (https://doi.org/10.1016/j.forsciint.2019.109939)

Hybrid Thermal Desorption-Ambient MS NIST

Infrared Thermal Desorption (IRTD)

Joule Heating Thermal Desorption (JHTD)

Infrared Thermal Desorption (IRTD)

Infrared Thermal Desorption (IRTD)

- Filament-based near infrared emitter
 - Wipe-based sample introduction

- Tunable broad spectrum
- Rapid response times (~1s)
- Temporally discrete emission
- Intrinsic temperature ramp
- Multi-mode heating

Forbes, T.P., Sisco, E., Staymates, M., (2018) *Analytical Chemistry*, **90**, 6419-6425. (<u>https://doi.org/10.1021/acs.analchem.8b01037</u>) Forbes, T.P., Staymates, M., Sisco, E., (2017) *Analyst*, **142**(16), 3002-3010. (: <u>https://doi.org/10.1039/C7AN00721C</u>) U.S. Provisional Patent Application # 62/958,873 "System and Method for Infrared Thermal Desorption."

Infrared Thermal Desorption (IRTD)

- Organic explosive / inorganic oxidizer mixtures
 - 10 ng PETN / 250 ng KCIO₃
 - Replicate 15s / 100% infrared emission intervals

Infrared Thermal Desorption (IRTD)

Black powders and black powder substitutes

Forbes, T.P., and Verkouteren, J.R., (2019) Analytical Chemistry, 91, 1089-1097. (https://doi.org/10.1021/acs.analchem.8b04624)

Forbes, T.P., and Verkouteren, J.R., (2019) Analytical Chemistry, 91, 1089-1097. (https://doi.org/10.1021/acs.analchem.8b04624)

PCA of Black Powders & BPS

- Early in emission interval moderate temperatures
 - Separation based on more volatile organic or inorganic fuels
- Late in emission interval elevated temperatures
 - Separation based on nonvolatile oxidizers

Propellants & Pyrotechnics

Illicit Pyrotechnics from Postal Packages

- Collaboration with Netherlands Forensic Institute
- Packages seized by Dutch police wipe samples
 - Detection of flash powder oxidizer AI / KCIO₄

Joule Heating Thermal Desorption

DART Ion Source aerosol/vapor formation 200 0

Ohmic heating through nichrome wire

• Discrete liquid and particle analysis

Inorganic & organic

Joule Heating Thermal Desorption (JHTD)

800

(6)

1) 0.83 A

JHTD-DART-MS

700

600

400

300

empera 500

PC: 355 °C/s

(ii)

XIC m/z 136 (×5)

3.5

3.0

2.5

2.0

1.5

XIC m/z 83

- Elevated temperatures and rapid heating rates IHTD initiation
- **Regimes**: •
 - Aerosol/vapor generation
 - **Thermal decomposition**

Forbes, T.P., Sisco, E., Staymates, M., and Gillen, G. (2017) Analytical Methods, 9(34), 4988-4996. (https://doi.org/10.1039/C7AY00867H)

JHTD-DART-MS

- Detection of organic and inorganic mixtures
- Negative and positive mode operation

Forbes, T.P., Sisco, E., Staymates, M., and Gillen, G. (2017) Analytical Methods, 9(34), 4988-4996. (https://doi.org/10.1039/C7AY00867H)

Single Particle Analysis – Blackhorn 209

- Gradient elution moving boundary electrophoresis (GEMBE)
 - Inorganic oxidizers sample differences
 - Two subpopulations NO_3 and NO_3/CIO_4

Time (s)

Krauss, S.T., Ross, D., Forbes, T.P. (2019) *Analytical Chemistry*, **91**, 13014-13021. (<u>https://doi.org/10.1021/acs.analchem.9b03083</u>) Krauss, S.T., Forbes, T.P., Jobes, D., *Electrophoresis*, **Under Review**.

Single Particle Analysis – Blackhorn 209

- Two subpopulations observed:
 - 1. Black powder based KNO₃/S/C
 - 2. Guanidine nitrate (GN) and KClO₄

Conclusions

• Hybrid thermal desorption-ambient MS enabled unique capabilities

• IRTD-DART-MS: wipe-based samples for rapid screening

- JHTD-DART-MS: discrete particle or liquid samples
- Elevated temperatures necessary for nonvolatile species
- Rapid heating ramps desorption at each compound's optimal temperature
- No degradation of organic or more volatile compounds
- Heating profiles temporally separate mixtures
- Demonstrated for explosives
 - Homemade explosive fuel-oxidizer mixtures, propellants, pyrotechnics, powders
 - Nanogram sensitivities

Acknowledgements

- Surface and Trace Chemical Analysis Group, NIST
 - Edward Sisco, Jennifer Verkouteren, Shannon Krauss, Matthew Staymates, Greg Gillen
- Funding
 - The U.S. Department of Homeland Security, Science and Technology Directorate sponsored a portion of the production of this material under Interagency Agreements IAA HSHQDC-12-X-00024 and HSHQPM-15-T-00050 with the National Institute of Standards and Technology.

 Certain commercial equipment, instruments, or materials are identified in this presentation in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Postdoctoral & Student Opportunities NGT

NRC NIST Postdoctoral Research Associate Program

- http://www.nist.gov/iaao/postdoc.cfm
- <u>http://sites.nationalacademies.org/pga/rap/</u>
 - Mass Spectrometry Metrology for Trace Detection and Chemical Imaging <u>RO# 50.64.31.B8187</u>
 - Mass Spectrometry and Chemometrics for Forensic Science <u>RO# 50.64.31.C0217</u>
 - Advanced Forensic Toxicology Measurements by Ambient Ionization MS- <u>RO# 50.64.31.C0344</u>
 - Sensor Technology, Measurement Science, and Standards <u>RO# 50.64.31.B8551</u>
 - U.S. citizens and held Ph.D. less than five years
 - Application deadlines of February 1 and August 1

NIST Summer Undergraduate Research Fellowship (SURF)

- <u>https://www.nist.gov/surf/surf-gaithersburg</u>
 - U.S. citizens or U.S. permanent residents
 - Must be enrolled as a full-time undergraduate at an accredited U.S. college/university

Chemical Analysis/Detection

Thank you

Correspondence: thomas.forbes@nist.gov

An objective, quantitative, statistically defensible scheme based on fitted intensity ratios for GSR analysis.

Nicholas W. M. Ritchie Microanalysis Group, Material Measurement Laboratory National Institute of Standards and Technology

Forensics@NIST 2020

iGSR particles

NIST

Characteristic Particle Types

Name	Required	Optional	Trace	Specials
Sinoxid	Pb, Ba, Sb	Si, Ca, Al, Cu, Sn	Fe, S, Zn, K, Cl, P, Ni	Co, Cr
SBP	Pb, Ba, Ca, Si, Sn	Cu, Fe, S, Zn, K, Cl		
Sintox – RUAG	Ca, Ti, Zn		Ca, S	
Sintox – MEN	Ca, Cu, Sn		к, s	

(Sn, K, Sb), (Sb, Ca), (Ba, Ti)

Source: SWGGSR – Guide for Primer Gunshot Residue Analysis by Scarring Electron Microscope / Energy Dispersive X-ray Spectrometer.

(S, Pb)

NIST

Manual Review

Does anybody know of a published article stating that pGSR particles from Barnaul ammunition contain Zr? Or, does anyone have well-documented spectra from Barnaul ammo that shows Zr in the spectra?

I know several of us have done some testing regarding this, but I'm tired of re-inventing the wheel every time I get a Barnaul ammo case and see Zr...

Thanks,

Rusty

Angela Shaw BSc(Hons) MCSFS, MEWI Director www.forensicfirearmsconsultancy.com Tel: +44 7919 392397

Secure email: angela.shaw@ffc.cjsm.net

FIREARMS

CONSUL ANCY

0

00

What can we learn from this example?

- The GSR community is tight-knit and helpful
- iGSR has distinctive characteristics that provide clues to assist with attribution
- Knowledge of these clues is available but not well documented or well shared
 - Local expert knowledge
- Even when documented, the information is largely qualitative

Why is this?

- Quantification of particles is difficult
 - Estimating the mass fraction of an element in a particle
- Fortunately, quantification isn't necessary to determine the presence of an element
 - K-ratios are sufficient
- Linear regression using standard spectra is our friend
 - Linear regression provides uncertainty metrics
- Uncertainty metrics can be used to make defensible, quantitative statements about the presence or absence of an element
 - Even in the presence of interfering elements!

Bulk vs. Particles

$$C_{\text{unk}} = k_z C_{\text{std}} \frac{\text{ZAF}(C_{\text{std}};P)}{\text{ZAF}(C_{\text{unk}};P)}$$

NIST

Why is this?

- Quantification of particles is difficult
 - Estimating the mass fraction of an element in a particle
- Fortunately, quantification isn't necessary to determine the presence of an element
 - Normalized k-ratios are sufficient
- Linear regression using standard spectra is our friend
 - Linear regression provides uncertainty metrics
- Uncertainty metrics can be used to make defensible, quantitative statements about the presence or absence of an element
 - Even in the presence of interfering elements!

000

k-Ratios

C K-L2 $= 0.22317 \pm 0.00051$ O All $= 0.14212 \pm 0.00086$ F All $= 0.13810 \pm 0.00133$ $= 0.06922 \pm 0.00028$ **Sb L3-M5** Ba L3-M5 $= 0.08751 \pm 0.00042$ Ba L3-M1 = 0.08589 ± 0.01249 $Pb L2-M4 = 0.14162 \pm 0.00406$ Pb L2-N4 $= 0.12756 \pm 0.02388$ Pb L1-03 $= 0.22361 \pm 0.2899$ Pb L2-M1 = 0.21235 ± 0.14087 Pb L3-M1 = 0.10739 ± 0.02426 Pb Lα $= 0.13907 \pm 0.00229$ Pb M3-O5 = 0.22722 ± 0.02723 Pb M5-N7 = 0.11897 ± 0.00061

Why is this?

- Quantification of particles is difficult
 - Estimating the mass fraction of an element in a particle
- Fortunately, quantification isn't necessary to determine the presence of an element
 - Normalized k-ratios are sufficient
- Linear regression using standard spectra is our friend
 - Linear regression provides uncertainty metrics
- Uncertainty metrics can be used to make defensible, quantitative statements about the presence or absence of an element
 - Even in the presence of interfering elements!

NIST

Ba

Challenges

- Community buy-in
 - Community is quite content with current way of doing things
- Vendor support
 - Must have support from the major GSR tool vendors
 - The vendors must produce similar answers
- Necessary Research
 - Who is going to perform the research needed to catalog and characterize the different types of GSR?

Reproducibility across vendors

NIST

Challenges

- Community buy-in
 - Community is quite content with current way of doing things
- Vendor support
 - Must have support from the major GSR tool vendors
 - The vendors must produce similar answers
- Necessary Research
 - Who is going to perform the research needed to catalog and characterize the different types of GSR?
 - Not a "do it and done"
 - Requires a long-term commitment with steady, reliable funding

Thank you!

