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NIST Statistical Research in Forensics –
View from 105 m 

• 15 current research projects
• Staffing level between 3 and 4 FTE/year

• Projects a mix of:
• collaborative, individual 
• foundational, applied

• Key partnerships include:
• NIST staff working in other Forensic Science Focus Areas
• FBI, MSP, NFI, NFEA, IAI, FIU, CSAFE, OSAC



Research Areas

• New Reference Materials for Trace Elements in Glass
• Uncertainty of Drug Mass Measurements
• Optimization of GC/MS for Fire Debris Analysis
• Challenge Problem: Statistical Comparison of Paint Spectra

• Complex DNA Mixture Interpretation
• Characterization of Noise in Next Generation Sequencing Data
• Use of Next Generation Sequencing for DNA Mixture Analysis
• Assessment of Thresholds for CE STR Profiles



Research Areas

• Error Rate Assessment for Firearms ID
• Uncertainty Budget Framework for Automated 

Firearms Examination
• Quantitative Understanding of Uniqueness and                   

Reproducibility of Firearm Toolmark Surfaces
• Reference Population Data for Firearm Toolmarks 

• Likelihood Ratios as Weight of Evidence
• Calibration of Likelihood Ratios
• Quantitative Evaluation of Footwear Evidence 



Challenge Problem: 
Statistical Comparison of Paint Spectra

• Working with an OSAC TG and NIST chemists 
to design a challenge problem on comparison 
of paint spectra in forensic settings 

• hit and run car accidents, other crime-related 
scenes with paint traces left behind

• Goals
• Promote community development of new 

statistical or machine learning algorithms

• Comparison of algorithm performance on 
common test data



Challenge Problem: 
Statistical Comparison of Paint Spectra

• Importance
• Current methods focus on visual comparison and 

rely on analyst expertise and judgment
• Statistical or machine learning methods have 

potential to be more consistent across labs 

• Status
• Paint spectra collected from multiple cars
• Assessment of algorithm comparison methods 

currently underway
• Stay tuned for more news!
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3-D topographic images of breech face impressions obtained from a pair of cartridge 
cases ejected from the same firearm slide.
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1. Introduction



To estimate error rates, the key is to find appropriate probability distributions for 
the relative frequency distribution of the observed CMC values.
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The congruent matching cells (CMC) method is used to compare pairs 
of topography images of breech face impressions and provide a basis 
for estimating error rates. 
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2.1 Model 1 for CMC measurements
Binomial distribution

• Matches between each of the N1 cell pairs from first image pair, X1j, are the 
outcomes of a sequence of independent Bernoulli trials with: 

𝑃𝑃 𝑋𝑋1𝑗𝑗 = 1 = 𝑝𝑝 𝑃𝑃 𝑋𝑋1𝑗𝑗 = 0 = 1 − 𝑝𝑝 𝑋𝑋11,⋯ ,𝑋𝑋1𝑁𝑁1

is the number of CMCs for the first image pair.

= �
𝑗𝑗=0

𝑁𝑁1
𝑋𝑋1𝑗𝑗 ⇒ 𝑃𝑃[1] 𝑌𝑌 = 𝑘𝑘 = 𝑁𝑁1

𝑘𝑘 𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑁𝑁1−𝑘𝑘

• To estimate p, we use an independent sequence of M image pairs each with 
potentially different values of Ni but with the same value of p.

1Y

1Y
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2.2 Model 2:  Correlated binomial distribution

• Matches between each of the N1 cell pairs from first image pair, X1j, are 
the outcomes of correlated Bernoulli trials with: 

• To estimate the parameters, we use an independent sequence of image 
pair comparison results with a total of M images                  . The cell 
numbers         for different image pairs can be different.

1( 1)jP X p= = 1( 0) 1jP X p= = − 2
(2) 1 1Cov( , )i jr X X σ=

[2] 1 [1] 1 (2) 2 1( ) ( ){1 ( , )}P Y P Y r g Y p= +
1
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j
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2.3 Model 3: Beta-binomial distribution

• Matches between each of the N1 cell pairs from first image pair, X1j, 
are the outcomes of independent Bernoulli trials with: 

𝑃𝑃 𝑋𝑋1𝑗𝑗 = 1 = 𝑝𝑝 𝑃𝑃 𝑋𝑋1𝑗𝑗 = 0 = 1 − 𝑝𝑝 𝑋𝑋11,⋯ ,𝑋𝑋1𝑁𝑁1

• For different image pairs, they are independent and      is random with 
a beta probability distribution, i.e.,                               .

• M independent image pairs are used to estimate the parameters. 

p

1 1
1 1

( , )( | , , )
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2.4 Model 4: Beta-correlated binomial distribution 

• Matches between each of the N1 cell pairs from first image pair, X1j, are 
the outcomes of correlated Bernoulli trials with: 

• For different image pairs, they are independent and      is random with a 
beta probability distribution, i.e.,   

• M independent image pairs are used to estimate the parameters. 

p

1 1 1
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3. Estimating the parameters of the models

• CMC method applied to a set of cartridge cases to have certain known 
matching (KM) image pairs and certain known non-matching (KNM) 
image pairs. 

• Sum of CMC values                                for M independent image pairs,

• Likelihood function for corr. Binomial,

The ML estimator of       and         are obtained when log (L) reaches the 
maximum. 

11, ,,...,
MN M NY Y
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Nonlinear regression can be used to estimate parameter(s).

• Assume all the CMC values for each image pair is binomial distributed,                                                       

By the law of large number, the frequency curve approaches the binomial 
mass function when                 . 

• For a sample from an independent sequence                                , call 

for  

a generalized frequency function. Assume there are L distinct N’s. 
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Assume the CMC values 
Assume for each distinct N,                              , there are                         
indicators with same         .                          

Under some regular conditions, by
the law of large number, when                   

almost surely                 

where                       . Thus, we have a nonlinear regression model based on 
the correlated binomial distribution

M → ∞
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4. A practical example
The Weller data set of cartridge cases has 370 known matching (KM) image pairs, 

but not with same N . The 370 columns representing 370 image pairs. There are L = 15 distinct 
N’s. 

Based on the original data, the CMC values and the corresponding counts are given by

The generalized frequency function is obtained by count/370 since there are 370 image pairs. 
Note the sum of counts            = 370.

CMC 
(Y)

21 22 23 24 25 26 27 28 29 30 31 32 …. 43 44 45 46 4
7

Count 1 0 1 2 3 0 7 5 2 14 5 15 …. 16 6 2 1 1

CMC 
(Y)

36 27 37 36 36 37 38 37 27 40 37 36 …. 44 41 37 37 4
3

N 38 38 38 38 38 38 38 38 41 41 41 41 …. 46 46 43 43 4
5

( )jC

( )jC
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The M =370 image pairs have L = 15 distinct N’s. The generalized 
frequency function will approach a pmf which is a mixture or a 
weighted mean of 15 pmf’s of the underlying  distribution when                
.  .M → ∞
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5. Discussions and conclusions

• We discussed four statistical models for the similarity score comparisons in 
firearm evidence identifications based on pass-or-fail tests, specifically the 
CMC method. In this case, binomial model seems a default or generic one.  

• Because the assumption of independence among the cell pair comparisons 
from the CMC method is most likely invalid in practice, the correlated          
binomial model was proposed to relax the assumption.

• Although using the beta-binomial distribution can relax the assumption of     
the same p for all image pair comparisons, it still assumes that within each          
image pair, all cell pair comparisons are independent. Thus, the beta-
correlated binomial was proposed.
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• From the point view of the number of assumptions, the beta-correlated 
binomial, beta-binomial, and  correlated binomial models are better than 
the binomial model.

• Using the smallest sum of squares of difference between the generalized 
frequency function and each of the four mixture pmf’s as a performance 
criterion, we conclude that the correlated binomial, beta-binomial, and 
beta-correlated binomial models fit the example KM data much better 
than the  binomial model. 
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Version 0 - Workflow
Manual Annotation
Test Impression

Questioned Impression

Automated Alignment and Comparison

Pattern: 
Design, Size, 

and Wear

RACs

Final

+



Revamp with Casework Focus

Staged Crime Scene Impressions Test Impression 
Lineup



Test Impression Markup
RACs Wear



Region of Interest

Crime Scene Markup
RACs Contact



Crime Scene Markup

How confident do I feel that my markup will mirror a 
test impression from this shoe?

Red:  I can hardly 
see anything

Orange: I can 
generally tell 
contact apart from 
noncontact

Yellow: I can even 
see the edges 
clearly

Green:  I think I 
could see RACs!

Blue means 
ignore



Alignment
• First conduct a rigid 

alignment (slide and rotate, 
like doing a puzzle)

Rigid Alignment



Alignment
• First conduct a rigid 

alignment (slide and rotate, 
like doing a puzzle)

• Then allow moderate 
stretching to allow for 
distortions between 
impressions

Flexible Alignment



Alignment
• First conduct a rigid 

alignment (slide and rotate, 
like doing a puzzle)

• Then allow moderate 
stretching to allow for 
distortions between 
impressions

• Promising results with 
partial impressions 
representing as little as 20% 
of the outsole surface



• Contracting boundary 
K size > Q size

• Expanding boundary   
K size <  Q size

• Stable boundary  depends on 
shoe manufacturing process 

Size Metric



Results from Close Non-Match 
Reference Comparisons• Several Similarity Metrics

• Agreement of contact and non-
contact regions and closeness of 
edges (Alignment score)

• ResNet (Version 0)
• Pixel-specific contact probabilities

• Each metric can be placed in 
different contexts…

Design and Wear Metrics

Could Q and K 
have come from 
the same shoe?

Similarity

Results from Mated Reference 
Comparisons

Could Q and K be from 
different shoes with 
the same size, side, 

and design? 

Results from Reference Comparisons 
with Half Size Difference

Cu
rr

en
t C

as
e

Could Q and K be from 
shoes with the same 
side and design but a 

different size? 



RAC Metrics
Any apparent RACs seen in the 
questioned impression are 
marked

After alignment, use overlap %
(a.k.a. Intersection over union) 
with any RAC regions marked in 
test impression

Crime Scene

Test Impression



RAC Metrics
Developing RAC metric that 
uses regions marked in test 
impression to initiate local 
pattern comparison

Crime Scene

Test Impression

Credit: Pixabay



Relevance Metrics
Credit: Pixabay

Crime Scene Clarity
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Relevance Metrics
Credit: Pixabay

Crime Scene Clarity
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Case Comparison



Relevance Metrics
Credit: Pixabay

Crime Scene Clarity
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Case Comparison



Current 
Case

Same Shoe
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- 1
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 (Q
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)

Similarity Score

Data Visualization
Credit: Pixabay



Credit: Nick Youngson of NYPhotographic.com

• Develop automated tools to assist with 
markup

• Use images from black box studies to 
evaluate and improve FICS

• Use NIST FICS outputs and black box 
responses to predict distribution of 
conclusions across examiners
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OUTLINE
• Likelihood Ratio (LR) & LR Systems

• Calibration accuracy of LRs

• Use of validation data in judging LR calibration accuracy

• Proposed method for inference regarding LR calibration discrepancy

• Example(s)



𝑳𝑳𝑳𝑳 =
𝑷𝑷𝑷𝑷 𝑬𝑬 𝑯𝑯𝒑𝒑, 𝑰𝑰
𝑷𝑷𝑷𝑷 𝑬𝑬 𝑯𝑯𝒅𝒅, 𝑰𝑰

Hp: DNA from POI is in the crime sample
Hd: DNA from POI is not in the crime sample

I = Background information available prior to examining               
crime sample (known or assumed to be true) 

Likelihood Ratio



𝑳𝑳𝑳𝑳 =
𝑷𝑷𝑷𝑷 𝑬𝑬 𝑯𝑯𝒑𝒑, 𝑰𝑰
𝑷𝑷𝑷𝑷 𝑬𝑬 𝑯𝑯𝒅𝒅, 𝑰𝑰

Hp: Glass fragments recovered from POI’s clothing is from 
the broken glass door at the scene of the burglary

Hd: The recovered fragments are not from the crime scene 
broken glass door

I = Background Information available prior to examining 
sample obtained from the POI’s shirt

Likelihood Ratio



Likelihood Ratio Systems

Measurement
• Sample processing & Numerical quantification of 

informative features

 Interpretation
• Statistical/Mathematical Modeling, data analysis, expert’s 

judgements



Likelihood Ratio Systems (DNA Evidence)

Sample

Strength of 
Evidence

(LR)
Measurement EPG



Likelihood Ratio – What is it in plain English?

Suppose a forensic expert determines that an LR value of 1000 provides 
the best assessment of the value of the evidence.

When asked to explain what LR = 1000 actually means, they might say 
something like

The evidence is 1000 times more likely if Hp is true 
than if Hd is true (or something to this effect)



Meaning of Calibration Property of LR Systems

Is there empirical data to support the expectation that the system 
used by the expert is accurately assessing the value of evidence?

When considering RELIABILITY of expert witness 
testimony (or report), a key question is:

• What does empirical validation data say about ‘how much more 
likely the evidence is IF Hp is true than IF Hd is true? 

• How does this compare with the expert’s assessment?



Some Available Diagnostic Tools

Turing’s Lemma:

If the LR system is providing proper probabilistic assessments of value of 
evidence, then

the average of LR values obtained from Hd true cases must equal 1. 

(this is a necessary condition but not sufficient)



Calibration discrepancy is assessed as part of an overall prediction accuracy analysis by 
comparing posterior odds (across all possible prior odds) obtained using expert’s LR. 

Grzegorz Zadora, Agnieszka Martyna, 
Daniel Ramos, Colin Aitken

An R-package called comparison can be used to 
apply their method

David Lucy, James Curran, Agnieszka Martyna

Some Available Diagnostic Tools
Empirical Cross-entropy Analysis (ECE Plots)



Our Approach

LR systems that provide accurate probabilistic assessments of 
value of evidence (relative to empirical observations) must 
satisfy the following property:

LR of LR = LR

If 𝑔𝑔 𝑥𝑥 is the probability density function for Hp-true LRs 
and

𝑓𝑓 𝑥𝑥 is the probability density function for Hd-true LRs
then

𝑔𝑔 𝑥𝑥
𝑓𝑓 𝑥𝑥

= 𝑥𝑥 for all 𝑥𝑥



LR value of x is x times more likely to occur                      
under Hp than under Hd.         

• LR value of 1 is equally likely under Hp as it is under Hd

• LR value of 10 is 10 times more likely to occur under Hp than it is under Hd.

• LR value of 100 is 100 times more likely under Hp than it is under Hd.

• LR value of 0.1 is 10 times more likely under Hd than it is under Hp.

What does LR of LR = LR mean?



Noncontributors LR

Contributors LR

Calibration Accuracy: Empirical Assessment



Calibration Accuracy: Empirical Assessment

Noncontributors LR

Contributors LR



Calibration Accuracy: Empirical Assessment

Noncontributors LR

Contributors LR



A Different LR system
Fails Calibration Check

Calibration Accuracy: Empirical Assessment



Our Approach
Rather than compare frequencies of occurrence of a given LR value in 
Hp-true cases and Hd-true cases we focus on frequencies of LR values 
that fall within any specified interval.

For instance, we can count the number of LR values that fall in the intervals 
[1,100], [100,10000], [10000, 1000000], etc.

Such counts in Hp-true cases and Hd-true cases must exhibit a relationship 
that is dictated by the property “LR of LR = LR”. 

𝐺𝐺 𝑏𝑏 − 𝐺𝐺 𝑎𝑎 = 𝑏𝑏 𝐹𝐹 𝑏𝑏 − 𝑎𝑎 𝐹𝐹 𝑎𝑎 − ∫ 𝐹𝐹 𝑥𝑥 𝑑𝑑𝑑𝑑
𝑎𝑎

𝑏𝑏

𝐺𝐺 𝑥𝑥 is the cumulative distribution function for Hp-true LRs
𝐹𝐹 𝑥𝑥 is the cumulative distribution function for Hd-true LRs



Our Approach

For any given interval of interest, say (a, b), we count
(1) the actual counts for Hp-true samples in the interval
(2) expected counts if the LR system makes accurate weight 

of evidence assessments using 

and calculate the ratio of (1) to (2). This is the estimated 
calibration discrepancy.

• If the ratio is less than 1  (log10 of the ratio is negative) then the LR system is 
overstating the evidence in the interval being considered.

• If the ratio is greater than 1 (log10 of the ratio is positive) then the LR system is 
understating the evidence in the interval being considered. 

We can visualize the results in an “Interval specific calibration discrepancy plot”   
or simply “calibration discrepancy plot”.

𝐺𝐺 𝑏𝑏 − 𝐺𝐺 𝑎𝑎 = 𝑏𝑏 𝐹𝐹 𝑏𝑏 − 𝑎𝑎 𝐹𝐹 𝑎𝑎 − ∫ 𝐹𝐹 𝑥𝑥 𝑑𝑑𝑑𝑑𝑎𝑎

𝑏𝑏



Glass Fragments Example
This example is discussed in the book by Zadora et al. (2013) 
(see Chapter 4, Section 4.4.6). 

• Twelve fragments of glass were obtained from each of 200 glass objects and 
each fragment was subjected to an elemental analysis using scanning electron 
microscopy electron diffraction (SED-EDX). 

• Eight elemental concentrations were measured:                                               
Na, Mg, Al, Si, K, Ca, Fe, and O. 

• Base 10 logarithms of the ratios of the first 7 elemental concentrations to the 
concentration of O (Oxygen) formed the response variables in the analysis. 

• Zadora et al. (2013) used a graphical model approach and kernel density 
estimation for computing the same-source LRs and different-source LRs 
(consult their book for further details). 

• Here we focus on assessing how well-calibrated this particular LR system is.



Ink Example

Nmated = 200

Nnonmated = 19,900



Ink Example



Ink Example

Zadora, Martyna, 
Ramos, Aitken



Ink Example



Ink Example

Overstatement by a factor of 6

Overstatement by a factor of 125

Overstatement by a factor of 30



Summary

• CALIBRATION property is an important component of LR 
system assessment as it focuses directly on the accuracy of 
value of evidence assessments.

• We outlined a new method for examining potential degree 
of discrepancy between 

(a) evidential value inferred from validation data and
(b) evidential value as assessed by an LR system (or an 

expert).

• We illustrated the ideas using an example.
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