Introduction	Background	Methodology	Results and Discussion	Conclusion
	Simulation of Prom	npt Gamma Er	mission Tomography by	
	C	Compton Scat	tering	
		and	-	
	The Implementation	on of a Neutro	n Iomography System	
			• 1	

Nathaniel Kaneshige¹ Mentor: Dr. Heather Chen-Mayer²

¹University of Hawai'i at MÄnoa - SURF 2018 ²National Institute for Standards and Technology (NIST)

8 August 2018

Introduction	Background	Methodology	Results and Discussion	Conclusion
Outline				

1 Introduction

- The NIST Center for Neutron Research
- In a nutshell

2 Background

- Prompt Gamma Activation Analysis (PGAA)
- Compton Camera
- Neutron Tomography
- Research Objective

3 Methodology

- Geant4 Simulation
- Reconstruction Methods
- Neutron Tomography Apparatus

4 Results and Discussion

- Prompt Gamma Compton Camera (PGCC) Simulation
- Comparing Recon Methods
- Neutron Tomography Results

5 Conclusion

Introduction	Background	Methodology	Results and Discussion	Conclusion
0				
In a nutshe	ell			

Top Level Summary:

Combine three techniques to understand the structural composition of a material.

Three Techniques				
Technique	Energy Resolution	Spatial Resolution		
Germanium Detector (HPGe)	High	None		
Compton Camera	Med	Med		
Neutron Tomography	None	High		

Figure: Germanium Detector with Compton suppressor. (NIST)

Figure: Compton Camera. (Kim et. al. 2013)

Figure: Neutron tomography schematic. (Manescu et. al. 2013)

Introduction	Background	Methodology	Results and Discussion	Conclusion
00				
In a nutshell				

Application:

- Studying Chloride transport in concrete. Structural degradation.
- Hydrogen ion diffusion through metals. Hydrogen blistering and embrittlement of metals (Fuel Cells and Fusion Reactors).

Figure: Chloride attacking concrete structure. (Nielsen 2004)

Figure: Instrument diagram of the NCNR. (Zhang 2016)

Introduction	Background	Methodology	Results and Discussion	Conclusion
	0000			

Prompt Gamma Activation Analysis (PGAA)

- Characteristic gamma-radiation emitted under neutron capture
- Gammas typically in the MeV range (eg. 2.22 MeV for ¹H)
- Bulk elemental composition analysis for a sample
- Non-destructive

Nucleus

Thermal

Neutron

Excited

Nucleus

Stable

Nucleus

Gamma

Rav

Figure: Neutron activated prompt gamma process. (Frontier Tech C.)

1g sample 24 hour measurement

Range (µg)	Elements
0.01-0.1	B, Cd, Sm, Gd
0.1-1	H, Cl, In, Nd
1-100	Na, S, K, Ti, and more

Figure: PGAA station at the NCNR. Neutron beam with HPGe detector and lead shielding.

Introduction	Background	Methodology	Results and Discussion	Conclusion
00	0000	00000	00000	
Compton	Camera			

Figure: Schematic view of Compton scattering. (MIT OCW)

$$\frac{1}{E'} - \frac{1}{E} = \frac{1}{m_e c^2} (1 - \cos \theta), \quad (1)$$

Figure: Compton Camera. (Kim et. al. 2013)

- Compton scattering applied to imaging
- Energy and spatial resolution
- Commonly used in astronomy
- Improved resolution with Cadmium Zinc Telluride (CZT) detectors and miniaturized on-board electronics

Introduction	Background	Methodology	Results and Discussion	Conclusion
	0000			
Neutron To	omography			

- Images generated by transmitting neutrons through a sample.
- Inverted contrast to X-ray tomography (insensitive to high Z-materials).
- 3D reconstruction using computed tomography.

Figure: Flower in lead shielding showing the sensitivity of neutron imaging to hydrogen. (NIST)

Figure: Basic idea for computed tomography. (ZvolskÜ 2014)

Figure: Neutron tomography schematic. (Manescu et. al. 2013)

Introduction	Background	Methodology	Results and Discussion	Conclusion
	0000			
Research	Objective			

My Role:

- Continued development of detector simulation to aid the design of a Compton Camera
 - Detector parameters (plane separation, position, orientation)
 - Spatial resolution
 - Energy resolution
- Assemble and evaluate a basic neutron tomography setup

Introduction	Background	Methodology •••••	Results and Discussion	Conclusion
Geant4 Simula	ation			

- Geant4 is a C++ toolkit for simulating particle transport through matter.
- Developed for High Energy Physics at CERN, expanded application to medical and nuclear engineering.
- Expanding work by Ben Riley (SURF 2017)
- Outputs basic detector response for reconstruction

Figure: geant4 logo. (CERN)

Figure: Particle tracks for Geant4 simulation of n-capture and CZT Detector.

Introduction	Background	Methodology	Results and Discussion	Conclusion
		0000		
Conic Back-pr	ojection			

Figure: Compton Camera. (Kim et. al. 2013)

- Basic method for reconstructing sample geometries.
- Takes the basic detector output from experiment or simulation.
- Back-projection looks at the conic sections at a plane of interest.
- Different methods available for energy and spatial resolution.

Figure: Animation of conic back-projection with the number of ideal events.

Introduction	Background	Methodology	Results and Discussion	Conclusion
		00000		

Assessment of Reconstruction Methods

Other methods we can use:

- Filtered Back-projection Apply a frequency filter.
- Maximum Likelihood Estimation Method (MLEM) - Iterative process using guess and check like method.
- Stochastic Origin Ensemble (SOE) -Iterative process applying Metropolis-Hastings Algorithm.

Figure: Animation of 4 cones projected into a 3D cube.

Figure: Sketch of the Neutron Tomography Apparatus for basic testing.

- Construct a test neutron tomography apparatus
- Uses a ⁶LiF:ZnS scintillator sheet to convert neutrons to light.
- Coordinate rotating stage with CCD
- Evaluate apparatus at
 - PGAA station (uncollimated neutrons)
 - BT-2 Neutron Imaging Facility (collimated neutrons).

Introduction	Background	Methodology	Results and Discussion	Conclusion
		00000		

Neutron Tomography Apparatus

Figure: Completed Neutron Tomography Apparatus for basic testing.

- Construct a test neutron tomography apparatus
- Uses a ⁶LiF:ZnS scintillator sheet to convert neutrons to light.
- Coordinate rotating stage with CCD
- Evaluate apparatus at
 - PGAA station (uncollimated neutrons)
 - BT-2 Neutron Imaging Facility (collimated neutrons).

Introduction 00	Background	Methodology	Results and Discussion	Conclusion	
_					

Prompt Gamma Compton Camera (PGCC) Simulation

480x speedup

- Skips n-capture process for performance speedup
- Implemented gamma emmissions from random locations in samples
- 1.8e6 Compton events per 20 min
- Compared to 3500 Compton events per 20 min for 25 meV neutrons and 0.126 g of water
- Speedup achieved for back-projection reconstruction with multithreading

Figure: Figure showing the direct to gamma geant4 method for disk geometries.

Introduction Background Methodology Results and Discussion Conclusion

PGCC Energy Output Comparison

- Experimental data obtained from wax disk in neutron beam.
- Geant4 data is a simulation using the direct to gamma process.
- 2.22 MeV ¹H peak clearly visible, Compton edge

Figure: Comparison of energy spectrum's for geant4 PGCC simulation, Compton Camera, and HPGe.

— exp CZT

— exp HPGe

geant4

Figure: Comparison of energy spectrum's for geant4 PGCC simulation, Compton Camera, and HPGe.

Introduction	Background	Methodology	Results and Discussion	Conclusion
			00000	

Back-Projection Methods

Introduction	Background	Methodology	Results and Discussion	Conclusion			
			00000				
Henetice Deconstruction Mathematic							

Iterative Reconstruction Methods

Statistical reconstruction

Dots: intensity profile Lines: Gaussian approx.

-2.2 MeV gamma rays single scattered events scattered eve

Neutron Tomography Results

PGAA vs. BT2 Comparison

- PGAA station uses uncollimated neutrons.
- BT2 uses highly collimated neutrons.

Introduction	Background	Methodology	Results and Discussion	Conclusion
Conclusion				

Key Results:

- 480x speedup using direct to gamma simulation
- Parallelization of back-projection reconstruction software
- Corresponding simulation and experimental data
- Tested n-tomography apparatus

Future Work:

- Prompt Gamma Compton Camera Simulation
 - Generalize for more complete detector response
 - Further study detector parameters
- Neutron Tomography
 - Characterize PGAA station beam
 - Investigate PGAA beam collimation
 - Assess CCD damage

Introduction	Background	Methodology	Results and Discussion	Conclusion
Acknowledgen	nents			

A special thanks to:

 Heather Chen-Mayer, Jake LaManna, Ryan Fitzgerald (MML/NCNR/PML)

UNIVERSITY

of HAWAI'I° Mānoa

- Joe Dura, Julie Borchers, Brandi Toliver (NIST SURF)
- Jeremy Polf, Haijen Chen (UMD)
- Ben Riley (SURF 2017)
- Fellow NCNR SURFers!

Introduction	Background 0000	Methodology 00000	Results and Discussion	Conclusion
CCD Damage				

- Radiation damage to CCD
- Characterized by individual pixels and columns of offset by some value pixels
- Maybe correctable in post-processing

		Backgro	und		Methodo	logy)		Results and Di	iscussion	Co
mple	Gean	it4 Pr	ocess							
Stop#	V(mm)	V(mm)	7(mm) K		dE (Mo)/)	Stopl opg		Noxt\/olumo	ProcNamo	
arch#	16 6	-7 87	= 100	2 5e=09	ur (nev)	Srehreng		World	initSten	
1	16.6	-7 87	-20	2.5c-09	0	80	80	Sample	Transportation	
2	16.6	-7.87	-19.8	4.89e-10	2.01e-09	0.222	80.2	Sample	hadElastic	
3	16.1	-8.22	-19.5	0	0	0.706	80.9	Sample	nCapture	
	List	of 2ndari	es - #Spa	wnInStep=	2(Rest	= 0,Along	= 0,Post= 2), #SpawnTot	al= 2	
:	16.1	-8.22	-19.	52.	22	g	amma			
:	16.1	-8.22	-19.	5 0.001	32	deut	eron			
:								EndOf2ndarie	es Info	
******	*******	*******	*******	*******	*******	*******	*********	*********	*****	****
* G4Tra	ack Inform	ation:	Particle	= deutero	n, Tra	ck ID = 3	, Parent	ID = 1		
******	*******	*******	*******	*******	*******	********	*********	*********	******	****
C + #	X()	N()	7() //			C	Translations	N=+)/= 1	Durantiana	
Step#	X(mm)	r(mm)	2(mm) K	1 nE (MeV)	de (mev)	StepLeng	TrackLeng	NextVolume	ProcName	
1	16.1	-0.22	-19.5	0.00132	0 00122	0 000343	0 000242	Sample	hToni	
1	10.1	-0.22	-19.5	0	0.00132	0.000245	0.000243	Sampre	1110111	
******	********	********	********	********	*******	********	*********	**********	******	****
* G4Tra	ck Inform	ation	Particle	= gamma	Track	TD = 2	Parent ID	= 1		
******	********	********	********	********	*******	********	**********	********	*****	****
Step#	X(mm)	Y(mm)	Z(mm) K	inE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName	
Θ	16.1	-8.22	-19.5	2.22	0	0	0	Sample	initStep	
1	17.2	-7.52	-18	2.22	0	1.98	1.98	World	Transportation	
2	62.5	20.8	40.9	2.22	0	79.5	81.5	Detector1	Transportation	
3	71.8	26.6	53	1.87	0	16.3	97.8	Detector1	compt	
:	List	of 2ndari	es - #Spa	wnInStep=	1(Rest	= 0,Along	= 0,Post= 1), #SpawnTot	al= 1	
:	71.8	26.6	5	3 0.3	53		e -			
								EndOf2ndarie	s Info	

Introduction	Background	Methodology	Results and Discussion	Conclusion
Compton Em	phasis			

Figure: Gamma interactions. (Smet 2011)

Introduction	Background	Methodology	Results and Discussion	Conclusion
Complicatio	n			

N. Kaneshige