

GREET Life Cycle Analysis of Plastic Pathways to Support a Circular Economy

Troy R. Hawkins, Thathiana Benavides, Ulises Gracida, Taemin Kim

Systems Assessment Center Energy Systems and Infrastructure Analysis Division Argonne National Laboratory NIST Plastics Data & Harmonization Workshop January 25, 2023

Systems Assessment Center

Analyzing the benefits and challenges of technologies to make the U.S. more sustainable, secure, and resilient.

- Assess technologies and programs against sustainability goals
 - Focus on greenhouse gas, criteria pollutants, and resource use.
 - Identifying opportunities for improvement.
- Diverse group of ~65 engineers, economists, analysts, modelers, and planners.

GREET Model Overview

Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies

- Consistent tracking of the life cycle performance of energy and products
 - Used to inform and guide DOE research and external policies
- Argonne has been developing GREET since 1995 with **annual updates and expansions**.
- Expanded from transportation-focus to include a wide range of technologies
 - Fuels, Vehicles, Chemicals, Plastics, Agriculture, Metals, Concrete, Buildings, Batteries, Electricity Infrastructure

GREET Scope

Key LCA metrics

Greenhouse Gases	Criteria Air Pollutants	Energy Use	Water Consumption
 Carbon dioxide Methane Nitrous Oxide Black carbon Albedo Characterized by global warming potential (CO ₂ -eq.) based on IPCC AR5	 Sulfur Oxides Particulate Matter Nitrogen Oxides Volatile Organic Compounds Carbon Monoxide Distinguished between urban and non-urban	By type: • Petroleum • Natural gas • Coal • Biomass • Nuclear • Hydro • Wind • Solar	Withdrawals less local releases AWARE-US model estimates regional and seasonal water stress

~50,000 Registered Users

GREET Informs Policy and Regulation

California Environmental Protection Agency

- California-GREET is an adaptation of Argonne's GREET model
- Specified in Inflation Reduction Act related to the Clean Fuel Production Credit and the Clean Hydrogen Credit
- U.S. EPA uses GREET with other sources for Renewable Fuels Standard pathway evaluations
- Oregon Clean Fuels Program also uses an adaptation of Argonne's GREET model
- National Highway Traffic Safety Administration for fuel economy regulation
- Federal Aviation Administration and International Civil Aviation Organization using GREET to evaluate aviation fuel pathways
- U.S. Maritime Administration renewable marine fuel options for IMO 2020 sulfur limits
- U.S. Dept. of Agriculture bioenergy LCA and carbon intensity of farming practices
- Canadian Clean Fuel Standard for Environment and Climate Change Canada fuel pathways

Plastics in GREET

GOAL:

Conduct analysis of advanced technologies to enable bioplastics and a circular economy for plastics. Provide scientific research and build consensus around technologies to address plastic waste and improve sustainability.

- LCA of bioplastics, plastic re-/upcycling, and plastic-to-fuels.
- Develop a circular economy sustainability analysis framework.
- Stakeholder engagement and consensus building.

Key issues:

- Establish technologies to enable a sustainable future for plastics.
- Understand the potential for chemical recycling vs. pyrolysis vs. wasteto-energy.
- Improve the environmental performance and economics of biofuels with co-products.
- Build consensus around the sustainability implications of circular economy strategies.

Plastics

GREET contains plastics supply chains to help address environmental concerns related to the production and use of plastics

Feedstock	Conversion	Manufacturing & Processing	Products	End-of-Use
 Fossil-based Chemical precursors (ethylene, propylene, naphtha, etc.) Bio-based Cellulosic Woody Waste Biochemical precursors: adipic acid, acrylic acid, bio- ethylene, etc.) 	 Chemical Thermochemical Biochemical 	 Extrusion Compression molding Blow molding Calendaring Injection molding 	 Fossil-based PET HDPE/LDP E Nylon 6, 66 PC PP PUR PVC Bio-based Bio-PE Bio-PET PLA PEF 	 Landfill Composting Combustion with energy recovery Recycling Mechanical recycling Chemical recycling Biochemical recycling

Argonne

Circular Economy Sustainability Analysis Framework of Plastics

Objectives

- Quantify and compare energy and environmental metrics for conventional and circular plastic packaging pathways by extending the life cycle analysis (LCA) framework to address circular/upcycling pathways
- Specify a framework for analysis of plastic in circular economy, building on established LCA methods
- Analysis
 - The study compares the production of PET bottles through different technologies
 - A circular economy sustainability analysis framework was developed in GREET
 - The framework integrates LCA with Material Flow Analysis (MFA) to simultaneously estimate environmental and circularity metrics
 - Four case studies were designed to evaluate the interactions between the conventional and circular PET production pathways

Circular Economy Sustainability Analysis for Plastics

Circular Economy Sustainability Analysis for Plastics

Major findings of the study

managed by UChicago Argonne, LLC

- Trade-offs between the environmental and circularity indicators of the recycling technologies were identified
- Recycling technologies with lower GHG emissions increase the reliance on virgin materials and vice versa
- Reclaiming operations are the major drivers of GHG emissions in the recycling pathways
- Chemical recycling and upcycling do not reduce the life-cycle impacts of the current supply chain but reduce virgin material use and solid waste generation

Life cycle impacts and circularity metrics of the supply chain of PET Bottles by applying different circular economy strategies

Post-Use Plastic (PUP) conversion to products

- Updated version of post-use plastic conversion via pyrolysis
 - Industry data collected to characterize post-use plastic pathways
 - Included production of intermediate product such as *pyrolysis oil* and fuel such as *ultra-low sulfur* (ULS) diesel.
 - Presented the data for two types of facilities: (1) pioneer, and (2) Nth-plant.

New inventories

- **PET reclaiming operations** (PET bottle-to-PET flake),
- Mechanical extrusion (PET flake-to-mechanically recycled resin),
- **Enzymatic hydrolysis** (PET flake to purified terephthalic acid and ethylene glycol).
- New lubricant pathways

LIS. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Plastic Upcycling to Lubricant Product: (Cappello, V. et al. 2022)

Life cycle analysis of plastic-to-plastic pathways via pyrolysis

- Evaluate the impacts of producing polyolefins through cofeeding of PUP-derived pyrolysis oil with conventional feedstocks (naphtha and natural gas liquids)
- Use the mass balance approach to estimated GHG Emission reductions of different scenario including 5% and 20%, Plant capacity of the pyrolysis conversion facility (Pioneer vs Nth-plant), Counterfactual scenarios (U.S. vs. E.U), composition of the baseline feedstock of crackers
- HDPE with 100% allocated recycled feedstock showed up to 23% reductions in GHG emissions compared to conventional production of HDPE
- Inclusion of the avoided emissions from traditional end-of-life management in the United States reduced in up to 50% the GHG emissions compared of the conventional production of HDPE

Cross-database comparisons for plastics LCA: goal and scope

- Different plastics LCA databases have significant cross-database discrepancies
- **To identify the sources and quantify the degree of the discrepancy**, multiple LCA databases are investigated for five popular resin products and three post-use phases.
- The outcomes can help governmental agencies implement environmental regulations and other policies to plastics industry using the LCA approach

Database	GREET	USLCI	Ecoinvent	GaBi	
Software	GREET	OpenLCA	OpenLCA	GaBi	
Version	2021*	2021 Spring Quarter	v.3.7.1	v.10	
Publisher	ANL	NREL	Ecoinvent	Sphera	
Access	Free public access	Free public access	One-time purchase	Subscription-based	
PET	O (dataset available)	0	0	0	
HDPE	0	0	0	0	D. i
PP	0	0	0	0	Resin productio
bio-PE	0	X (not available)	Х	0	presses
PLA	0	0	0	0	
Landfill	0	Х	0	0	1
Incineration	0	Х	0	0	Post-use
Mech. Recycling	0	0	0	Х	

*Some of the significant updates in GREET 2022 are reflected in the current analysis

Cross-database comparisons for plastics LCA: metrics investigated

 Metadata comparisons and breakdown analysis are conducted to quantify the degree and identify the sources of discrepancy.

Breakdown analysis

Metadata characteristics comparisons

• Life cycle impact assessment (LCIA) results are compared across the databases on the consistent impact category and factors for valid comparisons.

Accomplishments

Series of publications providing LCA results for biobased plastics and plastic-to-energy pathways.

- Environmental benefits of bio-based PET and recycled PET bottles
- Incorporating biodegradation of compostable plastic into LCA of bioplastics
- LCA of non-recycled plastics to fuels
- LCA comparison of biobased and conventional chemicals
- LCA of stover-derived lactic acid and ethyl lactate
- LCA of new bioplastic
- New feedstocks, alternative feedstocks
- Data collection from industry waste plastic conversion process
- Expansion of GREET® to include biobased plastics, conventional virgin and recycled plastics, biochemical co-products from biorefineries, and conventional chemicals.

Thank you!

GREET 2022 Contributors

Amgad Elgowainy **Uisung Lee Kwang Hoon Baek** Adarsh Bafana Thathiana Benavides Andrew Burnham Hao Cai Vincenzo Cappello Peter Chen Yu Gan **Ulises** Gracida **Troy Hawkins** Rakesh lyer Jarod Kelly

Michael Wang

Taemin Kim Shishir Kumar Hoyoung Kwon Kyuha Lee Xinyu Liu Zifeng Lu Farhad Masum Clarence Ng Longwen Ou Krishna Reddi Nazib Siddique **Pingping Sun** Pradeep Vyawahare Hui_xXu **Greg Zaimes**

GREET 2022 Updates

GREET 1

- Updated and expanded hydrogen production pathways with GUI in GREET Excel version
- Updated CO₂ utilization simulations: carbon accounting, detailed modeling of CO₂ capture, compression, and transportation, direct air capture
- Included offshore macroalgae production technologies
- Updated and expanded marine fuel production pathways, with a GREET marine module
- Updated and expansion of biodiesel and renewable diesel: used cooking oil is added.
- Updated post-use plastic pyrolysis conversion
- Updated and expanded waste to polylactic acid (PLA) and plastic modeling
- Updated and expanded of ammonia production pathways (conventional, blue, and green ammonia)
- Added post-use plastic to lubricant product pathways (including synthetic lubricants poly-alpha olefins)
- Added an air separation unit to O₂ and N₂ production

GREET 2

- Updated infrastructure LCA for nuclear power, hydropower, wind turbines, solar photovoltaics
- Updated and expanded LCA of electrolyzers (solid oxide, alkaline, and proton exchange membrane)
- Updated light-, medium-, and heavy-duty vehicle components
- Updated and expanded the battery LCA module with new materials and domestic lithium production
- Updated inventory data for aluminum production
- Updated LCA of critical materials (Ni, Cu, Ti, and rare earth elems)
- Added the end-of-life credit approach of vehicle recycling (steel and aluminum)

Background Data

- Global warming potentials of AR6
- US electricity generation mix and crude oil mix
- Methane leakage of natural gas supply chain
- Fuel use for natural gas recovery
- Expansion of plastic inventory
- Energy intensity of rail movement of passengers
- Aviation payload energy intensities and combustion emissions
- HD hybrid electric vehicle fuel economy
- Feedstock slate for U.S. steam crackers