
THE LINUX
FOUNDATION

1. Criteria for critical software
David A. Wheeler <dwheeler@linuxfoundation.org> (et al.)
Director of Open Source Supply Chain Security, The Linux Foundation (willing to speak)

NIST Request: Criteria for designating "critical software.” Functional criteria should include, but not be
limited to, level of privilege or access required to function, integration, dependencies, direct access to
networking and computing resources, performance of a function critical to trust, and potential for harm if
compromised. See EO Section 4(g).

Critical software could be defined as software that presents an especially high level of risk should it fail or be
compromised, where risk is a combination of impact and likelihood:

1. Impact. Many issues control the impact of software.
a. Safety-critical. If the software fails or is compromised it could lead to death or serious injury to

people; exposure of privacy protected information; loss of financial assets; identity theft; national
security issues; compromised infrastructure; loss or severe damage to equipment/property;
and/or environmental harm. While this in many ways is the “best” measure of impact, past
experience shows that doing only this analysis directly is unlikely to correctly determine impact,
due to many challenges:

i. Software is typically part of larger systems. The exact composition of software in larger
systems is often unknown (the “top” may be known but not its transitively decomposed
parts).

ii. Systems also typically depend on other tools (including build tools) and services, which
again may depend on other tools and services transitively, and all those services also
typically have a large set of transitively-included software and hardware components.

iii. Systems may have countermeasures that attempt to reduce the impact of problems, but
it’s often unclear how well those countermeasures work in practice against intelligent
adversaries.

Thus, indirect measures (as noted below) are often important to help identify software that is
high-impact but might otherwise be missed.

b. Category of software (type of function or data). Functions that are keys to trust are especially
important. These include cryptographic libraries (which, if subverted, can quietly subvert an entire
system and typically have cryptographic keys) and anything with elevated privileges such as
operating system kernels. Software in such categories only matters if they’re used. However, it’s
often difficult to determine where they are used if they’re used at all.

c. Ubiquity. If the software is widely used, its subversion can lead to widespread damage and make
repair especially difficult. As an analogy: A billion gallons of water can be more dangerous than
one. There have been various ways to estimate this. One approach is to examine dependencies
to find the software that is “most depended on by others” (e.g., from a sample set of programs
analyzed or across entire ecosystems). Tracking “GitHub stars” measures software project
popularity of a kind but is dubious as a measure of ubiquity. More promising than stars is tracking

548 Market Street PMB 57274 San Francisco, California 94104-5401
Phone/Fax: +1 415 723 9709 https://www.linuxfoundation.org/

mailto:dwheeler@linuxfoundation.org
https://www.linuxfoundation.org/

THE LINUX
FOUNDATION

“watchers” of OSS; watching something takes time. Since attention is limited, that is a better
measure than stars for software that is likely to be important (or becoming important).

2. Likelihood. The likelihood that software could be subverted includes factors such as:
a. Network accessibility & attack surface. It is often easier to attack software if it is directly exposed

to a network or directly processes untrusted data. If the software exposes many attackable
interfaces, again, it’s easier to attack.

b. Development process. If the development process aggressively looks for vulnerabilities (using
tools and people) and proactively fixes them and/or designs to prevent them, the likelihood of
easily exploited vulnerabilities is reduced.

c. Memory safety. Software that in non-memory-safe languages have several additional attack risks
that memory-safe languages typically do not.

d. Size. Programs with a smaller codebase are much easier to analyze.
e. Physical security. Many attacks take advantage of access to data, software and hardware. This

can include lack of a full trusted execution environment or even signal leakage.
f. Review. Software that others have not reviewed is riskier. One of the potential advantages of

OSS is that it enables mass peer review.

Different organizations, governments, and societies will have a different set of critical software.

Here are some related projects and/or information sources:
1. “Open Source Software Projects Needing Security Investments” aka “Census I” by the Institute for

Defense Analyses (IDA) and the Linux Foundation analyzed Linux distribution packages (specifically
Debian) to identify critical software.

2. Linux Foundation and the Laboratory for Innovation Science at Harvard (LISH) developed the report
Vulnerabilities in the Core,’ a Preliminary Report and Census II of Open Source Software, which analyzed
the use of OSS to help identify critical software. The LF and LISH are in the process of updating that
report.

3. The LF Core Infrastructure Initiative (CII) identified many important projects and assisted them, including
OpenSSL (after Heartbleed), OpenSSH, GnuPG, Frama-C, and the OWASP Zed Attack Proxy (ZAP).

4. The OpenSSF Securing Critical Projects Working Group has been working to better identify critical OSS
projects and focus resources on critical OSS projects that need help. There is already a proposed list of
such projects, along with efforts to discuss funding such aid. Although they are nascent, you may find the
following materials helpful: Table-Top Exercise: What is Critical Software? along with Table-Top Exercise:
List of Categories of Critical Software.

548 Market Street PMB 57274 San Francisco, California 94104-5401
Phone/Fax: +1 415 723 9709 https://www.linuxfoundation.org/

https://www.coreinfrastructure.org/wp-content/uploads/sites/6/2018/04/pub_ida_lf_cii_070915.pdf
https://www.coreinfrastructure.org/programs/census-program-ii/
https://www.coreinfrastructure.org/programs/assistance-program/
https://github.com/ossf/wg-securing-critical-projects
https://docs.google.com/document/d/1V8Qa5xRyL2PKB7kVOoWhFy5kVsIFfzxiBrF868r64PY/edit
https://docs.google.com/document/d/1jk7vsIjxUw1bE2TwoPqGDgE0sETpTKX-9nyIJ8bMUM0/edit
https://docs.google.com/document/d/1jk7vsIjxUw1bE2TwoPqGDgE0sETpTKX-9nyIJ8bMUM0/edit
https://www.linuxfoundation.org/

