
Improving Trust and Providing Provenance in Software Source Code Repositories 
Dustin H. Hoffman


dustin.h.hoffman@gmail.com

Source code repositories provide an appealing target for malicious actors to compromise the 
software supply chain. Utilizing cryptographically signed commits to source code version 
control systems provides confidence that only trusted parties have contributed to the source 
code. The technology required to enable this exists, at least in the popular version control 
system git, it simply needs to be integrated into the development and delivery practices for 
providers of critical software.

Source Code Attacks 
Several attacks on open-source code repositories are publicly known. A few recent examples 
include:

• March 2021, servers used by the PHP project are compromised and used to insert a remote 

code execution (RCE) vulnerability to the source code of the PHP project. The commit 
appeared to correct a typo and was spoofed to look like Rasmus Lerdorf, the original creator 
of PHP, submitted it. Luckily, this update was discovered during routine code analysis prior to 
being published by the project. (Sharma, 2021)


• March 2020, GitHub announced the Octopus Scanner malware was in multiple repositories 
hosted on the platform. The malware attacked the NetBeans development environment and 
installed backdoors within the source code. Once it infected a project, it published the 
infected version and attempted to prevent the legitimate authors from superseding it. 
(Mühlberg, 2020)


• November 2018, the widely used JavaScript package event-stream introduced a dependency 
on a malicious package called flat-stream. This resulted in software products dependent 
upon the event-stream package to include the malicious source code. (Sparling, 2018)


Reports of compromises of proprietary, closed source software repositories are less well 
known. The compromise of a private source repository could introduce generally available 
vulnerabilities, (e.g., RCE) but could also introduce targeted attacks on the victim. For example, 
RCE defects may be defeated by effective network defense or detected by static code analysis 
tools. However, the attacker could introduce code to degrade or halt a service at a specific 
time. Such an attack may be less likely to be discovered through static code analysis or testing 
due to its exploitation of the victim’s problem domain.

Signed Commits 
It is nearly universal practice to store software source code in a version control system. A 
version control system tracks each incremental change to the software. When a developer 
updates the source code, the change is committed to the version control system, along with 
the identity of the developer and when the change occurred. This allows developers to 
coordinate distributed, concurrent work on a project, while also providing a history of changes 
so that defects introduced during the development can be reverted.

Version control systems also employ access control features to ensure that only authorized 
users are able to make changes to the source code. For example, the access control features 
can be used to prevent a junior developer from making a change to a software release that has 
not been properly vetted. The access controls can also help prevent developers without a need 
to know from accessing an organization’s unique intellectual property.

A user is able to inspect the commit history in order to determine who made each commit. 
However, the history relies on the security provided by the access control of the version control 
system. In other words, there is no independent method to verify who made a commit. How do 
we know that someone did not manually rewrite the commit history? Did someone 
compromise a developer’s account and submit a commit? Was a man-in-the middle attack 
performed?




Signing each commit to the version control system with a cryptographic signature can help to 
prevent and detect changes made by malicious actors. In a closed, proprietary environment 
the cryptographic signatures can ensure that changes to the repository were actually 
performed by the person purported to be the author. In open source repositories, changes will 
likely come from a wide array of sources, and these will be signed by the developers. However, 
tooling can identify and flag for further scrutiny submissions made by users that are not 
frequent, well known contributors to the project.

Version control systems used in crucial software projects should use the following features:

• Cryptographically Sign Every Change Every change within the version control system must 

be signed using a strong cryptographic hash. Ensuring that each change is signed 
(modifying, deleting, and moving) provides assurance of the provenance of the source code.


• Use Secure Key Stores Best practices must be used to ensure the keys used to sign 
commits are only used by the purported developers. Secure key stores and smart cards can 
reduce the ability of malicious actors to obtain developer’s credentials.


• Dual Signed Commits A version control system should provide the ability for commits to be 
signed by two (or more) developers. Dual signing could be used for code reviews, to ensure 
an equivalent of two person access for high trust applications, or on teams employing 
extreme programming paradigms.


• Integrate Source Signature into Signed Deliverables Executable signing is already used to 
increase trust in software supply chains. Calculating a cryptographic hash of all commits 
used in a release and including this within the signing of executables can be used to verify 
the source used to build a binary.


Weaknesses 
• Tooling Updates Some version control systems include the ability to sign commits. For 

example, git allows users to sign commits, but the feature is not in common use. However, 
features like dual signed commits and including source signatures in executables would 
require developments.


• Process Resistance Resistance by organizations and developers to change practices can 
reduce uptake. The extra process of distributing keys to developers is solved, but requires a 
non-trivial level of effort.


• Protection of Intellectual Property Organizations are unlikely to provide access to version 
control systems for the public to verify. Trusted third parties could be employed by the 
organizations in order to verify or audit signatures, providing assurance to Government and 
commercial customers.


• Key Compromise As with all cryptographic procedures, especially those involving humans, a 
significant defect is key compromise. Signing of version control commits could reuse the 
protections developed to protect keys used for authentication or to sign executables.


References 
Mühlberg, B. (2020, June 16). Malware Attacks on GitHub Repositories a Disturbing 
Development for Open Source Projects. Retrieved from CPO Magazine: https://
www.cpomagazine.com/cyber-security/malware-attack-on-github-repositories-a-disturbing-
development-for-open-source-projects/

Sharma, A. (2021, March 29). PHPs Git server hacked to add backdoor to PHP source code. 
Retrieved from bleepingcomputer.com: https://www.bleepingcomputer.com/news/security/
phps-git-server-hacked-to-add-backdoors-to-php-source-code/

Sparling, A. (2018, November 20). I don’t know what to say. #116. Retrieved from GitHub.com: 
https://github.com/dominictarr/event-stream/issues/116




