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Reactor Physics 101

NIST’s Cold Neutron (CN) Source

CESR: Cold-Energy-n Source Reactor

CESR design features and comparison

Summary of Successes

Topics of Discussion
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First, a crash course in reactor physics…
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In Terms of Neutronics

Δ𝜌 =
𝐾𝑒𝑓𝑓1 − 𝐾𝑒𝑓𝑓2
𝐾𝑒𝑓𝑓1 ∙ 𝐾𝑒𝑓𝑓2



CNs → 2/3 of all NCNR Research
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Project Inception

 2000+ users annually, from industry to academia

 Finite reactor life - built in the 1960’s!

 Politics - phasing out of highly-enriched fuels

 One of the greatest collections of instruments for CN 

experiments in the world

Task:

❑ Design a base conceptual model

❑ Optimize for CN production
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NBSR: Cut-away View
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 Vertical flux trap

 Highly enriched uranium fuel

 ~1.2m in diameter

 Thermal flux peaks in center

 Fast flux is high near CNS



Split-core Design (NBSR-2)
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 Horizontal flux trap

 Low enriched uranium fuel

 <0.5m across both cores

 More efficient thermal flux 

trapping

 Reduction of fast flux at CNS 

tubes

 Approximately doubles capacity 

for CN facilities



Proposition: Hexagonal Fuel Elements
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XY-plane, Z= 0.0cm XY-plane, Z= 20cm

CESR Design – Inside the Reflector Barrel
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Z = 33.64cm

Z =-33.64cm

SU   ρex = 8.27% Δk/k

EOC ρex = 1.58% Δk/k

Control Rod Thickness Selection

1mm-thick rods:
32.1% Δk/k total worth at SU
35.0% Δk/k total worth at EOC

Above NRC standards
for NBSR
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Control rods 
are in “fully 
withdrawn” 
position

SU   SDM = 19.63% Δk/k

EOC SDM = 25.04% Δk/k
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Eight Independent
Control Rods
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Independent Rod Worth
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Thermal flux (Old core)

Fast flux (Old core)

Thermal flux (New core)

Fast flux (New core)

Flux Trap Comparison
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Thermal Flux (sq.-lattice)

Fast Flux (sq.-lattice)

Thermal Flux (hex-lattice)

Fast Flux (hex-lattice)
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Thermal Neutron Flux Distribution
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All Hail CESR
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 -5.5% fuel, and low-enriched $

 -13.1% FE size; compact but complex $

 -13.5% aluminum cladding mass $

 +0.23% neutron multiplication (Keff) $

 Room for control rods!



Future Work
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 CNS thermal/fast current ratio optimization

 Multi-physics modeling analysis

◦ Thermal hydraulic feedback

◦ Material degradation and life-extension studies

 Safety Analysis and Accident Scenarios
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