
0 10 20 30 40 50 60 70 80
Mass-to-Charge-State Ratio (Da)

1E1

1E2

1E3

1E4

C
o

u
n

ts

R
2

0
_0

7
0

9
4

N1+ Ga2+
Ga1+

N2
1+

(GaN)2+

N3
1+N2

2+

Composition:
49% Ga, 51% N

1E1

1E2

1E3

1E4

C
o

u
n

ts

0 10 20 30 40 50 60 70
Mass-to-Charge-State Ratio (Da)

R
4

4
_0

1
2

5
9

N1+
Ga2+

Ga1+
N2

1+

(GaN)2+

N3
1+

(GaN3)2+

80

Atom Probe Tomography using Extreme-Ultraviolet Light
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Atom Probe Tomography Extreme-Ultraviolet Light
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Thermally-Assisted Field Ion Evaporation 

Laser-Assisted Atom Probe Tomography (LAPT) is time-of-flight mass spectrometry coupled with 
position-sensitive detection on the scale of individual atoms
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Strengths:
• Isotopic identification
• Compositional analysis
• sub-nm resolution
• 3D chemical mapping 

Limitations:
• Ion emission persists after laser pulse           “thermal tails”
• Emission of molecular ions and neutral species
• Laser-pulse-energy-dependent composition bias

40 eV 3.5 eV

Above the work function and 
ionization potential of any material.

What is High-Harmonic Generation (HHG)?
HHG is a nonlinear optical process where a gas target is illuminated by an 
intense laser pulse. The gas will emit the high harmonics of the driving laser.
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Kr, Xe 10 – 30 120 – 40

Ar 20 – 50 60 - 25

Ne 40 – 80 30 – 15

He > 80 < 15

Extreme-Ultraviolet assisted Atom Probe Tomography at NIST Boulder

Commercial EUV source interfaced to a commercial atom probe. The HHG capillary is at 
~ 40 Torr and the analysis chamber in the APT is at ~ 2x10-11 Torr. Vacuum beamline 
includes focusing and steering optics, filters, and diagnostics.

EUV Near-UV

Laser pulse width 10 fs 10 ps

Focused spot size 50 µm 2 µm

Photon energy 42 eV 3.5 eV

Laser pulse 
repetition rate

10 kHz 250 kHz 500 kHz

Laser pulse energy 0.5 pJ 50 fJ 150 pJ

Photons/pulse 7.5 x 104 8.9 x 104 2.7 x 108

Fluence (J/cm2)
per pulse

5.1 x 10-8 3.2 x 10-6 9.5 x 10-3

EUV vs conventional near-UV Atom Probe Tomography

HHG spectrum (40-Torr Argon) and multilayer 
mirror (pair) reflectivity curve.

EUV-APT Results
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Composition:
33% Si, 67% O
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SiO2 EUV mass spectra (0.5 pJ, 10 kHz)

SiO2 NUV mass spectra (150 pJ, 500 kHz)

Ga3+

Composition:
68% Ga, 32% N

GaN EUV mass spectra (0.5 pJ, 10 kHz)

GaN NUV mass spectra (50 fJ, 250 kHz)

Decreased peak widths & tails

FWHM (Si2+) ~ 40 mDa
FWHM (O1+) ~ 40 mDa

FWHM (Si2+) ~ 60 mDa
FWHM (O1+) ~ 70 mDa

FWHM (Si2+) ~ 110 mDa
FWHM (O1+) ~ 130 mDa

SiO2

Mass-to-charge-state-ratio (Da)

N
o

rm
al

iz
ed

 c
o

u
n

ts

Si2+

O1+

EUV 10 kHz

NUV 25 kHz

NUV 500 kHz

Outlook

Summary
• Constructed the first reported EUV atom probe tomograph by combining a 

commercial pulsed EUV source with a commercial local electrode atom 
probe.

• Demonstrated field ion evaporation in SiO2, GaN, and Mg:GaN.
• EUV-APT spectra shows a reduced formation of molecular ions, decreased 

peak widths, and reduced “thermal tails”.
• Bulk stoichiometry has been recovered, within uncertainty, in all samples.

• Improvements in vacuum beamline to reduce EUV losses and optimize 
focusing conditions resulting in higher photon flux at the sample position.

• Acquisition of new laser system with higher repetition rate.
• Incorporation of scanning electron microscopy capabilities into the UHV 

chamber for in situ specimen shape imaging.
• Perform EUV-APT experiments on material systems with poor near-UV 

absorption or that are difficult to run in conventional APT.
• Exploration of different EUV energies in the regime of 10 – 25 eV to better 

understand the capabilities of EUV light.
• Study the possibility of using the EUV light for imaging the specimen through 

ptychography techniques.
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EUV-APT of Mg:GaN test structure

• Measured Mg concentration of ~ 1.03 x 1020 cm-3 

• Concentration values consistent with SIMS and NUV-APT measurements
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Absorption cross sections (material dependent) in the EUV range are generally several orders of 
magnitude larger than in the NUV range.
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