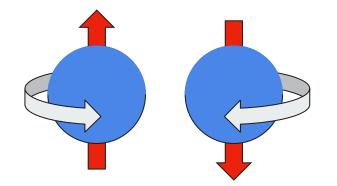
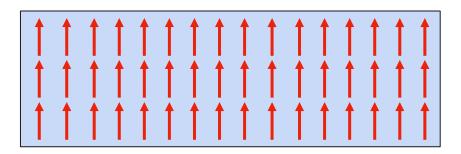
Simulating Domain Walls in Weyl Semimetals to Study the Effects of Weyl Fermions on Magnetic Behavior

Patrick Chen

Lab: NIST Center for Neutron Research(NCNR)

Mentors: Jonathan Gaudet, Michael Donahue(ITL)

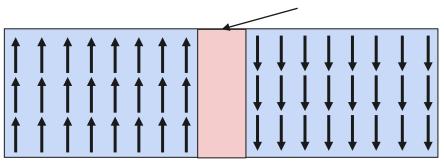

Goal

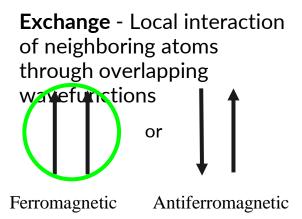

Accurately model the magnetic behavior in Weyl semimetals to explore novel behaviors caused by the influence of Weyl electrons.

Background Information

Spin and Magnetism

- Spin is an inherent property of elementary particles
 - Can be thought of as a "tiny magnet" for the purposes of this presentation
- Large regions of aligned spin are called ferromagnetic domains and result in a net magnetization

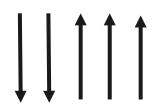




Domain Walls and Magnetic Interactions

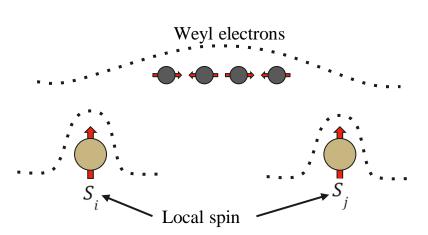
Domain Wall

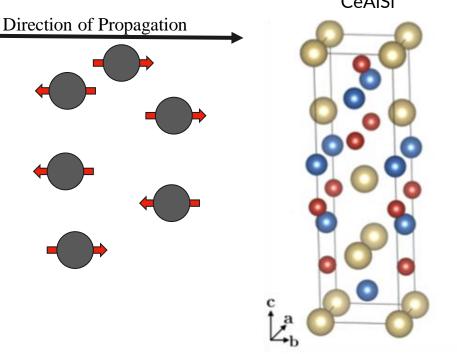
 A single crystal can have multiple domains of differing alignments.
 O Transition region is called a domain wall



Anisotropy - Preferred axis of alignment

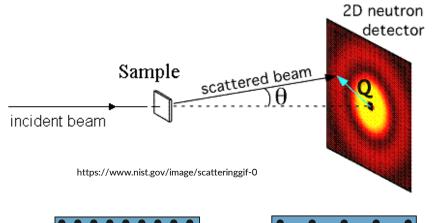
Preferred axis

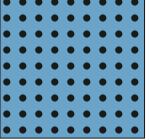

Dipole/Demagnetization -Long range effect due to the net magnetization

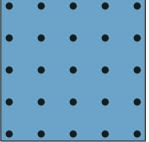


What is special about Weyl semimetals?

CeAlSi

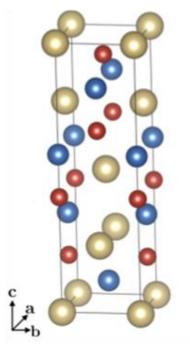

- Weyl electrons
 - o "Massless" highly mobile
 - Chiral "handedness"
 - Mediates the Dzyaloshinskii-Moriya(DM) interaction that tends to misalign neighboring spins

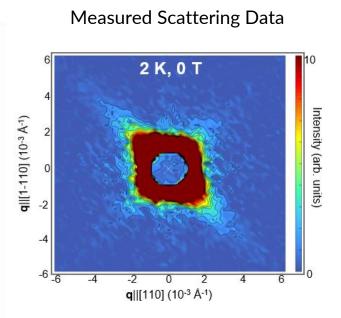


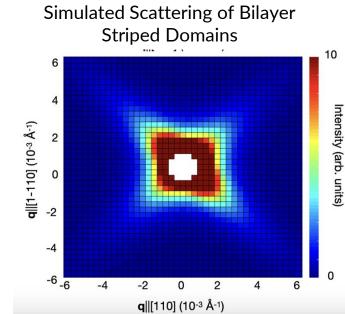


Neutron Scattering

- Why is it useful?
 - Measures magnetic and structural properties
 - Highly penetrating, so it is able to measure **bulk** properties
 - Sensitive on nanometer and micron length scales(for Small Angle Neutron Scattering(SANS))

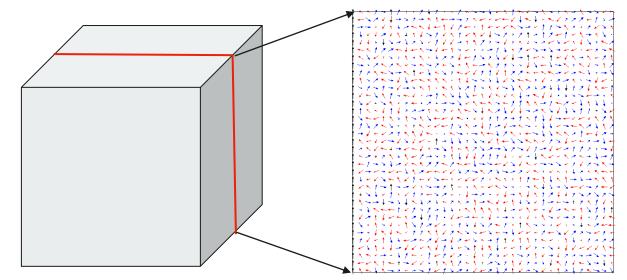



High-q


Low-q

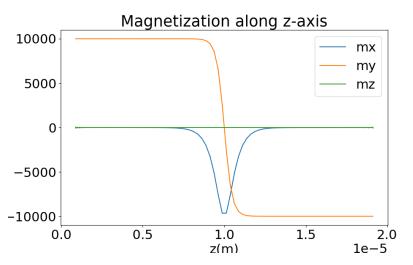
Comparison to Neutron Scattering Data

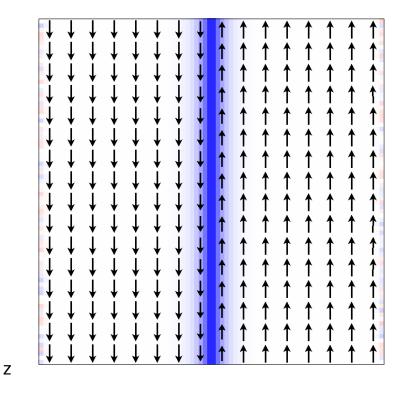
CeAlSi



Creating the Model

OOMMF Toolkit and Procedures


- Initiate from a random configuration of spins
- "Solves" the spin configuration by minimizing energy
- Should be thought of as a small part of a larger crystal



Verification of the OOMMF Simulation

y

- Includes only the exchange, anisotropy and dipole interactions which are well understood.
 - Expect domain wall to process along the in/out-of-plane direction.

Modeling the DM Interaction

• Expectations

y

- More domains, leading to stripes
- Chiral domain wall transitions

Red - Out of Plane(+x) Blue - Into Plane(-x)

Without DM	↑ ↑ ↑ ↑ ↑	† † † † † † † † † † † † † † † † † † † † † † † †		† † † † †	† † † † †	↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1 ↑ 1		† † † † †		† † † † † † † † † † † † † † † † † † † † † † † †	† † † †	† † † † †	<pre> † † † † † † † † † † † † †</pre>	↑ ↑ ↑ ↑			† † † † †	† † † † †	† 1 † 1 † 1 † 1 † 1 † 1 † 1 † 1 † 1 † 1 † 1	† † † †	† † † † †	† † † † † † † † † † † † † † † † † † † † † † † † † †	† † † † †	† † † † †	† † † † †	↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	+ + + + + + + +			$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	$\begin{array}{c} \downarrow \\ \downarrow $		$\begin{array}{c} \downarrow \\ \downarrow $
With DM	† † † † † † †	<pre> † * * * * * * * * * * * * * * * * * *</pre>	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	+++++++++++++++++++++++++++++++++++++++	$\downarrow \downarrow $	↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑	† † † † † † †	† † † † † † † † † † † † † † † † † †	† † † † † † † † † † † † † † † † † † † †	 $\begin{array}{c} \downarrow \\ \downarrow $	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	$\downarrow \downarrow \downarrow$	• · · · · · · · · · · · · · · · · · · ·		† † † † † †	T T T T T T			+ + + + + + +	* † * † * † * † * † * †	† † † † †	† † † † † † † †	† † † † † † †	• ↓ • ↓ • ↓	+ $+$ $+$ $+$ $+$ $+$	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓ 1 ↓	† † † † † † †	† † † † † † † †	† † † † † † † †	<pre></pre>	+++++++++++++++++++++++++++++++++++++++

Conclusion and Future Direction

Results

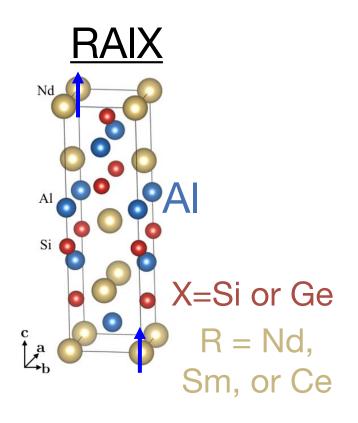
- Model successfully incorporates the DM interaction
- Observed chiral stripes in simulated Weyl semimetal
 - Connects the theory for
 DM to observed scattering
 data

Future Direction

- Tune parameters to correlate more closely with real world measurements
- Generate scattering profiles of these simulations

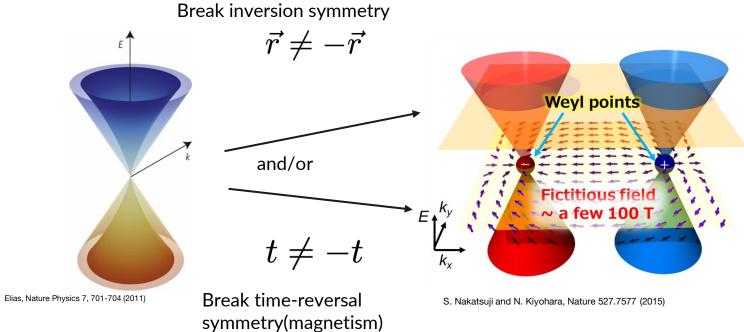
Acknowledgments

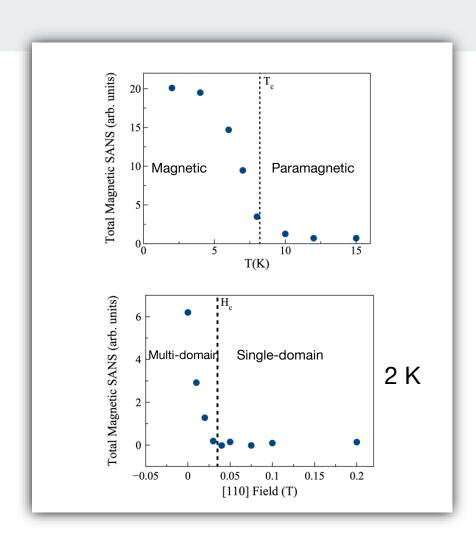
- Jonathan Gaudet
- Michael Donahue
- Summer Undergraduate Research Fellowship(SURF)
 - o Cara O'Malley
 - o Julie Borchers
 - o Susana Teixeira
 - Leland Harriger



The Center for High Resolution Neutron Scattering (CHRNS) is a national user facility jointly funded by the NIST Center for Neutron Research (NCNR) and the National Science Foundation (NSF) under Agreement No. DMR-2010792

Questions?




Exchange DM

$$E = J[S_i \bullet S_j] \qquad E = D \bullet S_i \times S_j$$

$$|A \times B| = |A||B|sin(\theta)$$

$$|A \bullet B| = |A||B|cos(\theta)$$

