

Wednesday 2017/12/06 15:00 Building 101, Portrait Room

DC Voltage Breakdown of Relied Upon Insulator Materials: Test Method Development and Results From Artificially Weathered Specimens

David C. Miller¹, Bernt Åke-Sultan², Axel Borne³, Joshua J. Eafanti¹, Rene Eugen⁴, Bradley L. Givot⁵, Jürgen Jung⁶, Trevor Lockman¹, Steven W. MacMaster⁷, Byron K. McDanold¹, Ulf H. Nilsson², Nancy H. Phillips⁷, Ian A. Tappan¹, and Nick S. Bosco¹

¹National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, CO 80401, USA
²Borealis AB, 44486 Stenungsund, Sweden
³DuPont Photovoltaic and Advanced Materials, Meyrin, Switzerland
⁴Isovoltaic AG, Isovoltaicstraße 1, Lebring, Austria, 8403
⁵The 3M Company, 3M Center, 201-BW-03, St. Paul MN 55144 USA
⁶Agfa-Gevaert NV, Septestraat 27, Mortsel, Belgium 2640
⁷DuPont Photovoltaic Solutions, Wilmington, DE, USA

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Background

-PV backsheets.

-Related & developing PV standards.

-Hydro- and UV- degradation of PET.

Interlaboratory precision study

-Goal: verify repeatability & reproducibility

-What critical factors in the experiment were affecting precision?

Artificial weathering screen test

- -35 out of 55 materials.
- -Focus on 7 BS's of interest.

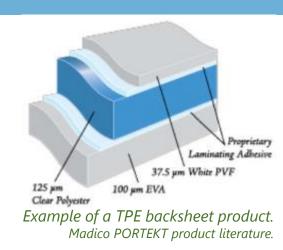
Summary

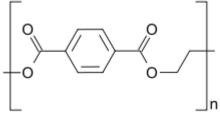
-Per study

•PV backsheets typically consist of laminated polymer sheets.

•Traditional (benchmark) BS: "TPE".

۰.	1	- /	-				
		EXAMPLE					
	MATERIAL	THICKNESS	LOCATION	PURPOSE			
		{µm}					
	TVF	17	air	UV protection			
	PET	250	core	electrical insulation			
EVA		125	cell	adhesion to encapsulation			
1	<u> </u>	rotechläg	ar at al	COLMANT 2016			


Geretschläger et. al., SOLMAT, 2016.


•Recent BS polymer materials:

poly(ethylene terephthalate) (PET, UV-stabilized) high density PET (PPE, UV-stabilized) polyvinylidene difluoride (PVDF) tetrafluoroethylene (TFE) and vinyl (PTFE) tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride laminate (THV) polyamide (PA)

•PET:

Semicrystalline, oreinted, condensation-cured polymer. (machine- and traverse- directional anisotropy.) $T_g \sim 75$ °C; $T_m \sim 260$ °C.

Molecular structure of polymer repeat unit for PET. https://en.wikipedia.org/wiki/Polyethylene_terephthalate

Standards Related Motivation for Breakdown Voltage Test

IEC 61730-1 ed. 2

- Electrical insulation is a key safety requirements for RUI's (backsheets & edge seals).
- IEC 61730-1 ed. 2 (2016) now specifies the strength of insulating materials: ≥2 kV + 4·V_{sys.} Example: 8 kV V_{BD} required for a Class II 1.5 kV system.

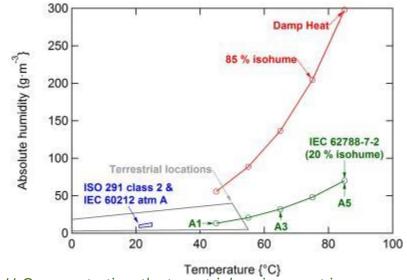
Breakdown Voltage Test (IEC TS 62788-2, Annex C)

- A DC breakdown voltage (V_{BD}) test is part of IEC TS 62788-2 (frontsheets & backsheets).
- V_{BD} test replaces the unpopular AC "Partial Discharge" test.
- Interlaboratory study was conducted to develop and quantify the precision of the V_{BD} test.
 -Miller et. al., Proc IEEE PVSC, 2017.

IEC 61730 ed. 2 Amendment 1

- Amendment to 61730-1 is presently considering adding a UV weathering requirement for Relied Upon Insulators.
- The Amendment project team is considering the EtB characteristic, with a pass/fail criteria.
 - The pass/fail criteria was recently debated.
 - Example: Δ of 50% from RTI/RTE. Starting point, but no have a strong technical basis.
 - Mechanical tensile test to identify cracking, not electrical insulation.
 - The weatherability of V_{BD} for backsheets is unexplored.
 - The V_{BD} of veteran materials is unexplored.

Hydrolysis of PET


•Mechanism: de-esterfication (random scission) of main chain.

- •Arrhenius model valid for at least 65°C<T<95°C (module T_{max}).
- •Second order dependence on %RH.

• $ln[c_1] = 39.3; E_a = 129 \text{ kJ} \cdot \text{mol}^{-1}; n=2.$

$$\frac{dP}{dt} = c_1 \exp\left[\frac{-E_a}{RT}\right] (RH)^n$$

•H₂O concentration in Damp Heat (85°C/85 %RH) greatly exceeds terrestrial environment & recent artificial weathering method(s).
•Rate analysis: significantly less hydrolysis is expected in artificial weathering (IEC TS 62788-7-2) relative to Damp Heat.

 H_2O concentration: the terrestrial environment is compared to some present IEC PV artificial accelerated aging tests.

		RELATIVE	IEC TEST STANDARD AND			
Т	%RH	RATE OF				
{°C}	{%}	HYDROLYSIS				
		{% }	(CONDITION)			
45	20	0.02	62788-7-2 (A1)			
55	20	0.1	62788-7-2 (A2)			
65	20	0.4	62788-7-2 (A3)			
75	20	1.6	62788-7-2 (A4)			
85	20	5.5	62788-7-2 (A5)			
85	85	100	61730-2 (MST 53)			
85		100	61215-2 (MQT 13)			
37	66	0.08	Bangkok, hot day			

Relative rate analysis for Arrhenius model for some present IEC PV artificial accelerated aging tests.

NATIONAL RENEWABLE ENERGY LABORATORY

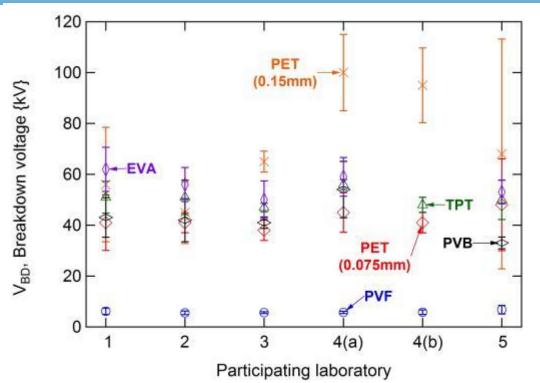
UV Degradation of PET

- •Mechanism: de-esterfication (random scission) of main chain.
- •O₂ inhibits cross-linking, effects products species via hydroperoxide chemistry.
- With O₂: fluorescence (λ_x =340 nm, λ_m =460 nm).
- With O₂: "masked" Δ m (O₂ consumed with volatile & non volatile products). With O₂: majority of damage for λ <315 nm.
- No O_2 (well behind cell or in thick sample): greatest discoloration (Δ YI).
- UV, always: formation carboxyl "acid" (end groups).
- Hydrolysis: chemicrystallization. $\Delta \rho \Rightarrow \Delta \epsilon$. Increased optical haze.
- PET degradation (UV & hydrolysis):
- Manifest as mechanical damage (embrittlement: cracks; spalling; voids).
- •Catalyzed by:
 - metal ions (from residual catalyst or soil) formulation additives or residuals from manufacture acid/base chemistry (hydrolysis) self-catalyzed (carboxyl end groups, e.g., for hydrolysis)

About the Interlaboratory V_{BD} Precision Study

Backsheet material specimens (5 cm x 5 cm x thickness size).
-polyethylene terephthalate (PET, 2 thicknesses),
-polyvinyl fluoride (PVF),
-PVF/PET/PVF backsheet product ("TPT").

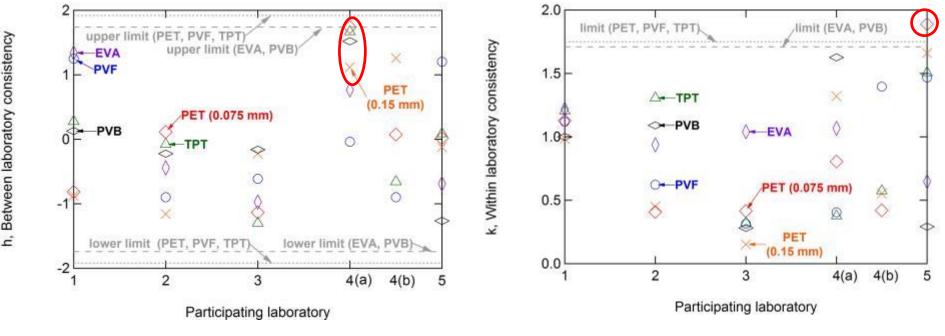
Encapsulant material specimens (unlaminated → no microvoids; no surface texture): -poly(ethylene-co-vinyl acetate) (EVA), unformulated (no residuals or additives) -polyvinyl butyral (PVB)


Test is **performed** in a dielectric medium (e.g., transformer oil) to prevent flashover and limit corona discharge.

-IEC 60296 is more stringent than ASTM D3487.

-Different medium products (IEC or ASTM certified) are available in different regions.

Analysis/result: median of the five replicate specimens; in cases where any of the results varied by more than 15% of the average, five additional replicates were tested. The dielectric strength was then determined from the median of the 10 replicates.


Results of the IEC 62788-2 Interlaboratory Experiment

Results of V_{BD} R-R: The median VBD is given ± 2 S.D for each participant.

- r~10 kV; R~15 kV.
- V_{BD} PET (0.15 mm) >100 kV (lab 4); some results > 100 kV (lab 5); 56 kV (avg, all other labs).
- NREL wanted to confirm the validity of test results prior to subsequent experiments
- Possible factors:
- specimen thickness, multiple defect populations, # replicate specimens, sample conditioning, dielectric medium (oil), electrode roughness, unequal electrodes.
- Additional factors (not explored this presentation): maximum current limit, rate of voltage rise, test polarity, ambient test temperature.

Results of the Interlaboratory Experiment (Continued)

h & k analysis of V_{BD} R-R

- Lab 0 was censored because it approached/exceeded the lower h limit for all materials.
- Low V_{BD} for lab 0 attributed to fluorinert fluid as dielectric medium ($\varepsilon_{dielectric} < \varepsilon_{specimen}$).
- Results lab 4 at boundary for *between-lab* variability for several materials.
- Contributing factors: multiple defect populations; small sample size.
- Results lab 5 exceeded within lab variability for 1 material.
- Multiple defect populations observed for PET.

Conclusions From the Interlaboratory Study

- Intralaboratory repeatability (r) was on the order of 10 kV (or 25%).
- Interlaboratory reproducibility (R) was on the order of 15 kV (or 30%).
- Precision should improve for the final test method because at least 10 replicates will be required, rather the five replicates as examined in the round-robin.
- Factors including:
 - -number of replicate specimens (affecting on the order of \pm 3%)
 - -**specimen conditioning** (~25 kV out of 55 kV for TPT)
 - -dielectric medium (~5 kV out of 55 kV for TPT)
 - were found to readily effect test results... effect on *h*.
- Multiple defect populations were only found to be present in PET materials. 100 vs. 60 kV?
- Specimen thickness and electrode surface roughness did not significantly affect this study.
- Some refinement of the published 62788-2 test method resulted from this study, including:
 - -10 replicate specimens shall be used
 - -only transformer oil or mineral oil is allowed as a dielectric medium;
 - -use of oil qualified to ASTM D3487 may be used in addition to IEC 60296
 - -use of unequal diameter electrodes is not allowed.

-Miller et. al., Proc IEEE PVSC, 2017. NATIONAL RENEWABLE ENERGY LABORATORY

About the Artificial Weathering Screen Test

- Backsheet specimens (5 cm x 5 cm x thickness size).
- -35 white, black, or transparent products.
- -Products with layers including: AI, EVA, PA, PET, PPE, PVDF, PVF, PTFE, thin film coating.
- -Composition of outer layers verified using FTIR.
 - -≥10 replicates each of:
 - Unaged and artificially weathered (IEC TS 62788-7-2, A3 for 2000 hours) specimens.
 - -Specimens conditioning per ISO 527 using a saturated $Mg(NO_3)_2$ solution.
- **Test performed** per IEC TS 62788-2 Annex C. -Mobil Univolt N61B transformer oil (ASTM D3487).
- Analysis/results: Weibull analysis of 10 replicates per IEC 62539.
- -90% confidence intervals for α and β
 - Asses variability of each specimen set.
 - Asses degradation from weathering.
- -Good guidance on identification & treatment of outliers.

Failure analysis: focus on 7 representative results. Correlate with other characteristics. TPE-1, TPE-3, TAPE, PET-1, PA, TPT-1, TPT-3

Mechanical (mandrel bend) test.

•Does cracking follow from just weathering or weathering + mechanical stress?

- •1.5 cm x 8 cm sheet specimens.
- •Weathered in 250 h increments up to 4000 h cumulative.
- •6.35 mm \varnothing stainless steel rod \Rightarrow 5% mechanical strain for 300 μ m thick BS.

Kempe et. al., Proc. IEEE PVSC, 2017.

•FTIR.

-Look for overt change in chemistry.

-ZnSe ATR crystal.

-Data normalized to maximum intensity from 4000 cm⁻¹ to 600 cm⁻¹.

•Optical microscopy.

-Look for cracks, roughness, delamination. -Air- and sun-surfaces, sides, cross-sections.

General Results Screen Test Study

	UNAGED		WEATHE	WEATHERED		CHANGE (FINAL - INITIAL)			
Material (Shorthand)	α, Characteristic V _{BD} {kV}	β, Weibull Modulus {unitless}	α, Characteristic V _{BD} {kV}	β, Weibull Modulus {unitless}	α, Characteristic V _{BD} {kV}	α , Characteristic V _{BD} {%}	β, Weibull Modulus {unitless}		
TPE-1	67- 68 -69	24- 36 -60	14- 17 -20	2- 3 -5	-52	-76	-32		
TPE-3	83- 86 -88	12- 18 -31	39- 39 -40	21- 31 -51	-46	-54	12		
FAE-2	95- 97 -99	19- 29 -48	42- 53 -65	2- 3 -4	-44	-45	-26		
TAPE	63- 64 -84	48- 72 -121	37- 40 -44	4- 7 -11	-24	-37	-65		
PET-1	87- 96 -105	4- 6 -10	62- 67 -71	6- 8 -14	-29	-30	2		
PET-3	79- 84 -88	7- 11 -18	54- 59 -64	4- 7 -11	-25	-30	-4		
			60- 105 -170	1- 2 -4					
PET-2	95- 97 -99	16- 24 -41	74- 77 -79	13- 22 -47	-20	-21	-2		
PA	73- 78 -82	6- 9 -16	64- 68 -71	7- 11 -18	-10	-13	1		
FPE-4	80- 84 -88	8- 13 -21	74- 75 -76	40- 59 -99	-9	-11	47		
FPE-4	80- 84 -88	8- 13 -21	74- 75 -76	40- 59 -99	-9	-11	47		
PET-4	76- 79 -83	8- 12 -20	73- 74 -76	19- 20 -48	-5	-6	17		
PE	66- 67 -68	19- 28 -48	64- 65 -66	17- 25 -43	-2	-3	-3		
TPT-3	50- 51 -52	19- 29 -49	49- 50 -51	19- 28 -48	-1	-3	-1		
FAE-1	62- 66 -71	6- 10 -21	63- 65 -67	16- 28 -67	-1	-2	18		
PVDF-4	64- 67 -70	9- 13 -22	64- 67 -71	8- 11 -19	0	0	-2		
FPF-13	64- 64 -65	42- 62 -105	34- 50 -85	17- 25 -43	0	0	-12		
PAE	47- 48 -50	12- 17 -29	51- 54 -57	8- 11 -19	6	12	-6		
PPP-2	>100	N/A	73- 76 -78	12- 18 -31	?	?	?		
TPT-1	>100	N/A	>100	N/A					

*V*_{BD} results for materials tested to date. The Weibull scale and shape parameters are given for **90% confidence interval**.

•24 materials shown here. 11 remain to be tested.

•V_{BD} reduced >50% after 2000h IEC TS 62788-7-2 A3 (red backsheets).

•V_{BD} reduced >25% (orange backsheets).

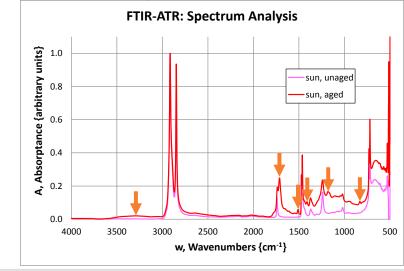
NATIONAL RENEWABLE ENERGY LABORATORY

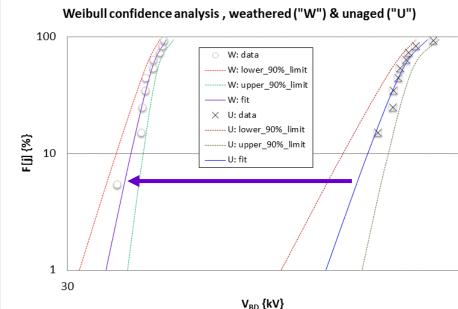
TPE-1 & TPE-3: Greatly Reduced Voltage With Cracking of the E-Layer

• ΔV_{BD} both materials exceeds 50%. (Unaged & weathered BS's statistically distinct).

•Major (>10%) new peaks as well as peak broadening observed in FTIR for sun side (EVA).

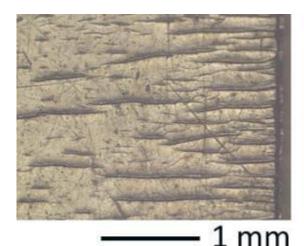
Cracking of sun side observed from weathering.
Cracking may largely follow from the -film only-specimen geometry.



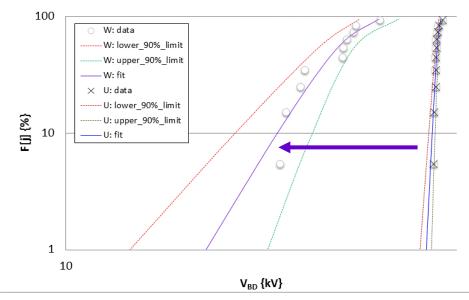

TPE-1: Failure was observed to interact with cracks on the sun side. Similar interaction may not have occurred for TPE-3.

TPE-3: Overlay of test results; the 90% confidence intervals are shown for the unaged (U) and weathered (W) specimens.

TPE-3: Overlay of FTIR spectrum for sun side (EVA). Notable changes are identified with an arrow.



14


TAPE: Different Electrical (V_{BD}) and Mechanical (Bend) Performance

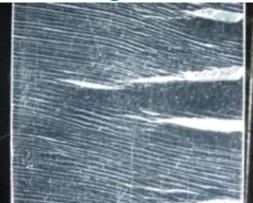
• $\Delta V_{BD} \simeq 37\%$, with significant variability for weathered specimens.

- •Major new peaks as well as peak broadening observed in FTIR for sun side (EVA). Similar to TPE's.
- •Macroscopic cracking of sun side observed, with microscopic cracking of air side... both *only after bend test*.

TAPE: Cracking observed for the sun side (EVA) is shown in a microscopy image of the surface. NATIONAL RENEWABLE ENERGY LABORATORY

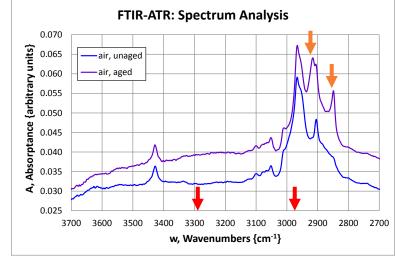
TAPE: Overlay of test results; the 90% confidence intervals are shown for the unaged (U) and weathered (W) specimens.

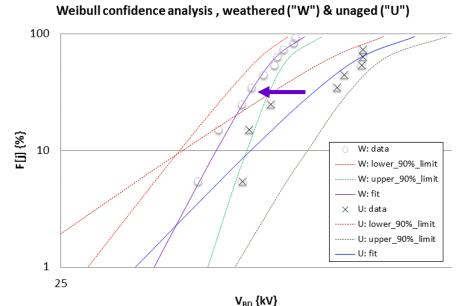
TAPE: Cracking observed for the air side (PVF) is shown in a microscopy image of the surface.


Weibull confidence analysis , weathered ("W") & unaged ("U")

PET-1: Researched Core Material

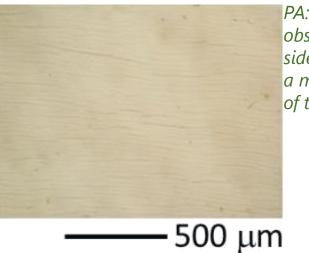
• $\Delta V_{BD} \simeq 30\%$ for weathered specimens.

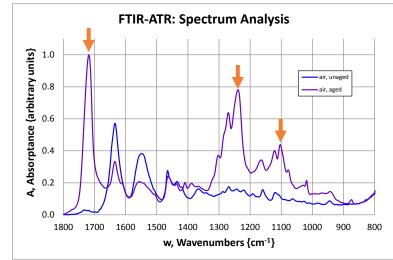

PET-1: Overlay of FTIR spectrum for sun side (PET). Key features are identified with an arrow.

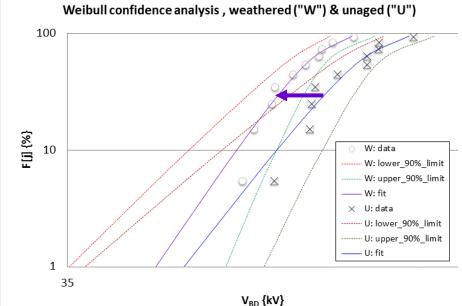

- •Minor new peaks in FTIR for monolithic material, air & sun side.
- •Ratio at 3290 cm⁻¹/2970 cm⁻¹ (-OH/C-H) may be used to assess carboxyl end group formation.
- Cracking observed after weathering.
 Modest discoloration (YI) from weathering; enhanced by dielectric oil.

PET-1: Cracking is shown in a microscopy image of a bend test specimen.

5 mm PET-1: Overlay of test results; the 90% confidence intervals are shown for the unaged (U) and weathered (W) specimens.

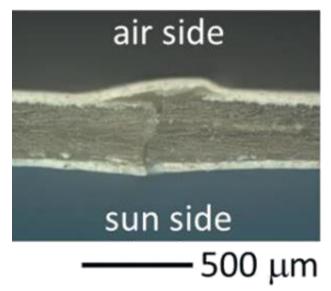


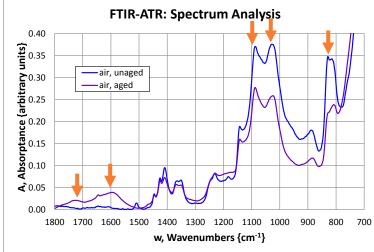

• $\Delta V_{BD} \simeq 13\%$ for weathered specimens.

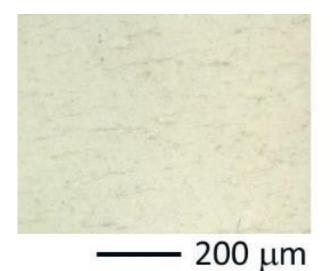

Major and minor changes observed, both intensity changes and new peaks.
Similar changes on air (PA) and sun (PA) surfaces.

•Micro-scale cracking of air surface observed only after bend test.

PA: Cracking observed for the air side (PA) is shown in a microscopy image of the surface. PA: Overlay of FTIR spectrum for air side (PA). Some key features are identified with an arrow.




PA: Overlay of test results; the 90% confidence intervals are shown for the unaged (U) and weathered (W) specimens.


TPT-1: Different Electrical (V_{BD}) and Mechanical (Bend) Performance

- • ΔV_{BD} unknown (all values > 100 kV for unaged & weathered specimens).
- •Changes in peak intensity observed in FTIR for air side (PVF).
- •Cracking of air side observed only after bend test. Macro-damage: transferred to PVF from PET core. Micro-scale cracking: air side.

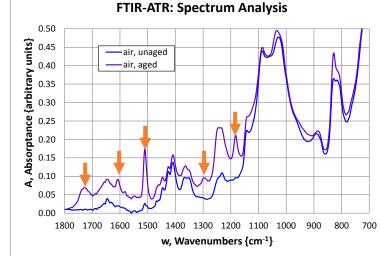
TPT-1: Overlay of FTIR spectrum for sun side (EVA). Notable changes are identified with an arrow.

TPT-1: Cracking observed for the air side (PVF) is shown in aTPT-1: Cracking observed for the air side (PVF) isside-microscopy image of the surface and edge.shown in a microscopy image of the surface.

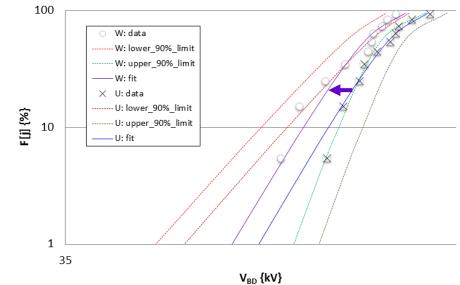
NATIONAL RENEWABLE ENERGY LABORATORY

TPT-3: PV Industry Benchmark Material

- •Minor effect of weathering is suggested. (not outside 90% confidence bounds).
- •Changes in peak intensity observed in FTIR for air side (PVF).
- •Cracking of air side (PVF) observed in microscope, only after bend test.



TPT-3: Cracking observed for the air side (PVF) is shown in a microscopy image of the surface.


200 μm TPT-3: Overlay of test results; the 90% confidence intervals are shown for the unaged (U) and weathered (W) specimens.

NATIONAL RENEWABLE ENERGY LABORATORY

TPT-3: Overlay of FTIR spectrum for sun side (EVA). Notable changes are identified with an arrow.

Weibull confidence analysis , weathered ("W") & unaged ("U")

•Large ΔV_{BD} sometimes observed. Specimens examined all exceed V_{BD} of 8 kV for a RUI. -May be possible to reduce BS thickness (and module cost).

•Cracking did not always correspond to ΔV_{BD} .

-Use test sequence: weathering \rightarrow mechanical \rightarrow electrical?

•Improvement of diagnosis and acceptance "limits" for cracking are warranted.

•Measureable decrease in V_{BD} observed for some materials warrants additional study:

-Degradation & failure mechanisms.

-Specimen geometry used for weathering.

- -Degradation as function of cumulative radiant exposure.
- $-V_{BD}$ as a function of ambient temperature.

-Artificial-weathering and -abrasion sequence.

			•			,		,			
	INDEX	MATERIAL (Shorthand)	Δα, Weibull scale parameter V _{BD} {%}	NOTE	EXTERNAL CRACKING (WEATHERING & MANDREL TEST). SCALE: SURFACE (MATERIAL)	EXTERNAL CRACKING (WEATHERING ONLY)	OVERT V _{BD} INTERACTION AT CRACKS?	MAJOR CHANGE (>10%)	MINOR CHANGE (<10%)		MINOR CHANGE (<10%)
	1	TPE-1	-76	large V _{BD} drop	macro: sun side (EVA)	Y	Y	Ν	Y	Y	Y
	3	TPE-3	-54	large V _{BD} drop	macro: sun side (EVA)	Y	POSSIBLE	Ν	Y	Y	Y
	6	TAPE	-37	large V _{BD} drop	macro: sun side (EVA) micro: air side (PVF)	N	N/A	Y	Y	Y	Y
	22	PET-1	-30	large V _{BD} drop	macro: bulk (monolithic PET)	Y	Y	N	Y	N	Y
	56	PA	-13	known bad material	micro: air side (PA)	N	N/A	TBD	TBD	TBD	TBD
Summary of the test results for the 7	16	TPT-1	?	V _{BD} > 100 kV cracked in mandrel test	macro: core→air side (PVF) micro: air side (PVF)	N	N/A	Y	Y	N	Y
presentative materials.	40	TPT-3	-3	literature benchmark	micro: air side (PVF)	Ν	N/A	Y	Y	Ν	Y

NATIONAL RENEWABLE ENERGY LABORATORY

representative m

FITR, AIR SURFACE FTIR, SUN SURFACE

Acknowledgements

•Thanks to Dr. Chris Antunes, Dr. Mike Kempe, John Baker, Nathan Mitchell at NREL.

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

Your questions and feedback are much appreciated! Please help me to cover the important details & perspectives.

NREL STM campus, Dennis Schroeder