Magnetic Ordering in Ce_{1-x}Yb_xRhIn₅ Heavy Fermions as a Function of Doping

NIST August 5, 2015

JOHN CALIFF COLLINI¹

MENTOR: DR. STEVE DISSELER²

NCNR SURF GROUP AT NIST

¹ROCHESTER INSTITUTE OF TECHNOLOGY

²NCNR CONDENSED MATTER SCIENCE GROUP

One Definition:

HOW DO MAGNETS WORK? Magnets They are aremade magnetic ofmetal, because which is the metal mined SUII from the contains ground. pieces of gravity inside it. GGGGGGGGGGGGGGGGGGGG

Ex: Iron and Cobalt

Ex: Common Metal-Oxides

Ex: Iron and Cobalt

Ex: Common Metal-Oxides

Kondo Interactions -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions

-Coupled moments dependent on distance -Enhances magnetic ordering

Combining Both

-Huge increase in effective mass. -Kondo and RRKY interactions co-exist -Possible unconventional

-Possible unconventional

superconductivity near QCP

Also, increasing *H*, P, doping, ect.

from UNLP

Kondo Effect -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions

-Coupled moments dependent on distance -Enhances magnetic ordering

Kondo Effect -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions

-Coupled moments dependent on distance -Enhances magnetic ordering

r

National Institute of Standards and Technology U.S. Department of Commerce

Kondo Effect -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions

-Coupled moments dependent on distance -Enhances magnetic ordering

Kondo Interactions -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions

-Coupled moments dependent on distance -Enhances magnetic ordering

Combining Both

-Huge increase in effective mass. -Kondo and RRKY interactions co-exist -Possible unconventional

-Possible unconventional

superconductivity near QCP

Also, increasing *H*, P, doping, ect.

from UNLP

 T_K

Pressure

RKKY

Fermi liquid

CeRhIn₅ goes superconducting under applied pressure

c ('x' dependent) Rh In2 ln1 Ce/Yb site a ('x' dependent)

Goal: Ce_{1-x}Yb_xRhIn₅ Magnetic Transitions Finding the transition (in terms of T and x) For change to commensurate structure CeRhIn₅ YbRhIn₅ *Increasing x* Metallic Paramagnet⁴ Turns antiferromagnetic Finding $\mathbf{k} = (\frac{1}{2}, \frac{1}{2}, 0.297)^3$ the transition T=3.8 K (in terms of T and x) (incommensurate structure) For magnetic ordering National Institute of

³Wei Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J.W. Lynn, and R.W Erwin. *Incommensurate magnetic structure of CeRhIn5.* Phys. B 62-22 ⁴Z. Bukowski, , K. Gofryk, D. Kaczorowski. *Magnetic and transport properties of YbRhIn5 and YbIrIn5 single crystals* . Solid State Communications 134-7.

Standards and Technology U.S. Department of Commerce

National Institute of Standards and Technology U.S. Department of Commerce

Goal: Ce_{1-x}Yb_xRhIn₅ Magnetic Transitions Finding the transition (in terms of T and x) For change to commensurate structure CeRhIn₅ YbRhIn₅ *Increasing x* Metallic Paramagnet⁴ Turns antiferromagnetic Finding $\mathbf{k} = (\frac{1}{2}, \frac{1}{2}, 0.297)^{3}$ the transition T=3.8 K (in terms of T and x) (incommensurate structure) For magnetic ordering

National Institute of Standards and Technology U.S. Department of Commerce

³Wei Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J.W. Lynn, and R.W Erwin. *Incommensurate magnetic structure of CeRhIn5.* Phys. B 62-22 ⁴Z. Bukowski, , K. Gofryk, D. Kaczorowski. *Magnetic and transport properties of YbRhIn5 and YbIrIn5 single crystals* . Solid State Communications 134-7.

Actual sample concentration were not matching with the concentrations used to make these samples.

Needed a way to measure concentrations.

Made powders and headed to UMD for SQUID measurements.

Prepared by Sooyoung Jang of the Brian Maple group from UC San Diego

SQUID Magnetometry for measuring μ_{eff} (superconducting quantum interference device)

SENSITIVE LOW TEMP MAGNETOMETER

SQUID AT U MARYLAND COLLEGE PARK

Standards and Technology U.S. Department of Commerce

* Hyperphysics SQUID Magnetometer

Sample reported as x='.5'

C= 0.967 +/- 0.004 [(emu K)/or] Curie Temp= -43.2 +/- 0.4 [K] μ_{eff} = 2.7814 +/- 0.0009 μ_{B} x= 0.090 +/- 0.001

$$\chi(T) = \frac{\mu_{bulk}(T)}{H*moles} = \frac{C}{T - \theta_m} - \chi_0$$

T - Temperature [K] *C* - Curie Number [(emu K)/or] θ_m - Curie Temp. [K] (+ Ferro, - Anti)

$$C_{molar} = \frac{N_a \mu_{eff}^2(x)}{3k_B}$$
$$\mu_{eff}^2(x) = x P_{Yb^{+3}}^2 + (1-x) P_{Ce^{+2}}^2$$
$$P_{Ce^{+3}} = 2.54 \ \mu_B$$
$$P_{Yb^{+3}} = 4.54 \ \mu_B$$

X-ray powder diffraction Ce₁Yb₀RhIn₅ (x<1%)

X-ray powder diffraction Ce_{.91}Yb_{.09}RhIn₅ (x=.09)

National Institute of Standards and Technology U.S. Department of Commerce

Why Neutrons? The power of neutron scattering

- Neutrons have spin and zero charge (nuclear and magnetic scattering).
- Large penetration depth (bulk probe).
- Cross-sections good for low Z elements (Nuclear interactions).
- (More easily) Controllable energies.
- Energy scale great for dynamic interactions (inelastic scattering).

BT4 Triple Axis Spectrometer

Measuring the Onset of Magnetic Ordering: x<1%

Measuring the Onset of Magnetic Ordering: x~50%

Measuring the Magnetic Structure: x~50%

U.S. Department of Commerce

$$Ce_{1-x}Yb_{x}Rhln_{5}$$

k=($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$) structure

$$\mu_{eff} = \begin{pmatrix} .345 \pm .017 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ .119 \pm .030 \\ 0 \end{pmatrix}$$

 $\mu_{eff} = .365 \pm .034 \,\mu_B$

 $\theta \cong 19 \text{ degrees}$

k=(½ ½ ½) structure [commensurate] Intermediate Yb concentration

Conclusion of Ce_{1-x}Yb_xRhIn₅

- We measured properties of Ce_{1-x}Yb_xRhIn₅ using a combination SQUID, XRD, and Neutron Scattering
- We found a limited solubility of Yb into CeRhIn5, which needs to be better understood to continue this study.
- Results:
 - 1. At low Yb concentrations, these compounds have a lower ordering temperature.
 - 2. At intermediate Yb concentrations, the magnetic structure changes from incommensurate to commensurate.
 - 3. A new magnetic structure was solved for these intermediate concentration.
- Future work :
 - 1. Apply pressure and magnetic field at low temperatures to induce new interesting phase transitions.
 - 2. Better measurements of the concentrations in these samples.
 - 3. Study why the magnetic structure changes with Yb concentration.
 - 4. Start to form a complete phase diagram from experiments to make better theories on how unconventional superconductivity works

A big thanks to:

- NSF
- Steve Disseler
- William Ratcliff
- Julie Borchers
- Joseph Lesniewski
- Arnold Rubinshtein (MML)
- Shanta Ranjan Saha (UMD)
- Brian Maple (UC San Diego)
- Sooyoung Jang (UC San Diego)

References and Citations

- Wei Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J.W. Lynn, and R.W Erwin. *Incommensurate magnetic structure of CeRhIn5*. **Phys. B 62-22**
- Z. Bukowski, , K. Gofryk, D. Kaczorowski. *Magnetic and transport properties of YbRhIn5 and YbIrIn5 single crystals*. **Solid State Communications 134-7**
- Tuson Park, F. Ronning, H. Q. Yuan, M. B. Salamon, R. Movshovich, J. L. Sarrao & J. D. Thompson. *Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5*. Nature 440
- P. Coleman. *Heavy Fermions: electrons at the edge of magnetism.* Rugters.
- Gen Shirane, Stephen M. Shapiro, John M. Tranquada. Neutron Scattering with a Triple-Axis Spectrometer. Cambridge.
- Neil W. Ashcroft, N. David Mermin. *Solid State Physics*. Brooks/Cole.

National Institute of Standards and Technology U.S. Department of Commerce

Bragg's Law for Crystal Diffraction

Nuclear vs. Magnetic Unit Cell in Neutron Scattering

k=(½, ½, ½)

(repeats every 2a,2b, and 2c)

Original Goal: Sm_{1-x}Ce_xColn₅

Sm_(1-x)Ce_xColn₅ (Heavy Fermion Material)

Tetragonal: $a=b\neq c$ $\alpha=\beta=\gamma=90^{\circ}$

Space group:

P 4/m m m

Measured Parameters (x-ray) (x=0 powder) a = 4.5798 ± .0001 Å c = 7.4708 ± .0002 Å

c ('x' dependent)

(001) face

No Magnetic Peaks found for SmColn₅

4 scans averaged together (powder) E=14.7meV

E=35 meV

			Cross Sections (1x10 ⁻²⁴ cm ²)		
Element	Formula Unit	Atomic Wight (g/m)	Coherent	Incoherent	Absorption
Sm	1	105.360	0.422	39.000	5072.236
Со	1	58.933	0.779	4.800	31.845
In	5	114.820	2.080	0.540	165.991

Data from NCNR Scattering and Activation Database

National Institute of Standards and Technology U.S. Department of Commerce

Determining μ_{eff} and x using the SQUID

Curie-Weiss Law for Paramagnetism

$$\chi(T) = \frac{\mu_{bulk}(T)}{H*moles} = \frac{C}{T - \theta_m} - \chi_0$$

- T Temperature [K]
- C Curie Number [(emu K)/or] θ_m - Curie Temp. [K] (+ Ferro, - Anti)

Fit using:

*numbers and equations from *Ashcroft Solid State Physics*

0.020

0.018

0.016

0.014

0.012

0.010

800.0 gr

0.006

[(or mole)/emu]

SQUID $Ce_{1-r}Yb_rRhIn_5$

Lattice + Atomic Basis = Crystal

Lattice + Atomic Basis = Crystal

Unit cell

- Lattice + Atomic Basis = Crystal
- Unit cell
- Reciprocal space and the Miller indices
- A measure of frequency.

- Lattice + Atomic Basis = Crystal
- Unit cell
- Reciprocal space and the Miller indices
- A measure of frequency.

- Lattice + Atomic Basis = Crystal
- Unit cell
- Reciprocal space and the Miller indices
- A measure of frequency.

