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Accurate measurement of  flow is a challenge 
in this harsh environment

From : What’s Everyone Using?
Part 75 CEMS Equipment trends -
2009 
Update EPRI CEMS Users Group 
Meeting, 
May 13-15th, 2009

Estimated Uncertainty

5-20%
Reynold’s number >107

Mach number < 0.1
Diameter 10 m
Height  130 m to 200 m
Temperature ~ 65 C
Humidity ~ 100 %
pH ~ 2 
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Are there alternative methods to measure complicated flows in 
harsh environments?

Is acoustics a good hammer?

…even for large-scale flows?

introduction
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sound source
frequency f

right = (c +V )/fleft = (c –V )/f
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History of  the Long-wavelength acoustic flowmeter (LWAF)

• plane wave propagation in a pipe is predicted to be insensitive 
to temperature and velocity profiles, including swirl and 
turbulence 

[B. Robertson, “Effect of  arbitrary temperature and flow profiles on the speed of  
sound in a pipe”, J. Acoust. Soc. Am. 62, pp. 813-818 (1977).]

• prototype LWAF is described and evaluated
[J.E. Potzick and B. Robertson “Long-wave acoustic flowmeter,” ISA Transactions
22, pp. 9-15 (1983);   J. Potzick, “Performance evaluation of  the NBS long-wave 
acoustic flowmeter,” Rev. Sci. Instrum. 55, 1173 (1984).]

• NBS LWAF instrument is patented (May, 1984)
[Long wavelength acoustic flowmeter, US Patent 4,445,389]

• VTT in Finland develops a small commercial instrument (~2000)

LWAF principle
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9

A complex 3-dimensional, spatially-
varying, flow profile exists within the duct.

Enclosed
Duct

A Long Wavelength Acoustic Flowmeter (LWAF) 
measures flow with low frequency sound.   

Conventional ultrasonic flow meter 
measures along a narrow path 
only, scatters off turbulent flow.

LWAF principle
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Sound in a circular pipe propagates as an axial plane wave only 
when the wavelength is larger than 1.7 x D.

Low f
Acoustic
Source
Loudspeaker

Enclosed
DuctOpen 

End

Axial
Spacing

A Long Wavelength Acoustic Flowmeter (LWAF) 
measures flow with low frequency sound.   

Propagation of plane wave is not 
affected by complex flow to first order 
in M

FLOW

LWAF principle

Outgoing 
Pressure Wave
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Acoustic flow metering methods measure phase to determine 

the convective speed of  sound (c0 + V ).

Flow velocities are < 10 % of  the speed of  sound for a power 

plant. Therefore, a measurement of  flowrate with 1 %

uncertainty, requires that the convective speed of  sound 

must be measured to better than 0.1 %. 

LWAF principle
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We constructed a 1/100th scale (10 cm diameter) laboratory flow 
facility to study the performance of  LWAF.  Target uncertainty is 1%.

Our LWAF met target performance:

• in symmetric flows up to 25 m/s

• in distorted flows with swirl, vortices, and recirculation up to 
25 m/s

• scaling to 1/50th (20 cm diameter) up to 6 m/s (limited by fan)

• preliminary measurements in humid air

(spoiler alert)

NIST’s LWAF
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Demonstrate accurate measurements with LWAF in distorted flow:

• T section and bends in the pipe to generate swirl

• obstructions to generate asymmetric flow

distorted flow
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obstructions

distorted flow
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Maximum flow is 
limited by fan’s 
capacity
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The NIST 1/100th scale (10 cm diameter) LWAF facility was 
constructed to assess the performance and scalability

• u(V )  0.4% and u(c0 )  0.01% in symmetric flows up 
to 25 m/s

• u(V )  1 % in distorted flows with swirl, vortices, and 
recirculation up to 25 m/s

• scaling to 20 cm diameter: u(V )  1 % up to 6 m/s

• preliminary tests in humid air are promising

conclusions
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• The LWAF approach is conceptually well suited for measuring ducted, 
low speed, highly distorted flows. 

• Several difficulties arise when scaling the method to a power plant :
• Low frequency operating conditions (20 Hz)
• Sound generation difficulties -> use noise correlations instead?
• Signal to noise 
• Uncertain reflections from opening
• Sound propagation through fog (dissipation, scattering)
• Reynolds number scaling (2x105 -> 2x107)
• Compliance of  duct liner (lowers apparent speed of  sound)

conclusions
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