Exploring Material Similarity using Graph-Based Crystal Structure Analysis and Machine Learning
 Karen Cao
 Montgomery Blair High School
 Mentor - Dr. William Ratcliff

Objective

- Investigate the types of crystal structures already discovered and how they are distributed
- Represent crystal structures as graphs in order to create
 comparisons and place them in clusters or communities

Background

What is a Crystal Structure?

- 3D arrangement of atoms, molecules, or ions in a crystalline solid
- Symmetrir and renoatino patterns

What is a Graph?

- Mathematical structure
- Nodes and edges

Space Groups

Describes arrangement of atoms in unit cell with Hermann-Mauguin (HM) symbols Bravais types

- P - Primitive
- I - Body Centered
- F - Face Centered

Symmetry Operations

- Rotations
- Reflections
- Inversions

Space Group:
14 m m

- Glide Plane/Screw Axis

Crystal Structure \rightarrow Crystal Graph

- Nearest_neighbor_edges - kNN (k-nearest neighbor) edge list

CIF File

The creators of the library to generate the crystal graph are Dr. Kamal Choudhary and Brian DeCost.

Graph Edit Distance (GED)

- Measure of similarity between two graphs
- Minimum cost to transform one graph into another through a sequence of edit operations
- Edit operations - node/edge

G

Q insertion, deletion, and substitution

GED Example Visualization Animation

GED Calculation Algorithm

Based on the A* Search Algorithm ${ }^{1}$

1. Priority queue to store nodes and edges
2. Apply each possible operation to create a new graph state and calculate the cost function $f(p)$
3. Remove node with smallest $f(p)$ from priority queue
$f(p)=g(p)+h(p)$
g = cumulative cost
Initial state \rightarrow current state
h = estimate cost
Current state \rightarrow goal state

GED Calculation

graph_edit_distance(G1, G2, timeout=60)

- NetworkX Python Library
- Based on the A* Search Algorithm
- Calculates the GED between G1 and G2
- Returns the best GED calculation within a maximum number of seconds to
execute

Hierarchical Clustering

- Groups similar objects into groups/clusters
- How it works:
- Treats each graph as a separate cluster
- Repeatedly merges two clusters that are closest
- Iterates until all clusters merged together

Hierarchical Clustering Dendrogram

- Assigns different community to nodes
- Considers each neighboring community for placing nodes
- Node placed in neighbor community based on modularity

Hierarchical Clustering Results

Space Group Number

Community Detection Results

What's Next

- Closely investigate the clusters and communities
- How has this distribution has changed over time?
- Continue calculating the graph edit distance for a complete $200,000 \mathrm{x}$ 200,000 distance matrix

Special Thanks
 Dr. William Ratcliff \& Mr. Paul Kienzle
 Dr. Paul Butler, Mr. Jeff Krzywon, Dr. Yun Liu

Dr. Julie Borchers, Dr. Leland Harriger

Any Questions?

