Shutdown Update

S.E. / Laboratories

- Maintenance
- Acquisitions/Procurements
- Safety
- Development
- Safety
- ✓ Work Done
- ➤ Work To Be Done

Projects Description

\mathbf{C}	1.7
D.	Н.

✓ 12T Dry Cryomagnet Acquisitions/Procurements

✓ Gas Loading Systems✓ High Pressure SystemsMaintenanceMaintenance

✓ 2 GPa Clamp Pressure Cells
 ✓ Vanadium Powder Cans (Assisted Tanya Dax)
 Acquisitions/Procurements

✓ CCR He Lines Repair (Assisted Tanya Dax)

Maintenance

✓ Cryogenics Hands-on Training✓ Beam Line Equip. SOPs, User/Technical ManualsSafety

✓ Syringe Pump

✓ Gas-loading

✓ High Pressure

✓ Furnaces

Laboratory:

✓ Recirculating Baths Inventory and Maintenance Maintenance

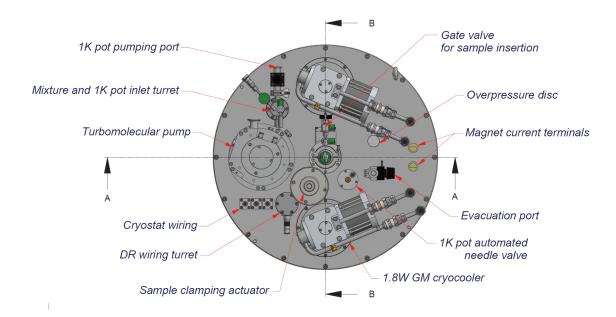
FTIR Maintenance Maintenance

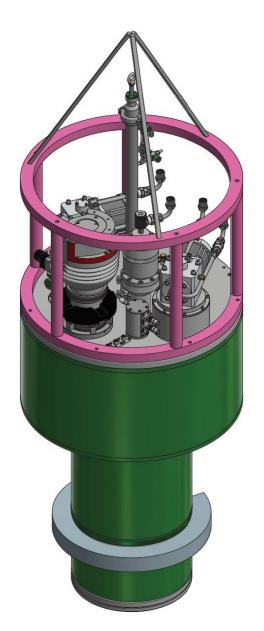
✓ Glove Boxes Maintenance AND Acquisitions/Procurements

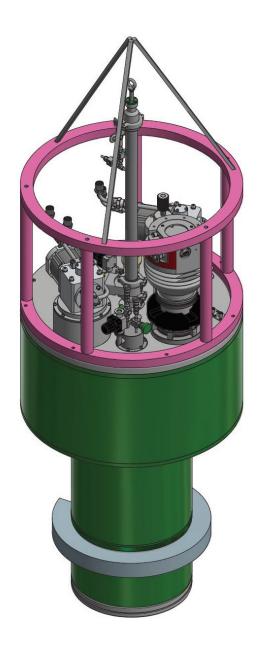
✓ UV/Vis Maintenance

✓ Laboratory Vacuum Ovens (Assisted Donna Kaltyre) Acquisitions/Procurements

✓ SOP, User/Technical Manuals Safety

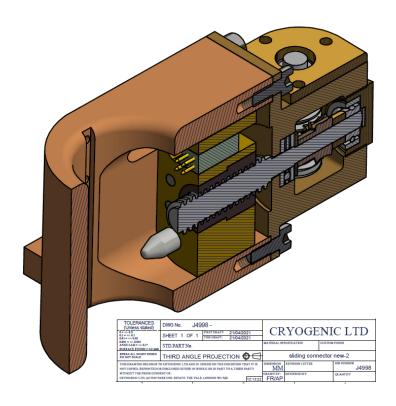

✓ Lab Furnaces

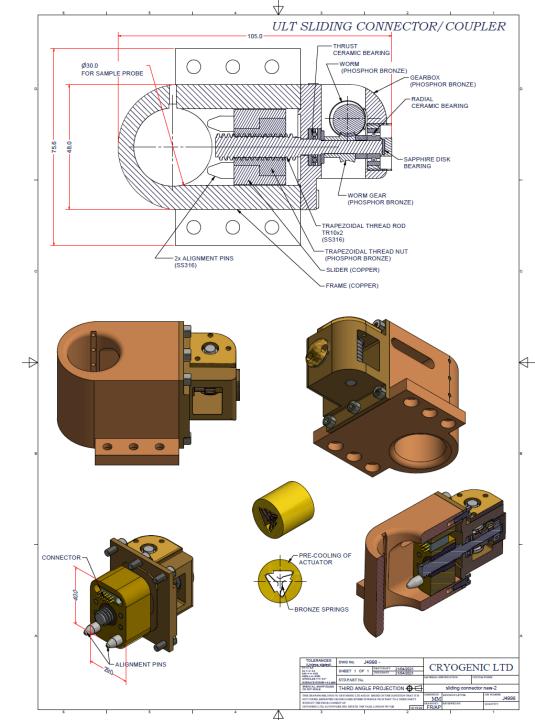

✓ Torch


✓ Spin Coater

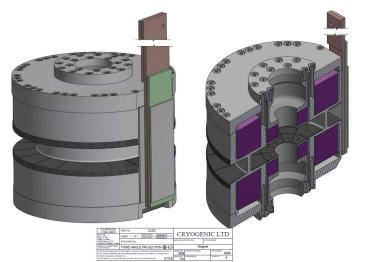
12 T Dry Cryomagnet

- Integrated 50 mK Dilution Refrigerator and GHS
- +/- 12 T symmetric vertical field
- 35mm split
- +/- 4-degree beam divergence
- Dark Angle: 40 degrees
- Dil Fridge 60+ microWatt minimum cooling power @100 mK

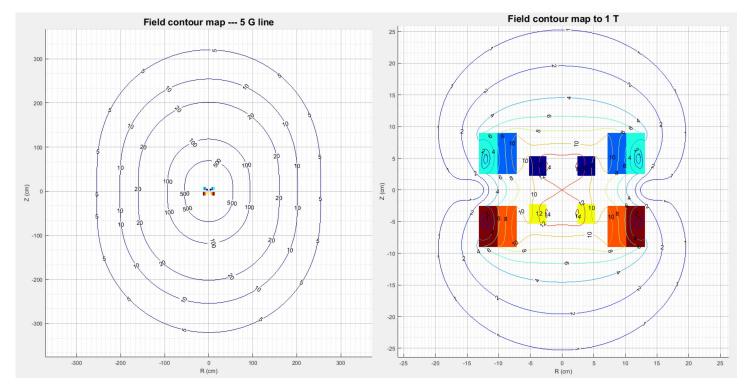




12 T Dry Cryomagnet


- Integrated 50 mK Dilution Refrigerator and GHS
- +/- 12 T symmetric vertical field
- 35mm split
- +/- 4-degree beam divergence
- Dark Angle: 40 degrees
- Dil Fridge 60+ microWatt minimum cooling power @100 mK

CRYOGENIC LTD


First look inside!

Many Thanks to:

- Collin Broholm
- Don Collie
- Tanya Dax
- Sergiy Gladchenko
- Yamali Hernandez
- Paul Liposky
- Yiming Qiu
- Alan Ye

To name a few...

12T Production Plan

	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Apr-21	May-21	Jun-21		Aug-21	Sep-21	Oct-21	Nov-21	Dec-21	Jan-22	Feb-22		Apr-22	May-22	Jun-22		Aug-22	Sep-22
Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Order placed	•																							
Design of magnet and cryostat	•••	••••	••••																					
Design of DR system				••••	••••	••••																		
Finalisation of neutron shielding			• •	••••	••••	••																		
Frame and integration design				•	••••	••••																		
Compile full design and structural report							••																	
Nist Design review							•																	
Post review discussion and modification								••																
Preparation of component drawings and BOM							••••																	
Sign off design									••															
oigh oil design									<u> </u>															
Machining of cryostat parts										••••														
													••											
Cryostat welding													•											
Outer painting Manufacture radiation shield														•										
Manufacture radiation shield														•••										
														-										
Coil winding													•	•••										
Coil reaction														•										
Casting and finishing														-	•••									
Split-pair assembly															•	••								
Assembly of Cryomagnet system including integral DR													•	••••	••••	••••	••							
He-3 Required from NIST														••										
Main system test																	• •	••						
He-3 and DR test																		••••						
Test contingency																			••••					
FAT														-						••				
																				••				
Pack and Ship														-			-			•				
On-site comissioning														-							••••			
Final Sign-off and payment																						•		

Gas Loading Systems

- ✓ Maintenance and Recalibration
 - ✓ Manual Gas Loading Cart 2, 35bar
 - ✓ Automated Gas Loading Cart 3, 200bar
- ✓ Inventory of sample can lid interfaces
 - ✓ 20 BLCCR Rings
 - ✓ 10 TLCCR lids
 - ✓ 2 HT TLCCR Sticks
 - ✓ 2 LT TLCCR Sticks
- ➤ TO BE DONE:
 - ➤ Manual Gas Loading Cart 1, 200bar

- Donna Kaltyre
- Doug Johnson
- Sean Mullendore

High Pressure Systems

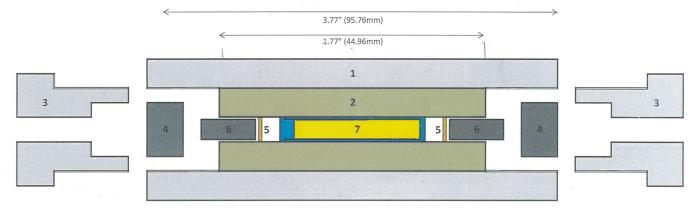
- ✓ Maintenance
 - ✓ Pressure Rig #1
 - ✓ Empty and decon pressure cells
 - ✓ Training: Full pressure experiment
 - ✓ Updated manual
 - ✓ Updated Safety paperwork
- TO BE DONE:
 - ➤ Maintenance Pressure Rig #2
 - Maintenance pressure sticks
 - ➤ Inventory pressure cells and ancillary equipment

- Sergiy Gladchenko
- Doug Johnson
- Sean Mullendore

2 GPa Clamp Pressure Cells

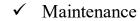
- ✓ Prototype and Testing 1 Assembly
- ✓ Procurement and Acquisition -6 Assemblies


ID	Description	Material
1	Cell Body	Aluminum 7075
2	Inner Sleeve	Beryllium Copper
3	Clamping Bolt	Aluminum 7075
4	Support Spacer	Tungsten Carbide
5	Anti Extrusion Ring	Copper
6	Piston	Tungsten Carbide
7	Sample Container	Teflon or Lead

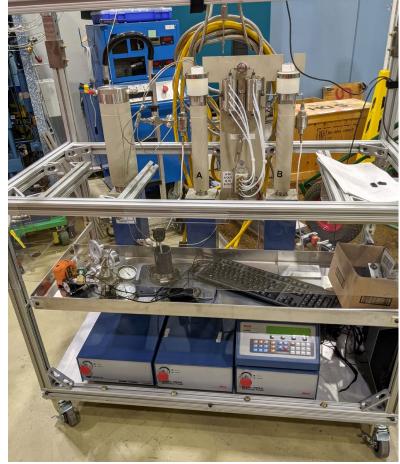

General Info:

Piston Sizes (length): 10, 15, 20, 25 mm

Teflon Sample Container (mm): ID: 4.166 OD: 4.770


Enter Shaded Values Below						
Length of Pistons Selected	15	mm				
Total Length of Sample Container	20	mm				
-1						
Calculated						
Sample Volume:	214	mm³				
Maximum Sample Height:	15.7	mm				
Available Piston Travel 2X:	2.5	mm				
Compressable Volume:	273	mm³				
Max Compression Ratio:	1.3	<u>a</u>				

Syringe Pump System



- ✓ 12 SANS Block Pressure Cells
- ✓ 4 SANS FLOW Block Pressure Cells
- ✓ 10 1kbar Pressure Cells

TO BE DONE:

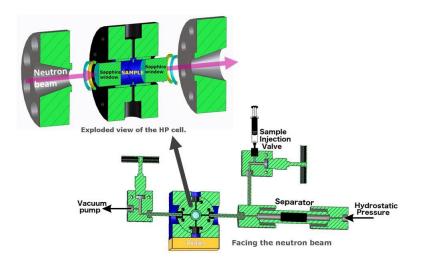
- Finish setting-up upgrade to three pump system
- Develop software upgrade
- > Test HT seals for block cells

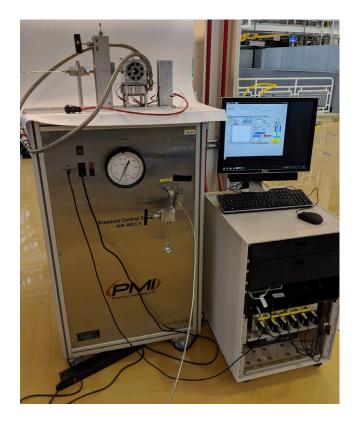
Currently being set-up as a three syringes system

1000HLf Hazardous Location Syringe Pump

apacity	1,015 mL
low Range	0.001 to 408 mL/min
low Accuracy	$\pm~0.5\%$ of setpoint (Maximum 1.5 $\mu L/\text{min}$ seal leakage)
ressure Range	0.7 to 137.9 bar (10 to 2,000 psi)
Numbing Ports	1/4" NPT
limensions (H x W x D)	40.3 x 10.7 x 18.4 in (102 x 27 x 47 cm)

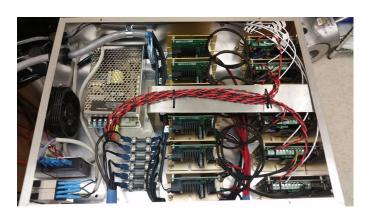
- Doug Johnson
- Donna Kaltyre
- Sean Mullendore
- Colin Wrenn
- Alan Ye


Formally dual syringes



LIPSS/MUZAC System

✓ Maintenance


- ✓ Replaced power supply
- ✓ Acquired extra power supply
- ✓ Training: Full pressure experiment
- ✓ Updated manual
- ✓ Updated Safety paperwork
- TO BE DONE:
 - > Separate LIPSS control
 - Engineer new cells
 - Upgrade cell holder
 - Procure recirculating bath to replace LH45

- Cedric Gagnon
- Doug Johnson
- Susana Teixeira
- Colin Wrenn
- Alan Ye

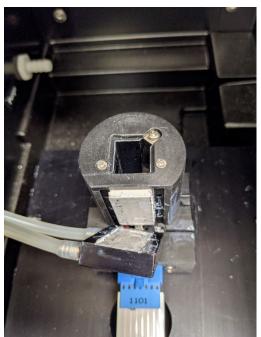
Cryogenics Training Video

- ✓ Maintenance
 - ✓ Created on-line video
 - ✓ Begun training new researchers
- TO BE DONE:
 - Create updated version incorporating staff suggestions

- Don Lopez
- Alan Munter

Beam Line/ Lab Equip. SOPs, User/Technical Manuals

Equipment	SOP	User Manual	Technical Manual	STATUS
Syringe Pump	✓	✓	✓	Submitted
Gas-loading	\checkmark	\checkmark	✓	09/2021
High Pressure	✓	✓	✓	11/2021
H2 Pressure	\checkmark			12/2020‡
Furnaces	✓	✓	✓	09/2021
Torch	\checkmark	\checkmark	\checkmark	Submitted
Spin Coater	✓	✓	✓	Submitted
2GPa Clamp Cell	\checkmark	\checkmark	✓	Approved
Cryogenics Training	✓	✓	✓	Approved

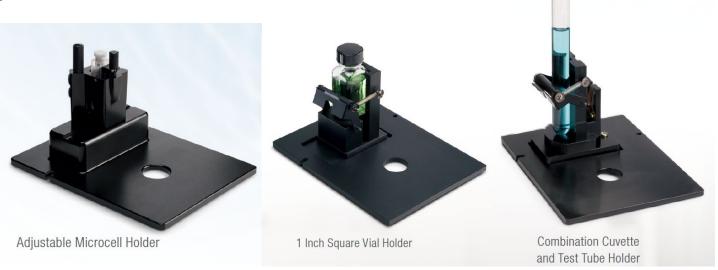

Recirculating Baths Inventory and Maintenance

/	3.6
✓	Maintenance

- ✓ 24 Inspected under contract
- ✓ 4 Need repair
- ➤ TO BE DONE:
 - ➤ Procure replacement for LH45 (SANS)
 - > Send for repair

- Cedric Gagnon
- Donna Kaltyre

Manufacturer	Model	Serial #	Туре	Mfg Code	Location
HASKRIS	R100	HB18454	CHILLER	DLR 21134	235, E133
HASKRIS	R175	H-A12883	CHILLER	DLR 38188	A128
HASKRIS	WW1	HBHB17803	CHILLER	DLR 64323	E137
HAAKE	A25	1121274701190610	CHILLER	DLR 57920	G100
HAAKE	A25	1121639401200303	CHILLER	DLR 64330	G100
JULABO	F25	00208610	CHILLER	DLR 64322	E137
JULABO	F25	00208611	CHILLER	DLR 64324	E137
JULABO	F250	10314547	CHILLER	DLR 57924	G100
JULABO	F33	10208917	CHILLER	DLR 64326	G100
JULABO	LH45	10160409	CHILLER	DLR 64327	G100
NESLAB	RTE111	R94237217	CHILLER	DLR 57921	G100
NESLAB	RTE111	197240130	CHILLER	DLR 64332	G100
THERMO	NESLAB EX7	109133007	CHILLER	DLR 64321	E135
THERMO	NESLAB RTE-7	106117002	CHILLER	DLR 57915	A115
THERMO	NESLAB RTE-7	106361007	CHILLER	DLR 57925	A123
THERMO	NESLAB RTE-7	106179003	CHILLER	DLR 57917	B128
THERMO	NESLAB RTE-7	105109006	CHILLER	DLR 57919	G100
THERMO	NESLAB RTE-7	108352004	CHILLER	DLR 57923	G100
THERMO	NESLAB RTE-7	104240002	CHILLER	DLR 64331	G100
THERMO	NESLAB RTE-7	106269005	CHILLER	DLR 64325	G100
THERMO	NESLAB RTE-7	106352005	CHILLER	DLR 64328	G100
THERMO	A28F	0111089301120217	CHILLER	DLR 57916	A115
THERMO	ELECTRON	105234018	CHILLER	DLR 64333	G100
JULABO	F25	00187471	CHILLER	DLR 57926	E133


Peltier holder with heat exchanger recirculatory block detached for diagnostics. The severed wires cause a faulty alarm in the Peltier cell holder control box.

Many Thanks to:

• Donna Kaltyre

UV - Vis

- ✓ Maintenance
 - ✓ Repair broken sample block
 - ✓ Replaced heat exchanger
 - ✓ Service call for alignment
- ✓ Acquisitions
 - ✓ Adjustable Microcell Holder
 - ✓ Square Vial Holder
 - ✓ Combination Holder

Projects Description

Future Work Estimated Timeline

S. E.:

\triangleright	12T Dry Cryomagnet	Acquisitions/Procurements	On-going to 3 rd quarter of 2022
	Maintenance and Inventory High Pressure Systems and Ancillaries	Maintenance	November 2021
	Upgrade Syringe Pump Cart	Maintenance	December 2021
	Test Temp Gradient in HT BCCR (Tanya dax)	Maintenance	November 2021
	Test BeCu Pressure Cells	R&D	March 2022
	Empty and Inventory Irradiated Powder Cans (S.E Group)	Maintenance	December 2021
	Upgrade Software for Three Syringe Pump	Maintenance/ R&D	March 2022
	Test HT SANS Block Pressure Cells	R&D	December 2021
	Upgrade LIPSS Control and new cells	Maintenance/ R&D	TBD

Laboratories:

\triangleright	Recirculating Baths repairs	Maintenance	December 2021
	New Recirculating Baths Procurement	Acquisitions/Procurements	As funds become available
	Installation and Implementation of Glove Boxes Remote Manifold	R&D	January 2021
	FTIR operation	Maintenance	November 2021
	Training, and assistance for post-docs	Safety	On-going

Thank you!

Questions and/or Suggestions for R&D for 2023

