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Abstract 

Existing biometric identifcation systems, such as those used in trusted traveler programs, attempt to identify 
an individual’s identity from an enrollment database of n people. The output is either the name of an enrolled 
person, or a rejection message indicating that no match was found. Traditionally, no measure of confdence is 
given to the output; an individual is either granted or denied access. In this paper, we propose an extension 
to existing biometric systems by applying a calibration function to the n matching scores. We introduce a 
computationally-light calculation that can be applied either as a post-processing flter or embedded directly 
into an algorithm to yield perfectly calibrated probability-based scores. In addition to attaching a meaningful 
confdence measure to the output, the proposed methodology is also shown to improve the overall performance 
of a biometric system. The theoretical proof of the calibration formula is followed by its application to iris 
biometrics, on a data set consisting of nearly 60, 000 iris images. By comparing the detection error trade-o� 
(DET ) curves, we show that our calibrated post-processing flter reduces the area under the DET curve 
(AUC) by nearly 40% and reduces the equal error rate (EER) by nearly 50%. 

Motivation 

Biometric systems have evolved signifcantly over the past two decades, from single-sample non-automated 
verifcation systems to multi-sample fully-automated systems used for person identifcation and intelligence 
gathering [8, 9]. Despite the evolution in biometric system complexity, including its ability to handle multiple 
modalities (e.g. face, iris, fngerprint), the methodology for biometric performance evaluation has remained 
essentially static, still largely limited to graphing detection error trade-o� (DET ) curves, and reporting rates 
of false matches (FMR) and false non-matches (FNMR) [7, 8, 9, 10, 11, 12]. 

In conventional biometric systems, the output score is not associated to a probability. Instead, these 
biometric systems produce the same output (i.e., a match decision) regardless of whether there exist other 
close matching scores. Ideally however, biometric systems should be able to distinguish a confdent output 
from a less-confdent one. Specifcally, it would be helpful to have a means of di�erentiating between a system 
output of “I am 100% sure that this person is George” and “I am 50% sure that this person is George, 45% 
sure that this person is Paul, and 5% sure that it is someone else.” Even though both scenarios would lead 
to the system deciding that the individual is George, the decision for the frst scenario should always be 
correct, while the decision for the second scenario should only be correct half the time. 

Our goal is to introduce a calibrated confdence measure so that the output of a biometric system refects 
the actual probability that a person is identifed correctly. This concept is motivated by the work of DeGroot 
and Fienberg [3] who applied calibration to weather prediction, so that the statement “there is an 80% chance 
of rain tomorrow” is correct exactly 80% of the time. In this paper, we show how the same concept can 
be applied to biometrics to produce a meaningful confdence measure to each output. We introduce an 
algorithm that replaces traditional matching scores with perfectly calibrated confdence scores, and apply 
the theory to iris biometrics. 
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1.1 Multi-Order Analysis of Iris Biometrics 

For iris recognition, the conventional method of identifying an individual is based on an adaptable parameter 
known as a matching threshold, determined from the pairwise Hamming Distances (HD) of the binary 0-1 
strings that correspond to iris patterns. While there have been several recent exceptions, the most widely 
deployed iris biometric systems use Hamming Distances as matching scores, by calculating the measure of 
dissimilarity between two pairs of iris images. 

Following the Multi-Order Biometric Analysis framework defned in [4, 5], consider an iris recognition 
system with the matching threshold set at T = 0.33. Suppose that an individual’s iris image is compared 
against the images of fve (di� erent) people in an enrollment database. Suppose the fve matching scores are 
0.51, 0.32, 0.47, 0.34, and 0.31. If the algorithm selected the frst person whose score was lower than the 
threshold – defned as an Order-1 system – then the system would have identifed the individual as the second 
person in the database. If the algorithm computed all the matching scores and selected the person most 
below the threshold – defned as an Order-2 system – then the system would have identifed the individual 
as the ffth person. In reality however, since there were three similar matching scores, it could have easily 
been the fourth person! 

Expanding on our recent work [6], we introduce a calibrated scoring algorithm for biometric recognition 
that is a function of all n matching scores. Our calibrated confdence function is an example of an Order-3 
system, a concept frst presented in [4, 5]. While multi-order evaluation is not a built-in feature of traditional 
iris biometric systems, the potential and value of this approach is realized in the following three ways: 

(a) This algorithm ensures the confdence scores are perfectly calibrated, regardless of the size of the 
enrollment database or the nature of the distributions of the genuine and impostor matching scores. 
Thus, a meaningful probabilistic confdence measure can always be assigned. 

(b) This algorithm produces a convex DET curve that dominates the DET curve produced by any other 
algorithm. Therefore, this approach of turning matching scores into calibrated confdence scores max-
imizes the overall accuracy of the biometric system, and cannot be improved any further. 

(c) The algorithm e �ectively separates the genuine confdence scores from the impostor confdence scores, 
with the overwhelming majority of genuine comparisons receiving the maximum confdence score of 
c = 100% and nearly every impostor comparison receiving the minimum confdence score of c = 0%. 

This paper proceeds as follows. In Section 2, we provide a brief explanation of iris biometrics to establish 
context. In Section 3, we prove our calibration result and illustrate it with a simple example. In Section 4, 
we apply the theory to a data set of 59, 500 iris images and demonstrate the e �ectiveness of this calibration 
algorithm. In Section 5, we discuss how these ideas can be implemented in practice, and conclude the paper 
in Section 6. 

2 Brief Theory Behind Iris Biometrics 

In traditional iris biometrics, an algorithm [1] based on Gabor wavelets turns an iris image into a 2048-
digit binary string where each bit is either 0 or 1. When comparing two images, we either have a genuine 
comparison (iris images belonging to the same person) or an impostor comparison (iris images belonging to 
two di�erent people). 

The expected proportion of di�ering bits between impostor comparisons is HD = 0.5. Based on the 
analysis of Daugman [2], it is known that the histogram of impostor Hamming Distance scores follows a 
nearly perfect binomial distribution Binom(m, u) with m = 249 and u = 0.5. The variable m represents the 
degrees-of-freedom and is a function of the mean u and the standard deviation ˙: 

While each digit is assumed equally likely to be 0 or 1, only small subsets of bits are mutually independent 
due to internal correlations within an iris. That is why m = 249 rather than m = 2048. The frequency 
distribution of the impostor matching scores follows a binomial curve, analogous to a Bernoulli trial with 
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k u = 0.5 and m = 249. Then, the probability that the Hamming Distance of two di�erent iris images is is� � m 
k m p(HD = ) = uk(1 − u)m−k . Since m is large, the majority of impostor matching scores is very close to m k 

0.5. 
Even comparing iris images of identical twins, the expected matching score is 0.5. However, when 

comparing two iris images belonging to the same individual, the matching score is considerably lower. Based 
on an analysis of 7, 070 genuine comparisons [2], the average HD was found to be û = 0.11 with a standard 
deviation of ˙̂ = 0.065. That is why iris biometric recognition has proven to be very e� ective, due to 
miniscule intra-class variability and large inter-class variability. 

In the case of Hamming Distances, a lower score indicates a more confdent match. Given a fxed threshold 
t, a false match occurs whenever the HD of an impostor comparison is less than or equal to t. Conversely, 
a false non-match occurs whenever the HD of a genuine comparison lies above t. Similarly, we can defne 
a true match and a true non-match. For each t, we defne the False Match Rate (FMR) and the False 
Non-Match Rate (FNMR) to be the percentage of false matches and false non-matches, respectively. Note 
that in the case of confdence scores, the same defnitions apply but need to be fipped, as a higher score 
indicates a more confdent match. 

The detection error trade-o� (DET ) curve plots FMR versus FNMR for a variable threshold. As 
the threshold decreases (towards 0), FMR decreases while FNMR increases. Conversely, as the threshold 
increases (towards 1), FMR increases while FNMR decreases. Thus, the DET curve measures the overall 
performance of a biometric system over all possible thresholds. The equal error rate (EER) is determined 
by fnding the intersection of the DET curve with the line y = x. At this point of intersection, we have 
FMR = FNMR, and this is the value of EER. Two commonly-used performance metrics are to determine 
the EER, and to measure the area under the DET curve (AUC). A perfect algorithm will have EER = 
AUC = 0. 

The Main Theorem 

Let {x1, x2, . . . , xn} be the set of enrolled people. Each of these n people have had their irises digitally 
photographed, and converted into a 2048-digit binary string. Let G be the set of genuine matching scores, 
and I be the set of impostor matching scores. We will assume that G and I follow binomial distributions, 
with G ˘ Binom(m̂, û) and I ˘ Binom(m, u). 

Suppose person X arrives at the kiosk. For each 1 � i � n, defne si = HD(X, xi) to be the matching 
score of xi. Thus, person X produces the n-tuple S = (s1, s2, . . . , sn), the vector of matching scores. We 
wish to determine ci = P ({X = xi} | S), i.e., the probability that X is passenger xi, given the n-tuple S. 
The probability vector C = (c1, c2, . . . , cn) is the desired sequence of calibrated confdence scores. 

Let pi = P (X = xi) be the probability that an individual arriving at the kiosk is person xi. Furthermore, 
let q be the probability that an individual arriving at the kiosk is unenrolled. 

We now state and prove the main result of this paper. 

Theorem 3.1 Let G be the set of genuine matching scores, and I be the set of impostor matching scores. PnSuppose G ˘ Binom(m̂, û) and I ˘ Binom(m, u). Let pi = P (X = xi) and q = 1 − Let i=1 pi. 
S = (s1, s2, . . . , sn) be the n-tuple of matching scores produced by person X. Then for each 1 � i � n, we 
have 

Proof: For each 1 � i � n, defne ri = P ({X = xi} ^ S). Also defne rimp 2 {x1, x2, . . . , xn}} ^ S).= P ({X / 
nX 

By defnition, rimp = P (S) − ri. By Bayes’ Theorem, we have 
i=1 
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ˆ m− ˆ Ymsiûmsi (1 − û) ˆ mm̂si msj (1 − u)m−msj= pi � � · · u m umsi (1 − u)m−msi msjmsi j=1� 
m̂ � � �si n � �
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To calculate ri = P ({X = xi} ^ S), we multiply the probabilities of the following n + 1 independent 
events: it is xi who comes to the kiosk; the genuine matching score HD(X, xi) is si; and the impostor 
matching score HD(X, xj) is sj for all 1 � j � n with j 6= i. 

Since G ˘ Binom(m̂, û), there are m̂ degrees-of-freedom, and the probability that any of these m̂ bits 
di er is ˆ So if HD(X, xi) si, then ˆ of the ˆ er. We derive the analogous result for theu. = msi m bits di 
impostor distribution I ˘ Binom(m, u), for all 1 � j � n with j 6= i. Therefore, we have 
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To calculate rimp, we multiply the probabilities of the following n+1 independent events: it is an impostor 
who comes to the kiosk; and the impostor score HD(X, xj) is sj for all 1 � j � n. This yields 
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3.1 Example 

Below we illustrate the calibration theorem with a simple example. Let the enrollment gallery consist of 
three individuals, and suppose that each iris string has just six bits which are mutually independent. Thus, 
n = 3, m = 6, and m̂ = 6. Further, assume that G and I are binomially distributed with û = 13 and 1 u = 2 .

Let {x1, x2, x3} be the three individuals in the gallery, and suppose their iris strings are [0, 1, 0, 1, 0, 1], 
[1, 0, 0, 1, 1, 1] and [1, 0, 1, 1, 0, 1], respectively. Let X be one of these three individuals, chosen at random (i.e., 

1 p1 = p2 = p3 = 3 ). We wish to determine the identity of X, given that the iris string of X is [0, 1, 0, 1, 0, 1].
We have HD(X, x1) = 0, HD(X, x ) 3 3

2 = , and HD(X, x36 ) = 6 . Thus, person X generates the triplet of 
matching scores S = (s1, s2, s3) = (0, 0.5, 0.5). We wish to determine C = (c1, c2, c3), the vector of confdence 
scores where each ci = P ({X = xi} | S) represents the probability that X = xi, given S. Note that we 
do not have C = (1, 0, 0), since it is possible that X = x2 or X = x3, which occurs when three of the six 
incorrect bits happen to match identically to produce the iris string of x1. 

By substituting the above values into Theorem 3.1, we determine that z1 = 1 and z2 = z = 1
3 8 , from 

which we derive C = (c1, c2, c3) = (0.8, 0.1, 0.1). In other words, given that the vector of matching scores is 
S = (0, 0.5, 0.5), eighty percent of the time the individual will be the frst person in the gallery, and each of 
the other people ten percent of the time. Hence, the correct confdence score attached to x1 must be 80%, 
with a confdence score of 10% assigned to each of x2 and x3. The output C = (0.8, 0.1, 0.1) is preferable 
to a decision algorithm based solely on HD scores, which will always identify X to be individual x1, i.e., 
C = (1, 0, 0). 

Note that this calibration formula preserves monotonicity, i.e., if xi has a lower matching (HD) score 
than xj , then xi will have a higher confdence score than xj . This is refected in the above example. Then, 
a natural question is why this formula would be an improvement over the existing paradigm. To answer 
this question, we will show that the two approaches produce di�erent DET curves, and that the DET 
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curve produced by the calibrated score function dominates the curve generated by the matching scores. 
By selecting the right threshold, we can reduce both false matches and false non-matches by applying this 
calibration algorithm as a post-processing flter. 

In [6], we take this one step further and show that this algorithm produces a convex DET curve that 
dominates the DET curve produced by any other algorithm, implying optimality. Our optimality result is a 
corollary of the fact that the post-processing flter produces calibrated scores. Note that if the distributions 
are not binomial (e.g. they are Gaussian), then the formula in Theorem 3.1 will need to be replaced by 
something more complicated, or approximated by some discrete function. But once the correct calibration 
formula is established, this will produce an algorithm with an optimal DET curve [6]. 

In the following section, we illustrate the application of the theoretical result with real biometric data. 

Application 

Theorem 3.1 was applied to an actual data set consisting of matching scores for 59, 500 comparisons ob-
tained with state-of-the-art iris recognition software. There was one iris image for each of 100 individuals, 
representing the enrollment gallery. Then a probe set of 595 people was matched against each of the 100 
individuals in the gallery, producing 59, 500 comparisons. There were no unenrolled people in the probe set, 
i.e., each of the 595 iris images belonged to exactly one of the 100 enrolled individuals. Thus, there were 595 
genuine comparisons and 58, 905 impostor comparisons. 

Before applying Theorem 3.1, we need to know the values of p1, p2, . . . , p100, q. Since there were no 
impostors, we set q = 0. Not knowing how frequently each of the 100 enrolled individuals appeared among 
the sample of 595 individuals, we simply assume that p1 = p2 = . . . = p100 = 0.01. 

The mean and standard deviation of the two sets are û = 0.074, ˙̂ = 0.088, u = 0.39 and ˙ = 0.0456. 
As we are assuming that both distributions are binomial, we can determine the values for which G ˘ 
Binom(m, ˆ û) and I ˘ Binom(m, u). We have ˆ = 0 074, ˆ = û(1−û) u(1−u)u . m = 9, u = 0.39 and m ˙̂2 = ˙2 = 114.

For each of the 595 people in the probe set, we determine the matching score vector S = (s1, s2, . . . , s100). 
Then we apply Theorem 3.1 to transform S into the calibrated confdence score vector P C = (c1, c2, . . . , c100),
where ci = 1. Each ci score is rounded to six decimal places. 

Figure 1: Genuine (solid line) and Impostor (dashed line) distributions of the matching scores and the 
calibrated confdence scores. 

Figure 1 shows the resulting frequency distributions of both the genuine and impostor scores, with the 
graph on the left representing matching scores, and the graph on the right representing calibrated confdence 
scores. In the graph on the left, we note that the impostor matching scores follow a near-perfect binomial 
distribution, centered at u = 0.39. 

When we apply the calibrated scoring function, we fnd that there is a signifcant separation in the 
genuine and impostor confdence scores. We no longer have two intersecting binomial curves. In fact, 90.1% 
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of genuine comparisons receive the maximum confdence score of c = 1, while 94.8% of impostor comparisons 
receive the minimum confdence score of c = 0. 

To see how well the algorithm is calibrated, we tabulate the number of true matches and false matches 
at each threshold. For the sake of readability, Table 1 groups the thresholds into seven intervals. 

Confdence Score False Match True Match Accuracy 
c = 1 0 536 100.00% 

0.9 < c < 1 10 12 54.55% 
0.5 < c � 0.9 10 2 16.66% 
0.1 < c � 0.5 40 5 11.11% 
0.01 < c � 0.1 319 9 2.74% 
0 < c � 0.01 2710 15 0.55% 

c = 0 55816 16 0.03% 
TOTAL 58905 595 1.00% 

Table 1: True and False Matches of confdence scores for this real data set 

By the defnition of calibration, the accuracy of each scenario should be the value of the corresponding c 
score. The theory is nicely confrmed for c = 1 and c = 0, as in the former case, 536 of the 536 comparisons 
are true matches (100%) and in the latter case, 16 of the 55832 comparisons are true matches (0.03%). The 
other scenarios need to be grouped together as there are so few instances. Nonetheless, had we been able 
to perform the experiment with 50, 000 individuals rather than 595, we would have had a larger sample to 
draw from, and the experimental results would have shown the confdence scores to be well-calibrated. 

The real value of Theorem 3.1 is not just the improved separation of genuine and impostor scores; it 
is the creation of a better DET curve that implies fewer false matches and false non-matches, as shown in 
Figure 2. Note that score calibration produces a DET curve that completely dominates the curve produced 
by the original matching score algorithm. 

Figure 2: DET curves of the matching scores (dashed line) and calibrated confdence scores (solid line). 

A DET curve achieves perfection as the curve approaches the origin. One way to measure the performance 
of a scoring algorithm is to calculate its equal error rate (EER), found by obtaining the intersection point 
of the DET curve with the line y = x. The lower the EER, the better the algorithm is. The status quo 
algorithm based on matching scores produces a DET curve with EER = 5.40%, compared to EER = 2.84% 
for the calibrated algorithm. This represents an improvement of nearly 50%. 

Another performance metric is calculating the area under the DET curve (AUC), which is in the interval 
[0, 1]. The smaller the area, the better the algorithm is. The status quo algorithm based on matching 
scores produces an AUC of 0.0244, compared to 0.0148 for the calibrated algorithm. This represents an 
improvement of nearly 40%. The results are summarized below in Table 2. 
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EER AUC 
Status Quo Matching Scores 5.40% 0.0244 
Calibrated Confdence Scores 2.84% 0.0148 

Improvement 47.4% 39.3% 

Table 2: Table of Results 

5 Implementation 

We close by describing some practical steps for actual implementation. 
First, one should investigate the score distributions of genuine and impostor scores prior to deployment. 

Ideally, these distributions would be provided by the vendor. If this info is not available from a vendor, it can 
be computed empirically from a set of sample data by obtaining the values of m, u, ˆ u, and applying these m, ˆ 
values into the formula given in Theorem 3.1. Note that we can determine m (and m̂ ) from the standard 

u(1−u)deviation ˙ (and ˙̂), since m = ˙2 . 
Second, we recommend that instead of applying Theorem 3.1 to all n matching scores, one could take a 

smaller subset (e.g. the best 100 scores) and restrict the formula to this subset, since the remaining scores 
would almost certainly all have a confdence score close to 0. This would reduce the required computational 
costs and enable real-time implementation of this calibration function as a post-processing flter to existing 
conventional biometric systems. 

As we saw in Section 4, when Theorem 3.1 was applied to a real data set with an enrollment gallery of 
N = 100, over 90% of genuine comparisons received the maximum confdence score of c = 1, while over 94% 
of impostor comparisons received the minimum confdence score of c = 0. These fgures were attained when 
rounding each confdence score to six decimal places. If N is larger, these percentages will be even higher 
at these two endpoints. Thus, there is no need to perform all of the combinatorial computations when N is 
large, especially as the confdence score will be zero for all but a handful of cases. 

We therefore propose applying Theorem 3.1 to the top 100 matching scores only, which would then 
assign a confdence score for 100 passengers in the gallery, while giving a confdence score of c = 0 to the 
other N − 100 passengers. This procedure will ensure that the post-processing flter is not computationally 
laborious, while preserving the accuracy and signifcance of the output. As for the actual display to the 
end user, one could provide a further restriction by outputing the names of only those individuals who have 
c > 0.1. For this particular threshold, the system will display only a few names along with their respective 
confdence scores. 

Finally, we could consider a range of options for the variable q in our calculations for the confdence 
score. Since q is unknown, Theorem 3.1 could be applied for di�erent values of q to obtain a range of 
possible outputs. As a result, we could end up with an output such as “This person is Rachel, with a 
confdence score between 97.5% and 99.2%.” 

6 Conclusion 

It is not uncommon for contemporary biometric systems to have more than one match below the matching 
threshold, or to have two or more matches having close matching scores. This is especially true for the 
systems that store large quantities of identities and are applied to measure loosely-constrained biometric 
traits, as in stand-o� biometrics. It is therefore important for such systems that their biometric recognition 
decision be accompanied by a meaningful confdence measure. 

In this paper we have shown how a confdence score can be assigned to the output of a biometric system 
using probability-based scores. The proposed calibrated confdence scoring, which can be used either as a 
post-processing flter or embedded directly into a matching algorithm, is demonstrated to improve the overall 
performance of a biometric system. 

The derived theoretical proof for the performance improvement is well supported by the actual data 
obtained from real-life testing of biometric systems. In our analysis of this real data set, we were able to 
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decrease the EER by nearly 50% and the AUC by nearly 40%, by simply applying the proposed calibration 
function to the default matching score outputs. Our approach promotes the multi-order performance analysis 
introduced in [4, 5] and establishes a concrete example of an Order-3 biometric system. 
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