

EXPLORING ORAL INSULIN DELIVERY VIA MICROENCAPSULATION

JULIANNA PRICE &

MENTOR DR.AMY XU

UNIVERSITY OF MARYLAND | NIST INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH National Institute of Standards and Technology U.S. Department of Commerce

What is Insulin? What does it do?

Ē

Research Methods

Results

Future Research

OVERVIEW

INSULIN

- Naturally-secreted peptide hormone
- Insulin hexamers are the storage form in the system
- Used for the treatment of diabetes mellitus types I and 2

MODES OF ADMINISTRATION

Current

Insulin Pen

Ę

- Continuous subcutaneous insulin infusion
- Vial and Syringe

Future

- Inhalation
- Nasal
- Oral

2

MATERIALS

- Use natural biomacromolecules as materials to make the nanoparticles
- Biomacromolecules are advantageous because they have higher biocompatibility as well as biodegradability

METHOD I

Ļ

- Dissolving Ins into HCL and adjusting pH to 8.
- Mix Ins into CaCl2 and Alginate (pH 5.1) in different ratios utilizing the sonicator
- Mix previous solution into Chitosan solution (pH ~5.6) and sonicate

ENCAPSULATION EFFICIENCY METHOD I

Beer's Law Absorbance=εLc

Pathlength

Extinction coefficient

Concentration

Ę

Gastrointestinal Tract

Targeted Delivery System:

- No release (protected state) of insulin in acidic stomach environment
- Release of insulin in small intestine

Method 1 release results

METHOD 2

Ę

PARAMETER OPTIMIZATION (METHOD 2)

Sample	1	2	3	4	5	6	7	8	9	10	11	12	13
Content (all inc. Ins)	Zn/ Buffer	Zn/2 Pectin	Zn/ I 0 Pec.	Zn/ .25 Alg.	Zn/ .75 Alg	Zn/Ze Buffer	Zn/Ze/ 2 Pectin	Zn/Ze 10 pec	Zn/Ze/ .25 Alg	Zn/Ze/ .75 Alg	.75 Alg	Buff.	10 Pec.
Transmitta nce % (λ 630)		80.5	81.6	66.4	69.0	39.8	33.3		12.2	9.2	80.7	100	84.2

- Increased turbidity/Decreased Transmittance = Increased nanoparticle formation
- Zein, Zn and a polysaccharide are important factors to increased nanoparticle formation/stabilization
- Determination that 2/10mg Pectin and .25/.75mg Alginate are best test samples

Ļ

 Multiple bands indicating defragmentation

Lane	I	2	3	4	5	6	8	9	10	11	12
Encapsula tion efficiency (%)	0	86.32	89.45	81.20	77.62	10.49	87.71	87.14	94.78	95.69	Defragmentation of Insulin
Sample	Insulin+Z n into Buf fer as Co ntrol	Insulin+Z n into 2 mg/ml Pectin	Insulin+Z n into 10 mg/ml Pectin	Insulin+Z n into 0.2 5mg/ml A Iginate	Insulin+Z n into 0.7 5mg/ml A Iginate	Insulin+Z n+Zein i nto Buffer	Insulin+Z n+Zein in to 2mg/ml P ectin	Insulin+ Zn+Zein into I Omg/ml Pectin	Insulin+Z n+Zein i nto 0.25mg/ ml Algina te	Insulin+Z n+Zein i nto 0.75 mg/ml Al ginate	Defragmentation of Insulin antisolvent int o Buffer

Ę

ENCAPSULATION EFFICIENCY

Method 2 SANS Results

Model: Guinier Porod

Ļ

Coating Polysaccharide	Insulin:Zn I:3	Insulin:Zn I:9
2 mg/mL Pectin	178.8	126.3
10 mg/mL Pectin	130.9	73.5
0.25 Alginate	209.3	207.8 ©
0.75 Alginate	174.5	161.7

SANS Analysis

Particles with various Rg are formed
Smaller particles are formed with increasing amount of polysaccharide as well as increasing Insulin to Zinc ratio

F

Method 2 release results

Conclusions: parameters need to be tuned so that targeted release can be achieved.

Perhaps coat the nanoparticle with multiple layers of polysaccharide so that gel matrix is formed, which, from previous study to be beneficial in sustained release of insulin.

> Insulin 5.8 kDa

CONCLUSIONS & FUTURE STUDIES

- CaCl2 aided in the formation of insulin hexomers (MI)
- A lower concentration of CaCl2 provided a better insulin release system (MI)
- A higher concentration of polysaccaride provided better nanoparticle formation (M2)
- Zinc is important to avoid insulin degradation as well as nanoparticle formation (M2)
- Zein caused insulin degradation in the digestive system release

- Further optimization of method 2 nanoparticle formation to improve polysaccharide concentrations/insulin release in digestive system
- In-vitro nanoparticle release

ACKNOWLEDGEMENTS

- Dr.Amy Xu
- Dr.Yimin
- Shark Tank & all of NCNR SURFERS

Standards and Technology

U.S. Department of Commerce

UNIVERSITY OF MARYLAND | NIST INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH