



# Entropy and Experimental Design

BY WILLIAM GOLDING

MENTOR PAUL KIENZLE

# Motivation

- •Measurement is expensive and time consuming
- •We want to optimize the amount of information from an experiment against the cost of performing the experiment



### Information—Shannon Entropy

$$H(\mathbf{X}) = -\sum_{i \in X} p(x_i) \log_2 p(x_i)$$

 $H(X) = \log_2 n$  if p is a uniform distribution



### Information—Differential Entropy





# Bumps Example

#### Create a model for experiment and simulate data



### Bumps Example

#### •Fit the data and calculate the entropy on the posterior distributions



### Reflectivity and SANS Model



### Reflectivity and SANS Entropy



### Reflectivity with Nuisance Parameters

#### Entropy decreases linearly with number of contrasts



# Future Work

- Improve entropy calculations for large numbers of parameters
- Investigate why the reflectivity model causes entropy to decrease linearly as the number of contrasts grows
- Investigate influence of number of parameters on entropy calculations
- Apply entropy to more interesting reflectivity problems and other experiment types

### Acknowledgments

- •Paul Kienzle
- •Julie Borchers
- NIST and NCNR
- •NSF and CHRNS



