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Quick background — flow visualization and scientific imaging

Many uses in the Surface and Trace Chemical Analysis Group, NIST

Schlieren imaging, high speed videography, laser-sheet imaging
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Two visualization methods

Laser-sheet visualization
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Created fluorescently tagged, mock drug evidence Lasers and optics help illuminate microparticles
and had examiners handle it as they normally would. during net-weight operations. Provides 2D slice of

Recorded the entire process under a blacklight the transport of particles during these activities.
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Fluorescent powder visualization
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Take-aways from fluorescent power experiments

- — —

* Net weights were quickly identified as one ofthe most
concerning practices

* Emptying the entire contents ofthe drug evidence to
obtain the weight of the material (powder) without the
packaging
* Required for prosecution based on weight - 1

 Repackaging ofevidence also ofconcern
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Laser-sheet visualization ~2 g powder
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Measuring the Distribution

Replicate 1 Replicate 2 Replicate 3

Wet swabbing was completed in a
grid-pattern to collect residue that
settled onto the bench after several
minutes
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As expected, the highest background
was observed in area immediately
surrounding the weigh paper

Surface concentrations in excess of
10 pg/in? observed

Benzocaine

Airflow was not controlled in these
experiments
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Laser-sheet visualization ~100 g powder
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New contamination visualization laboratory

New facility that improves visualization and imaging techniques

Current eflforts are focused on:

* Particulate transport in the third

dimension? _
* Expanding studies to other f\

workplace processes K ,

* Visualize process modifications that
minimize exposure risks
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Summary

Our goalis to increase the safety of drug chemists due to the increasing
presence of extremely toxic substances

We are developing imaging tools and techniques that help visualize the
processes that mcrease exposure risk, and evaluate the efficacy of process
modifications

Collaborations with other agencies have aided in nterpretation of analyst
risk and development of best practices

While the current focus 1s on seized drugs these processes and approaches
could easily be translated to other areas
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Thanks for istening!

matthew.staymates@nist.gov .
Questions or Comments?

Many thanks to Amber Burns (Maryland State Police) and Ed Sisco (NIST)!

A snapshot of drug background levels

A multi-laboratory investigation of
drug background levels

g Visualizing particle spread

Net weights: Visualizing and
quantifying

2 4 Cleaning agents removing drugs
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Development of Novel Workflows for
Seized Drug Analysis
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Certan commercial products are identified in order to adequately specify the procedure; this
does not mply endorsement or recommendation by NIST, nor does it imply that such products
are necessarily the best available for the purpose.

Certan commercial products are identified in order to adequately specify the procedure; this
does not imply endorsement or recommendation by Maryland State Police, nor does it imply that
such products are necessarily the best available for the purpose.
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National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The
opinions, findings, and conclusions or recommendations expressed in this
publication/program/exhibition are those ofthe author(s) and do not necessarily reflect
those ofthe Department of Justice.



Novel Workflows

Data Analysis & Interpretation

Atlas Logistic Network

Screening Approaches — Expanding DART-MS Capabilities
Confirmatory Analyses — Targeted GC-MS Methods



Worktlow Shift

Alarge part ofthe development and immplementation of this work has been done m collaboration
with Maryland State Police, Forensic Sciences Division

Current Approach
Screening with GC-MS
GO AT GC-FID Confirmation
New Approach
Screening with Targeted
DART-MS or GC-MS

TD-DART-MS Confirmation




Expanding DART-MS Capabilties
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DART-MS m Forensics

With the growing presence ofnovel drugs and mcreased
complexity in cases, some labs are searching for technologies to
aid in rapid screening

* DART-MS has been demonstrated as a powerful tool for this
purpose

* Provides presumptive information in seconds with no sample
preparation

* More specific than other presumptive tests

* Significant research eflort at NIST surrounding DART-MS
and its applications m the field
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What is DART-MS?

* One ofmany ambient ionization mass spectrometry
Sources

* Conventional DART-MS uses a heated helum
metastable gas stream for sample desorption and
ionization

* Allows for analysis of samples with minimal
preparation or pre-treatment

* Analysistime 1 sto 5 s

* Typical LODs ppm to ppb

* Can be coupled to a range of
mass spectrometers

DART-MS — Direct Analysis in
Real Time Mass Spectrometry



DART-MS Use Cases
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DART-MS Use Cases

Utilize DART-MS to identify compounds that were completely not resolvable m the GC chromatograph
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Vahdation Package Development

Ongomng efforts to develop a DART-MS Validation package

Includes validation plan, data workup document, SOPs, maintenance manuals, search lsts, and
training questions

Available to labs who are mterested
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Non-Traditional TD-DART-MS

* Manyrecent research projects have
used a TD-DART-MS configuration

e (@Glass T-junction mounted coupled
with Vapur interface

 Used to pull analyte towards
mass spectrometer

e Thermaldesorber attached to T-

junction
 Allows for wipe-based sample
msertion

 Entire set-up can be removed and
switched to traditional DART-MS in
under 1 minute

* Increase sensitivity, reproducibility,
safety

 Use nitrogen as the source gas

Vapur
Interface

Glass “T”
Junction

DART Source

1

Temperature Mass
Controlled Spectrometer
Thermal Interface

Desorber



Evidence Screenmg Study

* To date >200 items sampled Outer Bag Inner Packaging ~ Extract Analysis
° Inner packaging found to be the most _ Bag or bottle Sample dissolved in
) containing powder, Methanol
representative (92 % accuracy) ol lart maera (Ground Truth)
. e . treet Packaging >

100 % so far in determming the presence of

S}’ﬂtbetlc OplbIdS Bag evidence was . > TD-DART-MS <«

. . i i - (What's there?)

* Typically enough material to saturate the MS or S <

IMS

@0\3\?*
 False identifications attributed to plant material in ‘ \

foilbags or cases with large amounts of cocaine

Inner Packaging Extract Percent Occurrence Result Type
Drug Detected Same Drug Detected 79 % (n=151) True Posttive
Drug Detected No Drug Detected 1.5 % (n =3) False Posttive
Drug Detected Different Drug Detected 25% n=Y95) False Posttive

No Drug Detected Drug Detected 4% n="7) False Negative
No Drug Detected No Drug Detected 13 % (n =25) True Negative

Overall Accuracy: 92 %



Recent Application: Rodenticides m Drugs NIST
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Recent Application: Seed-based Toxins

Investigated the detection ofseed-based toxmns such as scopolamine, oleandrin, hyoscyamine, and
digitoxin

Several toxins (oleandrm, digoxin, digitoxin) performed better in negative ionization mode

Compared different platforms (DART, TD-DART, IRTD-DART) to identify the most useful approach
for this application
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Targeted GC-MS Methods

v

[Parameter Optimization]

Working with MSP-FSD to develop targeted GC-MS
methods for different compound classes.

The goalis to develop methods that:

1) Enhance separation ofisomers

2) Increase sensitivity

3) Ifpossible, shorten runtimes

4) Standardize reporting / methods across labs -
Methods also build in retention time locking and .v

retention indices to improve rigor



Test Mixtures

* Worked with Cayman Chemical
to develop custom text mixtures
for each class

* Span range ofelution times
within class

* Include isomers to be able to
measure resolution

Opioids
m-FIBF
p-FIBF
Cyclopropyl Fentanyl
Crotonyl Fentanyl
Carfentanil
Methoxyacetyl Fentanyl
Furanyl Fentanyl
Etizolam
Noscapine

Benzodioxole Fentanyl

Cathinones
Phentermine
Methamphetamine
Dimethylone
Butylone
Ethylone
Dibutylone
Pentylone
Dimethylpentylone
Ethylpentylone

Cannabmoids
FUB-AMB
MDMB-FUBINACA
EMB-FUBINACA
MMB2201
ADB-FUBINACA
AB-FUBINACA
5F-ADBICA
5F-ABICA



Column Comparison

Uniform method
1) 100 °C for 0 min
* First portion of study looked to identify the Temperature Program | 2) Ramp at 30 °C/min to 300 °C
effect of different columns on test mixture 3) Hold for 24 min
response Flow Rate 1.8 mL/min (Constant Flow)
Injection Volume 1 uL
« Evaluated six different columns Inlet Temperature 275 °C
- DBIUIL DB5, DB5UI DB35, DB200 Split Ratio 207
’ ’ ’ Transfer Line 300 °C
and VF1701ms Quad Temperature 150 °C
Source Temperature 230 °C
« Utilized a uniform method across all Tune Mode stune
columns to keep other parameters fixed Solvent Delay 1.30 min
Mass Scan Range m/z 40 —m/z 550
Threshold 150
Scan Speed N=2
Total Run Time 30.667 min




Column Comparison

A Retention Time (%)

Peak Area
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Once a column was chosen, studies were completed to optimize temperature and flow programs.



Other Settmgs — Design of Experiments
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Fmnal Optmization

* Results ofrelevant parameters from the DOE were
furthered refined

* Fmal optimization looked at tune type

* After optimization, ran expanded panel of drugs to
ensure method parameters worked
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Approxmate LODs

Opioids
m-FIBF
p-FIBF
Fentanyl
Cyclopropyl Fent.
Carfentanil
Crotonyl Fentanyl

Methoxyacetyl Fent.

Furanyl Fentanyl
Etizolam

Noscapine

Benzodioxole Fent.

LOD (pg/mL)
1

1
1
1
10
10
10
1
25

25
10

Cathinones

Phentermine
Methamphetamine
Dimethylone
Butylone
Ethylone
Dibutylone
Pentylone
Dimethylpentylone
Ethylpentylone

LOD (pg/mL)

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

Cannabinoids
FUB-AMB
MDMB-FUBINACA
EMB-FUBINACA
MMB2201
ADB-FUBINACA
AB-FUBINACA
S5F-ADBICA
S5F-ABICA

LOD (pg/mL)
1

1
5
1
10
10

10
10



Comparison to Current Method

% Change (Average) % RSD (RT)
Opioids 327 % 37 % 135 % 93 %
Cathmnones 66 % -19 % 262 % 0 %
Cannabmoids 6518 % 4045 % 220 % 537 %
50 15 40
Opioids Cathinones Cannabinoids
40 i . 30 1 i
330 1 107 < ]
%20 | % gzo . B
5 41
10 + 10 -
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NV 2 o WP P g AR %9@\%,\\ 3.4 45 56 67 78 89 12 23 34 45 56 67 7-8
A Compound # Compound #

Compound #

OCurrent OTarget OCurrent OTarget
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Comparison to Current Methods
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Compound Expansion

Cannabmoids
54 Compounds to Date

L JLJ\M(\ | . a4 X

NN w e s s
I I I N B

48 5 52 54 86 58 6 é 64 66 68 7 712 74 16 718 5 82 84 86 88 O 92 94
s (%) vs. Acaquisition Time (min)

Cathinones
61 Compounds to Date

—

| ~
doe N

Inus

P
‘s‘zdddddds‘s

771 J2 73 Ja

Once developed,
additional compounds
were analyzed

* Made adjustments to
methods as needed

Replicate analyses to
evaluate locked RT and
RI
* Build library with RT
and Rl information

All compounds had
>1% RT difference or
differentiable MS



Compound Expansion

Opioids
212 Compounds to Date
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« Utiized Fentanyl Analog Screening kit for expansion of opioid method

* Method has 8 pars of compounds that have similar MS with <1 % RT difference
* Six sets were ortho / meta isomer pairs

* Currently building out automated data analysis and reporting features



Workilow Comparison

The next step ofthis work is looking to quantify a comparison between the current
workflow and a novel workflow.

 Take a subset ofcases and have drug chemists analyze using one ofthe workflows
 Evaluate the level of detail gained at each step
*  Quantify the time taken for each step

* Identify strengths and weaknesses in the novel workflow



Thank you.

edward.sisco@nist.gov
DARTdata@nist.gov
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~ NIST20 EI MS Library MS Software

= . +40K Coverage = o New Release g

,_ It ==
Quality Assurance

o R - § v

NIST/EPA/NIH GC-MS

T "

Why Upgrade to NIST20 Comprehensive Every new spectrum reviewed by

. 350,704 spectra (44,082 new) . 30,999 compounds (17191 new) O TS

+ 306,643 compounds (39,729 new) . 185,602 precursor ions (67,520 new) New compounds chosen for wide
Library Growth Concentrated in [REUEZVEEEEERcRRRAEE RN e

+ Human & plant metabolites « Instruments Used: lon Trap, « MS Search v. 2.4 with hybrid search
. Legal & illicit drugs Collision Cell . AMDIS (GC-MS)

> Cemsrl anelies) fieres: Wide Coverage « MS Interpreter Major Revision

Gas Chromatography Retention [RSEEEEEULES Email massspec@nist.gov

Index and Methods Library Pharmaceuticals Web chemdatanistgov

. 447289 Rl values Industrial Surfactants e

*+ 139,382 compounds Glycans-Lipids-Sugars

Pesticides
Amino Acids, Di- & Tryptic Tri-Peptides

NIST

National Institute of | H H “ ““‘ T
Standards and Technology |V1ass Spectrometry
U.S. Department of Commerce [Data Center



DART-MS
Forensics Database

Anew database available now
focus on NPS’s, synthetic opioids, cutting agents
spectra measured at multiple orifice energies

Developed new manual and automated
evaluation workflow

Implemented workflow to facilitate rapid
updating of database

open-source s oftware

Database and workflow available from
DARTdata@nist.gov

NEW DART-MS
Forensic

database:
663 compounds,
1989 spectra

Verification of
Compound using
GC-MS

J

DART-MS Manual
Measurement ‘ Evaluation

=)

Automated
Evaluation

-

| Re-measure Due to Data Quality I

Inclusion into
Database

:

Manual
Curation
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EI-MS: Fentanyl Classifier

Mass spectral library searching

(1) Measure Similarity (2) Rank by Similarity

| 4
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) 4

r'e




EI-MS: Fentanyl Classifier

Mass spectral similarity mapping

0000000

@ aq qu ch qu seq qu qu
Q Sqa 1 Sba Sca Sda sea Sfa sga
G Sqb Sab 1 Scb Sdb  Seb Stb Sgb
G ch Sac Sbc 1 Sdc Sec Sfc Sgc
° Sqd Sad Spd Scd 1 Sed Std Sed
e Sqe Sae Spe Sce Sde 1 Ste Sge
° Sqf Saf Spf Scf Sdf Sef 1 Sgf
G Sag Sag Sbg Scg Sdg Seg Stg 1



EI-MS: Fentanyl Classifier

Mass spectral similarity mapping




EI-MS: Fentanyl Classifier

b. Acetylfentanyl c. Para-methylfentanyl
(Type | Fentanyl Analog) (Type | Fentanyl Analog)

WOy Vs

d. Para-methylacetylfentany]
(Type Il Fentanyl Analog)

Examples of fentanyl and fentanyl analogs, with colored shapes demonstrating the sites
at which the analogs differ from the fentanyl

g b Mod Site
L R
N" 0
) Group 2 c
g - b
E
o~ :u.,
o
)
o | Group 1
o R
Group 3 e
< B 7%%
N P i =
S A N A
V,oa
K 3
|
Q
©
=
| I I I I [ I
06 04 02 00 02 04 06

Example of 2D mass spectral similarity map created by the NIST Fentanyl Classifier. Each circle
represents a mass spectrum. Based on where a query spectrum lands in this space, an analyst can
determine whether it is a fentanyl analog (with up to two modifications) or not.

Software Availability:

1. NIST Fentanyl Classifier (2020):
http://github.com/asm3-nist/FentanylClassifier

Relevant Publications:

1. Moorthy et. al. "Combining fragment-ion and
neutral-loss matching during mass spectral library
searching: A new general purpose algorithm
applicable toillicit drug identification." Analytical
chemistry 89, no. 24 (2017): 13261-13268.

2. Moorthy et. al. "Mass spectral similarity mapping
applied to fentanyl analogs." Forensic Chemistry 19
(2020): 100237.

3. Moorthy & Kearsley. ”Pattern similarity measures
applied to mass spectra”. To appear in “Progress in
Industrial Mathematics” (2021)

4. Kearsley & Moorthy. “Mathematics and Mass
Spectra: Model problems to study the Fentanyl
epidemic”. Submitted July 2021.
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Search Results Instructions

Fentanyl Classifier

The Fentanyl Classifier is a prototype implementation of "augmented mass spectral library searching". The software was designed for demonstration purposes. The
authors cannot guarantee the accuracy of results generated using the Fentanyl Classifier, and cannot validate claims of others using this software.

Choose Query Spectrum (MSP File)

248327 MSP

Potential structure based on library search results. Diselaimer: The authors do not guarantee Ma malecular weight information available fram Query MSP. An estimate of 350 Da was generated by adding 91 Da to the highest mass with
the accuracy of this result or elaims of others based on results generated using this tool. intensity greater than 800,
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o Marme: para-Methylfentanyl

3 Farmula: C23H30NZO M ‘\/\\
5

o A O Exact 350.236

g .. - Mass:

2 sl

. o] N
o | o4 b MW 350 N
5 Wt Boa
< Wi InChikey:  XHWYYMNEJCMADE-
e . UHEFFAOYSA-N
oy

-0.6 -04 0.2 0.0 0.2 0.4

-0.2
4

0.4




127.0.0.1:7777 #tab-3309-2

Search Results Instructions

Fentanyl Classifier

The Fentanyl Classifier is a prototype implementation of "augmented mass spectral library searching". The software was designed for demonstration purposes. The
authors cannot guarantee the accuracy of results generated using the Fentanyl Classifier, and cannot validate claims of others using this software.

Choose Query Spectrum (MSP File)

synthTypelE.MSP

Patential structure based on library search results. Diselaimer: The authers do not guarantee N malecular welght information available fram Query MSP. An estimate of 352 Da was generated by adding 91 Da to the highest mass with
the accuracy of this result or claims of others based on results generated using this toal. intensity greater than 800,
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miz
Hit List Hit Map Fentanyl Structure Definition
o
Library Compound: [ ‘
=
o Name: Isabutyryl fentanyl
= Formula: C23HI0N2Z0 M
n B \/\\
L g = Exact 350.236
12 “‘5. a » Mass:
0] N
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e 5w o InChiKey:  WRPFPNIHTOSMKLU-
i, @ UHFFFADYSA-N
o u il N
< " f
=
q)

-0.6 0.4 -0.2 0.0 0.2 0.4



DART-MS: Inverted Search Procedure

DART-MS Spectral Database (pure compounds)

DART-MS

Spectra of
. Analyte
GIVEN: ‘ o
L

il
bbbl catoin b

Assumption I: The component molecules contained in a mixture will each present an [M + H]" peak in the low
energy spectrum and the relative intensity of these peaks will be greater than a threshold intensity.

12



DART-MS: Inverted Search Procedure

Assumption 2a:

Reference mass spectra of
the component molecules
contained in the analyte
are available in a
searchable database.

Relative Intensity, %

40 60 80 100

20

el Ldu_llML.M__ULJMl..m..LL-.L..L. S S 1 U
T

I T I T
100 200 300 400 500

m/z

(q)

Assumption 2b:

The difference between
protonated molecule m/z
values of database entries
and those observed in the
query is accurate to a
known resolution + €.

13



DART-MS: Inverted Search Procedure

Target: m,

~ (a)
':% 8
2 . L
o wdu JALu..LL,L O B
0 = o P By

L,

bm L, = g(\f1(CI» L4, q,

’ q' L41 P})i\fZ (q; L4' )

weighted fraction of abun

dance ex

plaine

d

L,

J\

,C[,L4, P),fg(q,L4

?

|

weighted mass bias

|

mass difference
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NIST DART-MS Viewer Search Tool

The NIST DART-MS Database Search Tool (DST) is an open-source research tool for analyzing DART-MS spectra of seized drugs. The authors cannot guarantee
the accuracy nor validate the claims of others using results generated by this software.

For help or more information: dartdata@nist.gov

Search Mode:

) Pure Compound @® Mixture Analysis

i Advanced Collapsed Query Mass Spectra

=3 vy v
These settings can be adjusted to address expected
variations in MS sensitivity and resolution. 2 |
=
min abundance of targets (mixture analysis) %‘ 2
= e £330V
001 0.25 1 E * 460V
: o o 490V
T =
T
o
8 -
m/z tolerance
[J Integer resolution spectra. o - 4 Al e e
T T T T T T
[0.005 | o1 100 200 300 400 500 600 700

-
miz

Target 1 Target 2 Target 3

Mass-to-charge: 11%9.085
Relative intensity: 35.4 %.

No matches in database.
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Summary of Tools

AMDIS: Automates extraction of GC-MS data files to generate
consistent/reproducible mass spectra.

- Built-in “standard” library search procedure

MS SEARCH/Interpreter: A comprehensive tool for interacting
with mass spectral libraries, including a variety of useful search
algorithms and data interpretation tools.

Fentanyl Classifier: A tool specifically for interacting with mass
spectra of potential fentanyl analogs, attempting to localize the
site of modification.

Available: https://github.com/asm3-nist/FentanylClassifier

Inverted Search Algorithm: A new method currently in
preparation for identifying components in DART-MS.

For status updates: DARTdata@nist.gov

16
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Questions?

arun.moorthy@nist.gov
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NMR at a Glance

J Powerful Structure Elucidation Tool :
* NMR Active Nuclei (Spin %) " o w ) O
° 1H, 13C, 15N 19|:’ 31P mam|y (é o(ﬁN/l/H
* 2D experiments offer a wealth of connectivity information s I
e COSY: 1H-1H single bond correlations P
 TOCSY: 'H-'H multi-bond correlations e | S
* HSQC: 1H-X single-bond single bond connectivity ] » il
* HMBC,HMQC: 'H-X multi-bond single bond connectivity . | t
There are MANY more methods including variants of these and others. e
1 Analytical Tool I
* Quantification S
e Absolute purity determinations against a reference material 1H

e Quantification of multiple compounds from a single internal (or external) standard

* Powerful screening method for unknowns
* In most cases, if it’s soluble and has a proton you can see it




Benchtop NMR

* 40 — 90 MHz Permanent Magnet
Systems

* Range from ~ S40K - S100K
* No cryogens, little maintenance

* Easy to Use
* Portable to varying extents
* Some 2D spectral capabilities

* Drawbacks
 Sensitivity & Resolution




Fentanyl Analog Benchtop NMR Evaluation

65 fentanyl analogs and related compounds were examined
R
1 All samples were prepared in CDCl; (~5 mg in 0.6-0.7 mL)
N N—R
/ : Name MW R1 R2 R3
R3\\ Fentanyl HCI 3729 —CH>CHs —CH>CH;Ph
R, Fentanyl 336.5 —CH,CH5 —CH,CH,Ph
\ / Norfentanyl 232.3 —CH,CHs —H
a-Methyl Fentanyl HCI 387.0 —CH,CHs —CH(CH3)CH,Ph
. B—Methyl Fentanyl HCl 387.0 —CH2CH3 —CHQCH(CHQPh
General fentanyl structure labeling ortho-Methylfentanyl HCI 387.0 —CH,CHs —CH,CH,Ph -2-CHs
. . meta-Methylfentanyl HCI 387.0 —CH,CHs —CH,CH,Ph -3-CH3
functional groups and opportunity for para-Methylfentanyl HCl 3870 —CH,CHs —CH,CH,Ph -4-CHs
3-Fluorofentanyl HCI* ® 390.9 — — —
. ortho-Fluorofentanyl HCI 3909 —CH,CH3 —CH,CH,Ph -2-F
In the case of fentanyl: meta-Fluorofentanyl HCl 3009 —CHyCHs —CH,CH,Ph 3F
. para-Fluorofentanyl HCI 390.9 —CH5CH3 —CH>CH5Ph -4-F
Rl) N-proplonyl group para-Chlorofentanyl HCI 4074 —CH,CH- —CH>CH>Ph -4-Cl
R2) phenethy| group Despropionyl ortho-Fluorofentanyl 298.4 —H —CH,CH,Ph -2-F
. . Despropionyl meta-Fluorofentanyl 298.4 —H —CH,CH,Ph -3-F
R3) aniline rng Despropionyl para-Fluorofentanyl 298.4 —H —CH,CH,Ph -4-F
. -1 . Butyryl Fentanyl HCI 387.0 —CH5CH,CH3 —CH;CH,Ph
R4) plperldme rmg a-Methyl Butyryl Fentanyl HCI 401.0 —CH,CH,CHs —CH(CH3)CH,Ph
ortho-Fluorobutyryl Fentanyl HCI 405.0 —CH,CH>CH3; —CH>CH5Ph -2-F
meta-Fluorobutyryl Fentanyl HCI 405.0 —CH5CH,CH3; —CH>CH»Ph -3-F
Duffy J, Urbas A, Niemitz M, Lippa para-Fluorobutyryl Fentanyl HCI 405.0 —CH>CH2CH;3 —CH,CH,Ph -4-F
. i~ . o para-Chlorobutyryl Fentanyl HCI 4214 —CH,CH,CH3 —CH3CH,Ph -4-Cl
K, Marginean |, leferentlatlon of fentanyl para-methoxy Butyryl Fentanyl HCl 417.0 —CH,CH,CH3 —CH,CH,Ph 4-OCH;
analogues by low-field NMR spectroscopy.” Isobutyryl Fentanyl HCI 387.0 —CH(CHs)CH3 —CH,CH,Ph
Anal Chim Acta, 2019, 1049:161-169 the list goes on....



https://www.ncbi.nlm.nih.gov/pubmed/?term=Duffy%20J%5BAuthor%5D&cauthor=true&cauthor_uid=30612647
https://www.ncbi.nlm.nih.gov/pubmed/?term=Urbas%20A%5BAuthor%5D&cauthor=true&cauthor_uid=30612647
https://www.ncbi.nlm.nih.gov/pubmed/?term=Niemitz%20M%5BAuthor%5D&cauthor=true&cauthor_uid=30612647
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lippa%20K%5BAuthor%5D&cauthor=true&cauthor_uid=30612647
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marginean%20I%5BAuthor%5D&cauthor=true&cauthor_uid=30612647

Furanyl Fentanyl Analogs (1H NMR, 62 MHz)

T -~
N
- o N

M o /O
| I 1H *’”’éj \ © furanyl fentanyl
A LJL,JW/\_/L)L_
- A) para-methyl furanyl
fentanyl
B Y M
\ B) ortho-methyl furanyl
Jk LA——/L/m\k fentanyl
C |‘ Mo

C) furanyl fentanyl

Intensity

1y _— 77 Y| D) furanyl fentanyl 3-
J - "'ﬁ%_J"'-\_,4-'“'-\7_”M_MT,_x__“_._,_l_,/v J ""-Jjw-w-”"\‘ -+ | furancarboxamide isomer

o(PPM) g 7 6 5 4 3 2 1




Butyrl Fentanyl Analogs (1H NMR, 62 MHz)

~NT SN SNT SN
i N/\/ /\/J\
Aromatic H,C N- | HsC N~
Region ! '
[ Fl— | | | T T T [T | | CHS I I I
Cl F

Intensity

a-methyl
Butyryl
fentanyl

Aromatic Region 76 72 68 4 3.5 3 2.5 2 1.5 1 0.5 /O
Offset for Comparison o(PPM) 5(PPM)




Fluorofentanyl Analogs (1H NMR, 62 MHz)
Q;::Tol:tic-H I I | | | | | | U \O

| .
:JJ—/JJH/WL B) o-fluorofentanyl D
.l

0 A |
bv% C) m-fluorofentanyl /NQ
‘d C |
g N D
e
1

Intensity

|
D) p-fluorofentanyl ’NO\
E) 3-fluorofentanyl q

R P — e

o(PPM)




Fluoromethcathinone Isomers (*H, 62 MHz, MeOD)
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19F NMR Spectra (~58 MHz)
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19F NMR of Fluorinated Fentanyl Analogs (1H becoupled)

ortho-fluorofentanyl
ortho-fluoroacryl fentanyl
ortho-fluorobutyrl fentanyl
meta-fluorofentanyl
meta-fluoroisobutyrl fentanyl
meta-fluorobutyrl fentanyl
para-fluorofentanyl
para-fluoroacryl fentanyl

=

F

3-fluorofentanyl

> para-fluorobutyrl fentanyl
»
: , f W ! ,‘lr | ',I |
QF AY | Al o
==l
c
despropionyl ortho-fluorofentanyl
o despropionyl meta-fluorofentanyl H\N/I\ © _g
Q despropionyl para-fluorofentanyl = +
2 J - 5
el " N T Vogd P 1y 7 P S Lo d O S L b e T d e -1 96 '1 98 '200 '202
l | | | | | 5(PPM)
-110 -115 -120 -125 -130 -135

5(PPM)
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Can We Better Utilize 'H Spectra? " Couping Concanaor
para-fluorofentany
Atom Shift (ppm) J (Hz)

= Wealth of structural information available ECHEN —
=2 4.27 J(3-17' 5:?8

= Proton counts o) s
" Chemical shift structure correlations = 7.5
. . . . o ) )7) 6.99

" Connectivity via couplings and coupling e e i s
constants wos)  aas

. . . . J(9-11) 1.5

= |ndirect heteronuclear information through = T
COUp|Ing, eg 19F : 11 CH 7.156 ::E:E; s.:s
0%1/6R\CH3 1:12-8}] 1.5

| 7 12 CH 7.019 :[12_;;] 8.:3

13 N 12 J(13'-3) 5.78

1|4/ \\T/ERT(/ Q\QT 13'CH2  1.645 ::1:::]} 132.6219

A A N T B 0 s s

2|2| 2‘0 18" 159 "18 9 R ::1:::; 152';5259

7"  para-fluorofentanyl LT e




Predicting *H NMR Spectra

Measured vs Predicted Para-Fluorofentanyl 'TH NMR Spectra (600 MHz)

Measured
Predicted

b M
7.3 72 71 7 4.8 4.6 4.4 4.2 36 34 3.2 3 28 2 1.5 1
o(ppm)
While predicted 'H spectra can be useful for spectral interpretation they often differ quite

considerabli from observed siectra in both chemical shifts and couilini constants.




Quantum Mechanic Spectral Analysis (QMSA)

Predicted Chemical Shifts &
Coupling Constants

Atom

3CH

6 CH2

7 CH3

8CH

9CH

11 CH

12 CH

13' CH2

13" CH2

Shift (ppm)

4.27

2.082

0.94

7.019

7.156

7.156

7.019

1.645

2.031

J(3-13")
J(3-13")
)(3-17")
)(3-17")
i(6)
1(6-7)
)(7-6)
N7
J(8-9)
J(8-12)
J(8-26)
J(9-8)
J(9-11)
J(9-26)
J(11-9)
J(11-12)
J(11-26)
J(12-8)
J(12-11)
J(12-26)
J(13'-3)
J(13-13")
J(13-14)
J(13-14")
J(13"-3)
J(13"-13")
J(13"-14")
J(13"-14")

J (Hz)
5.78
5.78
5.78
5.78
14.56
7.89
7.89
6.99
8.43
1.5

8.43
1.5

1.5
8.43

1.5
8.43

5.78
12.29
8.01
5.65
5.78
12.29
5.65
8.01

-)

Long story short....
5
|
13 N 12
TN 2 T Yy

21 19 N 17

CH
?3

8 10
22 \“2‘0 18" 15 18 o7

I
23\\“

//_,_;25

24

Para-fluorofentanyi

There are a total of 117 chemical shifts
and couplings in the spin system utilized
for this molecule, the tables only
represent a subset.

Atom

3CH

6 CH2

7 CH3

8 CH

9CH

11 CH

12 CH

13" CH2

13" CH2

Fit Chemical Shifts &
Coupling Constants

Shift (ppm) J (Hz)
J(3-13") 12.3336
J(3-13") 3.6189

el 1(3-17") 12.3336
)3-17") 3.6189
(5 14.56

1.9495 1(6-7) 7.4367
)(7-6) 7.4367

— I7) 6.99
1(8-9) 8.663

7.0817 J(8-12) 3.1175
J(8-26) 4.7923
J{(9-8) 8.663

7.1451 J{9-11) 2.6866
J{(9-26) 8.0205
J{11-9) 2.6866

7.1451 J{11-12) 8.663
J{(11-26) 8.0205
J{12-8) 3.1175

7.0817 J{12-11) 8.663
J{(12-26) 4.7923
J(13'-3) 12.3336
J(13'-13") -13.6442

J(13'-14") 13.0136
J(13'-14") 4.2744
J(13"-3) 3.6189
J13"-13") -13.6442

AT J(13"-14") 3.1651
J(13"-14") 3.1276




Quantum Mechanic Spectral Analysis (QMSA)

5
0%1/6\“%
Para-fluorofentanyl | 7
N

13 12
/ \
M Y

| | | | ' * ' '
22/21\\20/19\18/%\16/1? 8\\“E!///AO\F
26
2‘?‘:\ ¢2‘5 ‘j\N’\/\ U\L
24 Measured (600 MHz) | | , | ‘ | . )
QMSA Model 2.86 2.82 2.78 2.2 2 1.04 1.02 1
|
/
| n
7.3 7.2 7.1 4.81 4.77 4.73 3.2 3.1
o(ppm) o(ppm) o(ppm)




Field Translation of tH NMR Spectra using Spin-System Models

Spin-System Evaluated at Various Field Strengths
O QMSA models are field T , L - -

independent and thus portable _/NJMU% Jél\k JVL
to different magnetic fields for JW/LM& W m
reproducing spectral M MM L

 QMSA models are free of AN NN AN | | L | 1 600
solvent and impurity signals as 737271 7 5 48 46 38 36 34 ggg
well as instrumental artifacts - M —— [ ’ M(L T T 500

~ " 100

d QMSA models are adaptive and M e W )ALL

enable handling of small MW\M M, U JAMA JLM_
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QMSA Fentalog Translation Examples (600 to 62 MHz)

Fentanyl (HCI), r? = 0.9952 butyryl fentanyl (HCI), r? = 0.99041 para-fluorofentanyl (HCI), r? = 0.99522
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QMSA Sub-Systems as Spectral Building Blocks ‘

Facilitates building new QMSA models and predicting spectra of unknowns
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Bringing it all together..... e s
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Synthetic Tryptamine Analog Example 1

Sample Spectrum Compared to 62 MHz QMSA Simulations
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Synthetic Tryptamine Analog Example 1

62 MHz QMSA Model of Sample Spectrum
| 1 | 1 | |

4-methoxy MIPT (HCI)

(62 MHz Simulation, Optimized) JLM L JUL

| Impurity
HDO

a
%‘

Intensity

?

MeOD
(62 MHz Simulation) k
[ [ [ [ [ [ [

8 7 6 5 4 3 2 1




Synthetic Tryptamine Analog Example 2

Sample Spectrum Compared to 62 MHz QMSA Simulations 62 MHz QMSA Model of Sample Spectrum
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Conclusions & Future Efforts

* Demonstrated that analogs and isomers of fentanyl and some other classes of
compounds were readily differentiated using low-field NMR spectroscopy

= Showed how °F NMR might be useful in the analysis of fluorinated compounds

= Demonstrated the potential utility of guantum mechanic spectral analysis (QMSA) to
enable exchange of H spectra between NMR instruments of different field
strengths.

Going Forward....
= Broaden effort to develop QMSA libraries by enlisting collaborators.

= Resolution and sensitivity are significantly reduced at lower magnetic fields.
Mixtures are anticipated to be challenging.
Going Forward....

= Explore whether the use of Quantum Mechanic Spectral Analysis (QMSA) will permit
effective mixture analysis with low-field NMR. Low-level components (< 5%-10%) would
likely be difficult in many situations, though.

= Continue work with forensic lab partners to evaluate “real-world” samples.
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