Communicating Measurement Results

in the Courtroom:

5/

A Matter of Error, Uncertainty and Inference

What does a measured result tell us?

BLANK TEST INTERNAL STANDARD SUBJECT SAMPLE BLANK TEST BLANK TEST SUBJECT SAMPLE BLANK TEST

. 699
WERIFIED
.080.
, 698
.082
. 683
.981
- 999

BREATH ANALYSIS

02:32 02:32 02:33 02:34 02:34 02:35 02:37 02:37

"That is an ACCURATE AND RELIABLE test result...

What does a measured result tell us?

"...I can say that this individual's BrAC exceeds a 0.08 BEYOND A REASONABLE DOUBT."

EPISTEMOLOGY

The Question of How Do We Know What We Know?

Study of knowledge and justified belief

- What is knowledge?
- How is it created?
 - What are its limitations?

NATURE OF SCIENTIFIC STATEMENTS

Citizen has a BrAC in excess of 0.08 g/210L

Intended Subject

Result Reflection of Reality

Physical State

Ogz Ogz Omz Actual BrAC

Actual Subject Result Conveys Information

Inference

Believed BrAC

Can NOT KNOW actual BrAC

Can only BELIEVE based on information & inference

Manner in which information is generated Rules of inference employed

Metric of robustness of beliefs/conclusions

EPISTEMOLOGICAL METRICS OF ROBUSTNESS

Error Analysis

NIP+ NEN

NEPTNIN

N

Systematic Error

Y

Random Error

Test Res

False Negative

True Negative

VEN + Nm

Test Result

-A

True Positive

NTP

False Positive

NIP + NFP

Uncertainty Analysis

MEANING OF PROBABILITY

10 White marbles & 10 Blue marbles

Frequentist

Relative Frequency $P(b)_{is} = 0\% - 100\%$ $P(b)_{sel} = 50\%$

Probability refers to process, frequency of selection during repeated sampling, not unique or determined event.

MEANING OF PROBABILITY

10 White marbles & 10 Blue marbles

<u>Bayesian</u> Relative Degree of Belief

> $P(b)_{is} = 50\%$ $P(b)_{sel} = 50\%$

Probability refers to state of knowledge, relative strength of belief, includes unique or determined event.

MEANING OF PROBABILITY

Frequentist

Relative Frequency

Bayesian

Relative Degree of Belief

SCIENCE IS APPLIED EPISTEMOLOGY Inference Information Empirical **Transformation Rules Scientific Laws** Input/output Prior Knowledge Heuristics Knowledge Info-Infer Network Conclusions **Justified Belief**

EPISTEMOLOGICAL METRICS IN MEASUREMENT

Measurement

Erroi

Measurement

Uncertainty

MEASUREMENT ERROR

 $\boldsymbol{\varepsilon}_{\text{meas}} = Y_{\text{true}} - y_{\text{meas}}$

MEASUREMENT ERROR

 $= \mathbf{\mathcal{E}}_{sys} + \mathbf{\mathcal{E}}_{ran}$

E_{meas}

Focus is measurand: physical reality

MEASUREMENT ERROR

Estimate as close as possible to *the* true value.

 $Y_{true} \approx y_{meas} - \mathcal{E}_{meas}$

CONFIDENCE INTERVAL

C.I. = $\overline{y}_{meas} \pm 3\Delta$

MEASUREMENT ERROR & ANALYSIS

$$\varepsilon_{\text{meas}} \neq \varepsilon_{\text{sys}} + \varepsilon_{\text{ran}}$$

Total Analytical Error $\mathcal{E}_{max} \sim b_{ias} + 3\sigma$

Confidence Interval

C.I. = $\overline{y}_{meas} \pm 3\sigma$

Welcome To

1993

JCGM 100:2008

BIPM

METPO XPS

MEASUREMENT UNCERTAINTY

 $y_{meas} = Prob. Dist.$

DETERMINING UNCERTAINTY

Uncertainty Source	Type A	Type B	
Calibration			
Ref. Mat.		.052	
Precision	. 080		
Bias	.068		
Combined Uncertainty by Type	.105	.052	
Combined Uncertainty Calibration			.117
Instrumental			
Mechanical Effects	.064		
Electronic Stability	.055		
Detector		.041	
Combined Uncertainty by Type	.084	.041	
Combined Uncertainty Instrumental			.093
Measurement			
Environmental Factors	.101		
Sampling	.112		
Operator	.064		
Measurand Effects		.055	
Combined Uncertainty by Type	.164	.055	
Combined Uncertainty Measurement			.173
Total Uncertainty			
Combined Uncertainty			.229
Expanded Uncertainty $(k=2)$			±.458

Propagation of Uncertainty:

$$y = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_{i}} \cdot \mu_{x_{i}}\right)^{2} + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial f}{\partial x_{j}} \cdot \mu_{x_{i}x_{j}}}$$

DETERMINING UNCERTAINTY

Monte Carlo : Model based iterative simulation process.

EXPRESSING UNCERTAINTY

 $Y_{true} = Y_b \pm U (99\%)$

CONFIDENCE INTERVAL \neq COVERAGE INTERVAL

MEASUREMENT UNCERTAINTY

Measurement \equiv Information Based Inference

Mapping Measurement to State of Knowledge

Coverage interval $Y_{true} = Y_b \pm U (99\%)$

ERROR V. UNCERTAINTY

<u>Measurement error</u> is an *unknowable* quantity in the realm of the *state of nature*.

<u>Measurement uncertainty</u> is a *quantifiable* parameter in the realm of the *state* of *knowledge* about nature.

FORENSIC UNCERTAINTY

IDENTICAL RESULTS

BREATH	ANALYSIS
BLANK TEST .	.000
INTERNAL STANDARD	VERIFIED
SUBJECT SAMPLE	.084
BLANK TEST	.000
EXTERNAL STANDARD	.082
BLANK TEST	.000
SUBJECT SAMPLE	.081
BLANK TEST	.000

--- BREATH ANALYSIS ---

BLANK TEST	:000
INTERNAL STANDARD	VERIFIED
SUBJECT SAMPLE	.084
BLANK TEST	000
EXTERNAL STANDARD	079
BLANK TEST	000
SUBJECT SAMPLE	.000
BLANK TEST	
	.000

IDENTICAL RESULTS, DIFFERENT MEANINGS

BREATH	ANALYSIS
BLANK TEST .	.000
INTERNAL STANDARD	VERIFIED
SUBJECT SAMPLE	.084
BLANK TEST	.000
EXTERNAL STANDARD	.082
BLANK TEST	.000
SUBJECT SAMPLE	.081
BLANK TEST	.000

BREATH ANALYSIS
BLANK TEST.000INTERNAL STANDARDVERIFIEDSUBJECT SAMPLE.084BLANK TEST.000EXTERNAL STANDARD.079BLANK TEST.000SUBJECT SAMPLE.081BLANK TEST.000

IMPORTANCE OF UNCERTAINTY

"Absent the reporting of uncertainty, there is a substantial possibility that even expert would not make a an meaningful analysis of a particular breath reading." Fausto, No. C076949 (King Co. Dist. Ct. WA - 09/20/2010).

Ted Vosk

Attorney/Consultant
(425) 753-6343 **tvosk@comcast.net**

Communicating Measurement Results in the Courtroom: A Matter of Error, Uncertainty and Inference International Symposium on Forensic Science Error Management – Detection, Measurement and Mitigation. National Institute of Standards and Technology (NIST) Arlington, VA, July 20-24, 2015