

Overview of ORNL activities on developing low-CO₂ emission building materials

NIST workshop: Fostering a circular economy and carbon sequestration for construction materials

Paula Bran Anleu, PhD Associate Technical Professional, Nuclear Structures and Construction Oak Ridge National Laboratory

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Carbon Emissions

and end-of-life of building materials and assemblies

Sources of CO₂ Emissions

Raw materials, energy, and resources

Clinker and cement manufacturing

	Quarry	Crusher	Transport ¹	Raw mill	Kiln and pre precalcir	eheater/ nator ²	Cooler ³	Cement mill	Logis- tics ⁴	Total
Energy, mega- joule/ton	40	5	40	100	3,150	C	160	285	115	3,895
CO₂, kilogram/to	3 on	1	7	17	479 Calcination process	319 Fossil fuels	28	49	22	925

¹Assumed with 1kWh/t/100m.

²Assumed global average, data from the Global Cement and Concrete Association, Getting the Numbers Right 2017.

³Assumed reciprocating grate cooler with 5kWh/t clinker.

⁴Assumed lorry transportation for average 200km.

3

Sources: https://www.mckinsey.com/industries/chemicals/our-insights/laying-the-foundation-for-zero-carbon-cement

https://www.carbonbrief.org/qa-why-cement-emissions-matter-for-climate-change

Impact of Cement Production on CO₂ Emission

Cement production is a major source of global CO₂ emissions and also generates the most emissions per revenue dollar.

Carbon Emissions from Materials (per Volume)

* Biogenic (stored) carbon in natural materials such as wood is not accounted for.

CAK RIDGE

5

Source: Ashby, M.F. (2021) Materials and the Environment – Eco-Informed Material Choice. Elsevier/ Butterworth-Heinemann, 3rd edition

Slide courtesy of Dr. Denise A. Silva

Open slide master to edit

Carbon Emissions from Materials (per Year)

Global Cement Production **4.3 Gt**

Global Concrete Production **10-30 Gt**

Source: Ashby, M.F. (2021) Materials and the Environment – Eco-Informed Material Choice. Elsevier/ Butterworth-Heinemann, 3rd edition (modified) Slide courtesy of Dr. Denise A. Silva Open slide master to edit

Building Materials Decarbonization Efforts at ORNL

Building Technologies Research and Integration Center

BUILDINGS-TO-GRID

- Low-cost wireless
 sensor technologies
- Transactive controls
- Power electronics
- Building energy models

HVAC&R AND APPLIANCES

- Develop affordable component and system technologies
- HVAC
- Water heating
- Refrigeration
- Appliances
- Thermal energy storage

ENVELOPES

- Develop affordable techniques and technologies to address heat, air, and moisture flow
- Dynamic insulation
- Thermal energy storage
- Walls, roofs, attics, foundations, sheathings, membranes, coatings, and materials

INTEGRATION

- Performance characterization at the materials, component, system and wholebuilding levels
- Evaluate prototypes under realistic conditions
- Evaluate impacts of retrofit technologies

- Mission: Deliver scientific discoveries and technical breakthroughs to accelerate building energy efficient solutions
- Established in 1993
- DOE's only designated user facility focused on building technologies
- Over 60,000 ft²
 research space
- 70+ staff members
- ~120 active projects

Open slide master to edit

Low-Carbon, Recyclable, Biobased Foam Insulation

- Polymer-based thermoset foams are mostly petroleumbased and non-recyclable
- **Goal:** Reduce embodied carbon of foam insulation
 - R-value ≥5/inch and meet common performance metrics
 - 20% to 30% lower embodied carbon
 - Partial replacement of petroleum-based polymers with biobased building blocks
 - Conduct LCAs thru project
 - Recyclable through lowenergy thermal and/or chemical processes

Preinstalled Sealant for Prefab Components

- Prefab construction lacks time-efficient method to air/water seal joints at the jobsite
- Goal: Develop a low-carbon sealant that is installed at the prefab plant and is pressure activated at the jobsite

Cross Laminated Timber (CLT)

- CLT benefits on energy use and peak demand have been minimally studied
- Goal: Quantify effects of CLTs
 - Moderation of indoor temperatures
 - Increased comfort
 - Operational energy
 - Peak demand

ORNL's large-scale environmental chamber

CLT hotel in Columbus, SC

ABS w/ 20% carbon fiber

PLA w/ wood flour

- Renewable feedstock
- Biodegradable
- ~50% cheaper than ABS/CF

Slide courtesy of Dr. Denise A. Silva

Database of Biobased Materials for Building Envelopes

- Widespread acceptance of biobased materials for building envelopes is hindered by minimal availability of hygrothermal properties needed to run simulations that prevent moisture durability problems
- **Goal:** Generate key material properties of biobased materials
 - Heat capacity
 - Thermal conductivity as a function of temperature and moisture content
 - Moisture dependent permeance
 - Sorption isotherm
 - Liquid uptake
 - Porosity
 - Airtightness

https://wufi.de/en/software/wufi-plus/

Slide courtesy

Machine-Learning (ML) Assisted Low-Carbon Building Material Development and Integration Tool

- Traditional approaches used by the construction industry to develop and integrate new building materials are slow, complex, and expensive.
- Goal: Develop a ML-assisted simulation tool
 - Material scientists determine, at an early stage, the required properties to optimize development time and cost.
 - Architects/designers have a simple, yet powerful, tool to integrate new low-carbon materials into energy
 efficient and moisture durable walls, roofs, and foundations.
 - No need to run complex hygrothermal simulations.

Converting Coal into Value-Added Products

- \succ Finding use for every molecule that is mined.
- Developing science to enable the D&D of energy-efficient and cost-effective processes (recovering rare-earth elements from coal and converting coal into high value-added
- Supporting the creation of new manufacturing industries and well-paying jobs in coal communities across the U.S.

Alkali-Activated Harvested Coal Ash Binder

- Alternative binder to Portland cement in structural and non-structural applications.
- **Goal:** demonstrate feasibility of using ponded coal ashes to produce alkali-activated binders (AABs)
 - Reduce embodied carbon of cement-based material.
 - Reduce environmental risks of coal ash ponds (> 1 billion tons of reserves)
 - Immobilization of trace metals in AABs

Kingston, TN, 2008 spill

https://insideclimatenews.org/news/04122018/toxic-coalash-spill-illness-verdict-kingston-tennessee-cleanup-workerscompensation/

Provis and Bernal (2014)

Lower carbon footprint and less environmental risk

Slide courtesy of Dr. Denise A. Silva

High Filler, Low Water Concrete Design Approach

- High binder intensity in most concrete designs → high CO₂ emissions by cement industry (8% of all man-made emissions)
- **Goal:** reduce cement consumption by >35%
 - Superior mechanical performance \rightarrow elements with smaller dimensions that use less concrete.
 - Superior concrete durability.
 - Comparable or lower cost.
 - Minimal adjustments to current concrete production practices.
 - Minimal capital investment by concrete producers.

Better performance <u>and</u> lower embodied carbon

High-Performance Concrete for Precast Insulated Panels

- Concrete is a relatively heavy construction material (~150 pcf)
 - Precast insulated panel ~62.5 psf
 - Increases required design capacity and cost of other components
 - Increases transportation and erection cost
- Goal: Decrease panel weight to 25 psf
 - Decrease concrete wythe thickness to 1.5 in
 - Decrease concrete density to 100 pcf
 - Meet required mechanical properties
 - Self-consolidating
 - \sim \$300/yd³ \rightarrow max cost set by industry partner

150 pcf concrete density 62.5 psf panel weight 100 pcf concrete density 25 psf panel weight

Large-scale trial

~40% less concrete and embodied carbon

High-Early-Strength, Self-Compacting Concrete

- Precast concrete beds used once per day
- Goal: Double plant production
 - Concrete mix that gains required mechanical properties in ¹/₂ time
 - No capital investment in plant expansion
 - Uses typical mixing procedures and commercially available materials
- 15% lower embodied carbon
 - Replaced Type I cement with Type III cement, ground-granulated blast-furnace slag, calcium sulfo-aluminate cement
 - ≤\$350/yd³ → max cost set by industry partner

Large-scale trial

Higher throughput <u>and</u> lower embodied carbon

Nuclear Structures and Construction Group Nuclear Energy and Fuel Cycle Division

Carbon Mineralization for Concrete Alternatives

Goal

Objectives

• Develop an **alternative concrete** that captures CO₂ for its strength gain

Complete characterization of material
Improve carbonation degree to at least 70%
Fabricate a CO₂-injecting-formwork for precast panels
Upscale material development

•Complete fabrication of a thin precast wall panel

Impacts

•The potential **change the cement industry** by replacing a significant share of the Portland cement production

• → ~800 kg CO₂/ton of cement vs ~460 kg CO₂/ton of quicklime

• Proof of concept already achieved a degree of carbonation of ~57%

- Parent project: 6-month, internally funded project from discussion with Prof. Sant from UCLA.
- MoU ORNL/UCLA

CAK RIDGE

Additive manufacturing of carbonated lime

Characterization: Initial results

Sample dimensions

Characterization: Initial results

- XRD at difference ages
- More carbonation with PEI than with PVA after a week
 - Barely no change in carbonation from 1 day to 1 week with PVA
- After 1 week not only calcite forms in the presence of PEI, but also aragonite

Sample	Calcium hydroxide (weight %)	Calcite (weight %)	Aragonite (weight %)	Vaterite (weight %)	Total Carbonate (weight %)
PEI_4.5%_8h	97.8 ± 0.01	2.23 ± 0.02			2.23
PEI_4.5%_1d	92.0 ± 0.01	6.14 ± 0.03	1.84 ± 0.03		7.98
PEI_4.5%_1w	6.92 ± 0.04	66.4 ± 0.02	11.10 ± 0.09	15.6 ± 0.01	93.1

Characterization: Initial results

- Sample with 4.5 % PVA
- Raman map of CaCO₃ after 1 day of carbonation
- CO₂ from top down
 - Carbon has penetrated about 50% of the sample
 - Still, lots of unreacted Ca(OH)₂

Ultrasonic monitoring of Ca(OH)₂ with 4.5% PVA

- Not straightforward
- Multiphysics phenomenon
 - Water evaporation
 - CO₂ transport

 - Mineralization

Summary and Outlook

- Successfully demonstrated the printability and the carbonization potential of polymer-enhanced Ca(OH)₂ slurries using a lab-scale printer
- Larger scale needs to be tested
- Different polymers and slurry formulations are being investigated
- CO₂ injection during mixing will be tested

CO_2 injection during mixing

35

Open slide master to edit

CO₂ Distribution Mold

Distribution grid linking holes

Several types to be tested

Fabric or mesh over the distribution grid

Summary and Outlook

- Successfully demonstrated the printability and the carbonization potential of polymer-enhanced Ca(OH)₂ slurries using a lab-scale printer
- Larger scale needs to be tested
- Different polymers and slurry formulations are being investigated
- CO₂ injection during mixing will be tested
- How does the polymer affect the mineralization of CO₂?
- How does the formed calcite interact with the tire waste?

The cement industry could cut three-quarters of its CO₂ emissions by 2050.¹

Potential CO₂ emissions and reductions,² GtCO₂ anually

CAK RIDGE National Laboratory

38

most

r to edit

Source:

https://www.mckinsey.com/industries/chemicals/our-insights/laying-the-foundation-for-zero-carbon-cement

Thank you for your attention!

Co-investigators and Contributors: Yann Le Pape, Qiyi Chen, Craig Bridges, Michael Lance, Xiao-Guang Sun, Celeste Atkins, Hongbin Sun, Adam Brooks, Elena Tajuelo Rodriguez, Parans Paranthaman, Rigoberto Advincula

