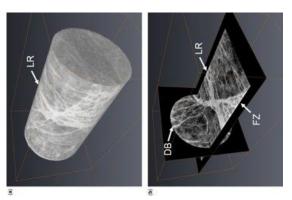
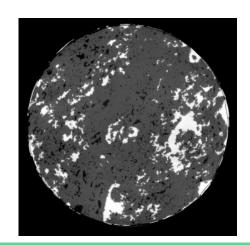
Time-Distributed Convolutional LSTM on Tomography Simulation

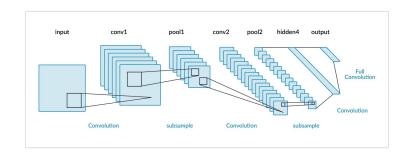

By: Alex Campero - Magruder High School

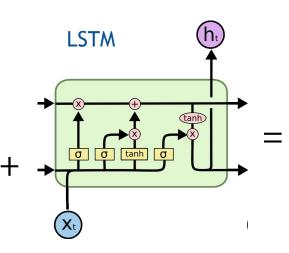
Mentor: Paul Kienzle


 Tomography: imaging of an object by using waves from different angles and positions

- Main Goal: Begin the project for frame prediction of tomographs
- Action recognition

Geology: X-ray CT


Oil and water on a rock


Neural Networks: Object Recognition

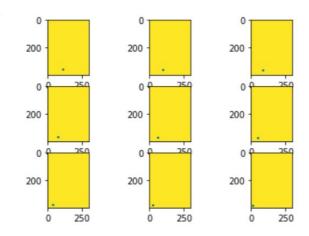
Artificial neural networks are computing systems inspired by the biological neural networks from animal brains

Convolutional Neural Network

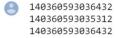
Used for video, and image recognition

 Good for processing sequences of data

ConvLSTM

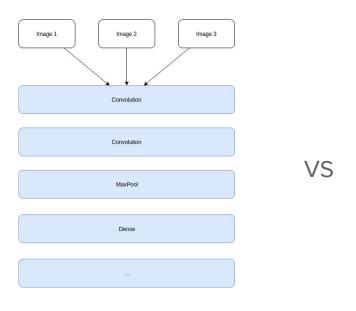

- Find the feature on each frame
- Check to see if an action is being done

Why is this important?

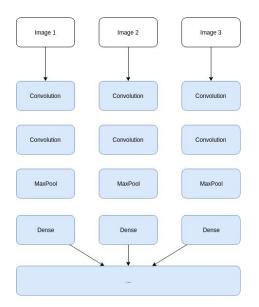

- Will help extract information from the
- Less time consuming than manual labor

Building a Simulation and Generator

- Simulation that simulates what the neutron tomography would look like
- never ending
- Generator used to feed frames into the Neural Network

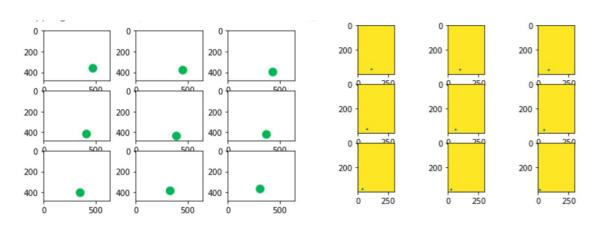



```
1 movies, labels = next_batch(3, 2)
2 for m in movies: print(id(m))
```



Time Distributed Layer

Looks at every specific frame rather than combining multiple frames in a series of data



- Merges images in layer

-Each frame is separated

Fitting the Generator to the Model

Issues:

Input requirements:

- Size requirements
- Channel numbers

Training the Neural Network

Issues:

- Was not learning at first
 - Changed number of layers and number of convolutions
- Batches and Epochs taking too long
 - Generate batches on GPU

```
Epoch 1/5
Epoch 00001: saving model to chkp/weights.01-0.56.hdf5
100/100 - 66s - loss: 0.7930 - val loss: 0.5562
Epoch 2/5
Epoch 00002: saving model to chkp/weights.02-0.14.hdf5
100/100 - 66s - loss: 0.3490 - val loss: 0.1352
Epoch 3/5
Epoch 00003: saving model to chkp/weights.03-0.56.hdf5
100/100 - 66s - loss: 0.3751 - val loss: 0.5642
Epoch 4/5
Epoch 00004: saving model to chkp/weights.04-0.50.hdf5
100/100 - 64s - loss: 0.5102 - val loss: 0.5011
Epoch 5/5
Epoch 00005: saving model to chkp/weights.05-0.43.hdf5
100/100 - 67s - loss: 0.5069 - val loss: 0.4274
```

Loss: Prediction error of NN

How this will be Implemented in the Future

- Will add autoencoders, help clear up image

- Will be used for frame prediction

Questions?

Citations/acknowledgements:

