

SIZE-DEPENDENT RESISTIVITY IN NARROW FINS AS PROBED WITH MICRO-FOUR-POINT PROBE

<u>J. BOGDANOWICZ</u>, S. FOLKERSMA, S. SERGEANT, A. SCHULZE, A. MOUSSA, C. MERCKLING, B. KUNERT W. GUO, Y. MOLS, D. H. PETERSEN, M.-L. WITTHØFT, O. HANSEN, H. H. HENRICHSEN,

P. F. NIELSEN AND W.VANDERVORST

DTU Nanotech Department of Micro- and Nanotechnology

PARADIGM SHIFTS IN THE ELECTRICAL CHARACTERIZATION OF SOURCE/DRAIN REGIONS AND EXTENSIONS

PARADIGM SHIFTS IN THE ELECTRICAL CHARACTERIZATION OF SOURCE/DRAIN REGIONS AND EXTENSIONS

MICROHALL-A300 TOOL OF CAPRES: FULLY AUTOMATED IN-LINE <u>MICRO</u> FOUR-POINT PROBE

Advantages of micro-probes:

- Better accuracy on ultra-shallow layers (reduced leakage)
- Measurements on blanket but also in pads (> $20x35 \mu m^2$)

MICROHALL-A300 TOOL OF CAPRES: FULLY AUTOMATED IN-LINE <u>MICRO</u> FOUR-POINT PROBE

Advantages of micro-probes:

- Better accuracy on ultra-shallow layers (less leakage)
- Measurements on blanket but also in pads (> $20x35 \mu m^2$)
- Microprobes can be aligned to a nm-wide conductive line

OUTLINE

• Basics

- Proof of concept : P+N Si fins
- leakage information : P+P Si fins
- III-V fins

MICRO FOUR-POINT PROBE MEASUREMENT IN CONFINED VOLUME D.H. Petersen et al., J.Appl. Phys. 104, 013710 (2008) Configuration A:

Potential distribution inside the fin

fin resistance between pins 2 and 3 is measured

ເຫາຍເ

MICRO FOUR-POINT PROBE MEASUREMENT IN CONFINED VOLUME

D.H. Petersen et al., J.Appl. Phys. 104, 013710 (2008)

Configuration A:

Potential distribution inside the fin

fin resistance between pins 2 and 3 is measured

V,

ເກາຍເ

 $L=d_{23}$

 $R_{a}=\rho/t\times d_{23}/W$

R,

W<<d₂₃

fin resistance between pins 2 and 3 is measured
Same resistance measured in a and b configurations (Ra/Rb=I)

R_a/R_b RATIO AND DIMENSIONALITY OF THE CURRENT FLOW

- Ra/Rb=1.00 \rightarrow 1D current flow (fin)
- Ra/Rb=1.26 → 2D current flow (blanket)
- Information about leakage can be extracted based on Ra/Rb>I

- Basics
- Proof of concept : P+N Si fins
- leakage information : P+P Si fins
- III-V fins

B-IMPLANTED FINS : EXPERIMENTAL

B-IMPLANTED FINS : EXPERIMENTAL

- All widths captured
- Measured resistance increases with decreasing width

່ເກາຍເ

B-IMPLANTED FINS : EXPERIMENT VS THEORY

 Resistor model fits the measured data → resistivity +- independent from dimension (mostly geometrical confinement)

B-IMPLANTED FINS : EXPERIMENT VS THEORY

- Resistor model fits the measured data → resistivity +- independent from dimension (mostly geometrical confinement)
- Annealing lowers the measured fin resistance

SHEET RESISTANCE VS FIN WIDTH: B-IMPLANTED Si FINS

Long low-T anneal : dimension-dependent R_s
 → Depletion effect, degraded mobility, defects, dopant diffusion?
 Laser anneal → R_s ~ independent from width

OUTLINE

- Basics
- Proof of concept : P+N Si fins
- leakage information : P+P Si fins
- III-V fins

B-IMPLANTED Si FINS : SIMULATIONS (P+P)

່ເກາຍເ

۲

B-IMPLANTED FINS : EXPERIMENT VS THEORY

Discrepancies theory vs experiment:

- Higher resistance is measured, especially in narrow fins
- More confined (ID) current is measured in narrow fins
- \rightarrow Fins get gradually isolated from substrate as width decreases

SURFACE DEPLETION DUE TO INTERFACE STATES (IS) AT THE Si-SiO₂ INTERFACES:

SURFACE DEPLETION DUE TO INTERFACE STATES (IS) AT THE Si-SiO₂ INTERFACES:

SURFACE DEPLETION DUE TO INTERFACE STATES (IS) AT THE Si-SiO₂ INTERFACES:

B-IMPLANTED FINS : EXPERIMENT VS THEORY

- Interface states
 → dimension-dependent current flow in P+P fins

 (c)
- Leakage currents are strongly reduced in confined volumes (Si)

ເກາຍc

DEPLETION IN HIGHLY P-DOPED REGION

Resistor model fails to explain the increase in Rs with decreasing width

DEPLETION IN HIGHLY P-DOPED REGION

unec

Resistor model fails to explain the increase in Rs with decreasing width

The increase in apparent sheet resistance is (partly) due to IS-induced depletion

DEPLETION IN HIGHLY P-DOPED REGION

- Resistor model fails to explain the increase in Rs with decreasing width
- The increase in apparent sheet resistance is (partly) due to IS-induced depletion
- Dramatic impact of depletion expected on narrowest fins

OUTLINE

- Basics
- Proof of concept : P+N Si fins
- leakage information : P+P Si fins
- III-V fins

່ເກາຍເ

- Doping reduces measured fin resistance
- R_s is 2x to 4x lower than in the pad

ເກາຍດ

- Doping reduces measured fin resistance
- R_s is 2x to 4x lower than in the pad
- R_s drops when fin width decreases

300-NM WIDE In_XGa_{1-X}As FINS GROWN EPITAXIALLY IN TRENCHES

Rs varies with doping and In content

ເງຍອ

300-NM WIDE In_XGa_{1-X}As FINS GROWN EPITAXIALLY IN TRENCHES

- Rs varies with doping and In content
- Pads and fins qualitatively similar but quantitatively different (up to 5x difference)

CONCLUSIONS

- In-line m4pp measurements of fins with widths down to 20 nm:
 - Sheet resistance
 - Junction leakage
- Measured resistance on B-implanted Si fins on n-Si (p+n)
 - geometrical confinement (wide fins)
 - Depletion effect in narrow fins \rightarrow 2-3X more resistive than bulk
- Measured resistance on B-implanted Si fins on p-Si (p+p)
 - Interface states → depletion region → strongly reduced leakage in narrow fins
- Outlook: uncover the physics of resistivity in confined volumes (defects, depletion effects,...)

DTU Nanotech Department of Micro- and Nanotechnology

Metrology for future 3D-technologies

www.metro4-3D.eu

This project include open access to the assessed instruments. Refer to the project website for information

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 688225.

ເຫາຍດ

embracing a better life