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A single 9Be+ ion confined in an rf (Paul) trap may be used to realize two of the

simplest quantum systems: the two-level system and the harmonic oscillator. The two-

level system is comprised of two, ground-state hyperfine electronic levels. The trapping

potential is harmonic, to a high degree of approximation, and so the ion’s motion is

that of a three-dimensional harmonic oscillator.

By coupling the ion’s motional and electronic degrees of freeedom, we can engi-

neer entanglement between these systems. This allows us to study quantum mechanics,

with all its pecularities, in a well-controlled environment. For example, we can study

the interactions of superposition states with the ion’s environment, leading to a destruc-

tion of quantum superpositions. Furthermore, this system, when scaled up to several

ions, may allow us to construct a simple “quantum computer,” which promises expo-

nential speed-up over any possible classical computer for some computational problems.

Towards this goal, we have cooled two, trapped ions to their ground state of collec-

tive motion and have entangled their electronic degrees of freedom by using their joint

motion to transfer entanglement between them.
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Chapter 1

Introduction

Quantum theory [1, 2] has been with us now for sixty-five years. It is, most physi-

cists believe, the underlying description of all physical phenomena, and it certainly is

unparallelled in the accuracy of its quantitative predictions [3] and in the breadth of

its applicability. However, certain aspects of quantum theory are, as yet, poorly un-

derstood. For instance, the transition between quantum and classical mechanics is

still elusive: in particular, the conflict between the classical phenomenon of chaos [4]

and Heisenberg’s Uncertainty Principle [2] is only beginning to be understood and re-

solved [5, 6]. And, in general, a better understanding of how the transition from a

microscopic to a macroscopic description of matter and how “emergent properties” [7]

arise, would be desirable.

Even the formulation of quantum mechanics seems paradoxical in certain respects.

In general, quantum mechanics allows for the possibility of superposition states. A classic

(though not classical!) example is the two-slit experiment [8], in which we consider light

which passes through a solid screen with two slits cut in it and then is detected on a piece

of photographic film (or some other such photo-detector). At high light intensities, the

film shows the alternating bright and dark bands due to constructive and destructive

interference from the two possible paths from the source to the film. However, if we

turn down the intensity to low levels, then we detect single photons on the film. This

implies that the photons must pass through the slits one at a time. The distribution
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of these photons, however, still follows the pattern of bright and dark bands, indicating

interference. This implies that a single photon must, in some sense, “pass” through both

slits on its way to the film or, at least, that the probability of detecting the photon at a

given location must depend on information from both paths. We say that the photon’s

path from source to film is a superposition of both possible paths, even though, if we

place a photo-detector at the location of the slits, we will only ever detect a photon at

one slit or the other. Although any particular measurement of the photon’s location

will find it at one and only one place, we see the “shadows” of superpositions reflected

in the probabilities of detecting photons at a particular location.

Even these “shadows” of superposition properties disappear when we reach the

realm of the macroscopic. And yet, if quantum mechanics is a complete theory of our

universe, it ought to describe both microscopic and macroscopic objects. To highlight

this paradox, Schrödinger proposed the gedankenexperiment involving his now-famous

cat [9]. This gedankenexperiment involves a box containing a single radioactive nucleus, a

bottle of cyanide with a trigger mechanism to release this material, and a hapless feline.

If the nucleus decays, then the trigger is activated, and the cat is killed. However,

quantum mechanically, after some period of time on the order of the half-life of the

nucleus, the nucleus must be described as being in a superposition of undecayed and

decayed. Since the state of the cat is correlated with the state of the nucleus, the cat

must be described as being in a superposition of alive and dead. We have absolutely no

evidence that cats are ever found in such a state!

Two of the main impediments to really understanding what quantum mechanics

is trying to tell us about the universe, then, are understanding the apparent disap-

pearance of superposition properties in the course of a single measurement and the

apparently complete lack of superposition behaviour in macroscopic objects. In some

sense, these issues may be the same: since we, who ultimately register the outcome of

measurements in our state of being, are macroscopic objects, it may be this fact which
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destroys superposition in measurement. But it is not entirely clear if, and how, this

might happen.

Part of the conflict on the first point seems to arise from the fact that standard

formulations of quantum mechanics interpret it as an inherently probabilistic theory,

which makes only statistical predictions: on the other hand, we appear to only experi-

ence a single reality. Particularly when dealing with separate objects whose properties

are correlated but which properties are prepared in a superposition state (so-called “en-

tangled”) systems, this interpretation can seem paradoxical. This conflict has led some

physicists (e.g. Einstein, Podolsky, and Rosen [10]) to propose that quantum mechanics

is an incomplete theory. Others of the “founding fathers” [11] disputed this contention.

According to the standard, Copenhägen interpretation, time evolution in quantum

mechanics falls into two categories. The first is unitary time evolution, described by the

Schrödinger equation. The second, which describes the outcome of measurements (by

classical-like apparatus), is the explicitly non-unitary “collapse of the wave function” to

one and only one of the measurement eigenvalues [2] and the subsequent renormalization

of the wave function.

However, the “classic” Copenhägen interpretation requires the existence of clas-

sical measuring devices, which are not described by quantum theory. Any attempt to

dispense with these necessitates positing the physical reality of the collapse of the wave

function. Quantum theory provides no explanation of how this occurs. It certainly

seems difficult to explain this through the Schrödinger equation, which is unitary. In-

deed, the “measurement paradox,” as it is called, has provoked much discussion (for

a good, “plain English” review of what the problem is, and a description of several

physicists’ approaches to resolving it, see Ref. [12]).

Physicists have proposed various ways to resolve the “measurement paradox.”

Some proposals attempt to do so with only the mathematical apparatus prescribed

by quantum theory: examples are the “many-worlds” interpretation [13, 14], the “de-



4

coherence approach” [15], and the “consistent histories” or “decoherent histories” ap-

proach [16, 17]. Others [18] posit the existence of new fundamental physical processes

or even [19] [20](Ch. 22) a different, entirely non-quantum description of the universe.

Many of these theories tie in the resolution of this paradox with the disappearance of

superposition properties in “large” objects. The detailed mechanism by which the su-

perposition properties disappear of course differs from theory to theory. For example,

in some approaches [18] “large” refers to systems with large numbers of particles. In

others [15], “large” refers to distinguishable quantum states of a system coupled to a

larger system with many degrees of freedom.

It would be desirable, therefore, to be able to study quantum mechanics in a well-

controlled environment. Perhaps, if we can simplify experiment down to the essentials,

we can obtain a more precise understanding of what quantum mechanics means. Or,

if we can control the quantum behaviour of a very simple quantum system, perhaps

we can begin to build up “quantum complexity” in a controlled manner and see how

emergent behaviours come about. In addition, experiment often demands description

in very precise terms and this can sometimes lend clarity to the essentials of a theory.

This thesis will describe experiments involving a single 9Be+ ion confined in an

rf (Paul) trap. These experiments realize two of the simplest quantum systems: the

two-level system and the harmonic oscillator. The two-level system is comprised of

two, ground-state hyperfine electronic levels. The trapping potential is harmonic, to a

high degree of approximation, and so the ion’s motion is that of a three-dimensional

harmonic oscillator. When we laser cool [21, 22, 23, 24] this motion to near its ground

state [25], the quantum properties of the motion become significant.

By coupling the ion’s motional and electronic degrees of freedom with lasers, we

can engineer entanglement between these quantum systems. Although these dynamics

can be well-described theoretically [26, 27, 28, 29, 30], they still offer many surprises.

Furthermore, if several ions are held in the trap, their Coulomb interaction causes
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their motion to become a joint property of all the ions. Thus, we can create quantum

entanglement between the ions’ electronic and motional degrees of freedom, and between

the electronic degrees of freedom of different, spatially separated ions. This allows us

to begin building up “large” quantum systems (in either of the above senses) in a well-

controlled way. We refer to this as “quantum state engineering.”

Being able to controllably engineer quantum states, and to isolate them from out-

side influences, allows us to investigate the new ideas of “quantum computation” [31,

32, 33, 34, 35, 36]. This field has grown out of the realization that “information is

physical” [37], but really took off with the discovery in the early 1990’s [38, 39] that

a computer which utilizes quantum superposition can be exponentially more efficient

at solving certain problems than any classical computer. The component parts of a

quantum computer, called “qubits,” must be well- insulated from outside influences

(which cause decoherence — the destruction of superposition) while interacting with

each other strongly enough to allow conditional logic. Trapped ions addressed by laser

beams [40] offer such a system. We are attempting to construct simple quantum infor-

mation processors [41] with our system, and to study the scalability of trapped ions for

quantum computing. Furthermore, since many aspects of wave function collapse seem

to deal with the transfer of information between quantum systems, it may well be that

the language of quantum information theory (quantum computation) will shed light on

the issues discussed above [42, 43].

In this thesis, I will describe some of the experiments which we have performed in

the NIST Time and Frequency Division Ion Storage Group. I will begin by describing

in general how we confine charged atoms using time-varying electric fields (Ch. 2), and

how the trapping potential modifies the atoms’ interactions with laser radiation (Ch. 3).

I will go on to describe the particular arrangement of apparatus actually used in our

experiments (Ch. 4). From that point, I will describe laser cooling one [44] or more [45]
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trapped ions to their ground state of motion. This puts the ion’s motion into the

quantum regime of behaviour, and is the starting point for quantum state engineering.

In the rest of the thesis (Chapters 6 through 9), I will describe creation of various

non-classical states of motion [46, 47, 48] and entangled states [49] and the application

of quantum state engineering to quantum logic [41]. The same techniques may be

used to allow the ion’s motion to interact with the “outside world.” I will discuss

experiments along these lines [50], and their implications for decoherence studies and

quantum measurement theory in Ch. 8, and conclude by discussing a proposal for an

experiment to measure a “surprising” quantum phase factor: Berry’s phase.



Chapter 2

Ion Trapping and Ion Traps

Since their development in the late 1950’s [51, 52, 53], ion traps have made in-

creasing contributions to atomic physics. The ability to trap single to millions of atomic

ions in good isolation from the outside world has led to improved spectroscopic measure-

ments [54, 55], exquisite tests of QED [3], observations of quantum jumps [56, 57, 58],

stimulating discussion of the “quantum Zeno effect” [59], and controllable engineering of

quantum states of motion and the interaction of these states with the environment [50].

Laser cooling, which is the starting point for almost all modern atomic physics mea-

surements, was first demonstrated in ion traps — in 1978 [60, 61]. Furthermore, the

same properties of ion traps which make them attractive for high-precision spectroscopy

also may make them an ideal candidate for implementing a simple quantum computer.

At heart, these important properties are: (a) the ability to trap atoms for long periods

of time (up to days [62]), which allows for long spectroscopic interrogation times and

(b) the fact that, since the trapped atom is charged, it perforce finds the location in

the trap such that 〈E〉 = 0, so that the atom’s energy structure experiences only minor

electric field perturbations.

There are different varieties of ion traps [63], but the most common use quadrupole

fields [64]. These are the Penning trap, which uses static electric fields and a static

magnetic field to confine the ions, and the rf, or ‘Paul’ trap, which uses radio frequency

(rf) fields to do so. The work in this thesis was performed in Paul-type traps. This
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chapter will describe the theory of operation of such traps, and describe the particular

traps used for the research in this thesis.

2.1 Ideal Quadrupole Paul Trap & the Secular Approximation

Although Earnshaw’s Theorem [65] shows the impossibility of confining an iso-

lated charge in free space using only static electric fields, it is possible to do so using

time-dependent fields. To see how this occurs, consider applying an rf potential with

frequency ΩT to the electrodes of the Paul trap shown in Fig. 2.1(a). These electrodes

have the shape of hyperboloids of revolution. The central electrode is usually referred

to as the “ring” electrode, and is connected to the rf source. The other two electrodes,

referred to as “endcaps,” are held at rf ground. In the case where the electrodes are

perfectly hyperbolic, the application of a sinusoidal rf signal results in the potential

V = V0 cos(ΩT t)

(
x2 + y2 − 2z2

d2
0

)
, (2.1)

between the electrodes of the trap. Here, d0 is a characteristic internal dimension of

the trap: if the ring electrode has minimum radius r0 and the endcaps have smallest

separations 2z0, d0 =
√
r20 + 2z2

0.

To gain insight into how this configuration can provide trapping for charged par-

ticles, consider the forces felt by a single such particle (with charge Q) inside the elec-

trode structure. At time t = 0, the center of the trap is a potential minimum in the

x- and y-directions, but a local maximum in the z-direction. So, the ion is trapped

in the x- and y-directions, but its z-motion is unstable (“anti-trapped”). Thus, the

ion tends to be expelled from the trap in the z-direction. A half cycle later, how-

ever, the situation is reversed, so that the z-direction is confining while the x- and

y-directions are not. The time-averaged result of this situation is that the charge is
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Figure 2.1: (a) Electrode structure for an rf (Paul) ion trap. The electrodes are hyper-
bolic in cross-section and, when an rf potential is applied to the electrodes as indicated,
it gives rise to a potential of the form V = V0 cos(ΩT t)

(
x2+y2−2z2

d2
0

)
. (b) The ion’s

motion in a Paul trap may be considered to be made up of two parts. The secular mo-
tion represents the ion’s movement in a three-dimensional harmonic well of frequencies
ωx = ωy = ωz/2 =

√
2QV0/(md2

0ΩT ). Here Q is the charge on the ion, m is its mass,
and d0 is a characteristic internal dimension of the trap. The micromotion, which occurs
at the drive frequency ΩT , is of small amplitude, vanishing at the null point of the rf
field (in the center of the trap) .

trapped in a three-dimensional simple harmonic oscillator potential with “secular fre-

quencies” ωx = ωy = ωz/2 ≈
√

2QV0/(md2
0ΩT ), where m is the ion’s mass1 .

At this point, the following mechanical analogy may help [66]. Consider a marble

resting on a saddle-shaped surface (under the effect of gravity). The saddle is a stable

potential in one direction, but is unstable in the other. Thus, under the influence of

gravity, the marble tends to roll down the unstable “sides” of the saddle. However, if

we rotate the saddle about the vertical at the proper frequency, we may create a stable

trap for the marble: as the marble begins to roll downhill in some direction, the saddle

rotates so that what was previously downhill now becomes uphill. With the proper

rotation frequency (which depends upon the marble’s mass and the curvature of the
1 This result only holds in the so-called “pseudopotential approximation,” which I will discuss below.
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saddle), the marble always “sees” an effectively uphill potential in any direction, and

so is trapped.

The trapping of a charged particle with time-varying electric fields occurs in an

analogous fashion. A simple mathematical approach to this trapping is the “secular” or

“pseudopotential” approximation, originally considered by Kapitsa [67]. Using Eq. (2.1),

we may write down the (separable) equations of motion for a charged particle in the

trap. For example, in the z-direction, we have:

z̈ =
(4QV0

md2
0

cos(ΩT t)
)
z. (2.2)

Similarly, for the radial motion, we have:

r̈ =
(2QV0

md2
0

cos(ΩT t)
)
r. (2.3)

For the sake of explaining the pseudopotential approximation, let us consider only the

z motion. We assume that the complete z-motion, ztot, can be broken up into a large-

amplitude slow motion z (the “secular motion”) and a small-amplitude high-frequency

motion zµ (the “micromotion”), at the drive frequency ΩT . Thus, ztot = z + zµ with

zµ � z. We also assume that z̈µ � z̈. Then Eq. (2.2) becomes

z̈ + z̈µ =
(4QV0

md2
0

cos(ΩT t)
)
(z + zµ), (2.4)

and, applying the two approximations given above, we obtain:

zµ(t) ≈ −
( 4QV0

md2
0Ω2

cos(ΩT t)
)
z. (2.5)

This gives the functional form for the micromotion. Bearing in mind that the secular

motion z occurs on a much slower time scale than this micromotion, we see that the

micromotion is at frequency ΩT , and that its amplitude is proportional to the instanta-

neous amplitude of the secular motion. Plugging Eq. (2.5) back into Eq. (2.4), we have

for the secular motion:

z̈ =
[8QV0

md2
0

cos(ΩT t)
]
z −

[16Q2V 2
0

m2d4
0

cos2(ΩT t)
]
z. (2.6)
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Now, we average over one period of the rf. The cosine averages to zero and, of course

the term cos2(ΩT t) averages to 1/2. Thus we have

z̈ = −
( 8Q2V 2

0

m2d4
0Ω2

)
z, (2.7)

which is the equation of motion of a harmonic oscillator with frequency

ωz =
2
√

2QV0

md2
0ΩT

. (2.8)

Thus, combining the secular motion with Eq. (2.5), we have:

ztot(t) ∝ cos(ωzt)
[
1− 4QV0

md2
0Ω

2
T

cos(ΩT t)
]

(2.9)

A similar treatment shows that, for motion in the radial direction, ωr = ωz/2. Note

that, in general, ωx + ωy − ωz = 0, due to Poisson’s equation.

To recap, we may, in the pseudopotential approximation, break the ion’s motion

into two parts: the secular motion and the micromotion. The secular motion occurs

on a timescale longer than the period of the rf drive signal, and is the motion of a

particle trapped in a harmonic oscillator (the “pseudopotential”) with trap frequency

ωz = 2
√

2QV0

md2
0Ω

. The micromotion occurs at the same frequency as the rf drive signal, and

its amplitude is proportional to the instantaneous displacement of the particle from the

rf null in the trap. However, comparing Eq. (2.5) and Eq. (2.8), we see that the constant

of proportionality is ωz√
2ΩT
� 1, so that the micromotion amplitude is, indeed, much

smaller than that of the secular motion. It is shown in [68] that “potential energy” of

the particle in the pseudopotential is, in fact, just the kinetic energy associated with

the micromotion.

The well depth of the pseudopotential is given by Dz ≈ mω2
zd2

0
8Q = QV 2

0

md2
0Ω2

T
, where

QDz is the maximum pseudopotential energy the particle can have without running

into the trap electrodes. For 10 MHz secular frequencies and a singly charged 9Be+

ion in a trap with d0 = 400 µm (typical for the experiments described in this thesis),

this corresponds to a well depth of about 10 eV, with a corresponding temperature of
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about 105 K! This implies that elastic collisions with (room-temperature) background

gas atoms and molecules will not eject the ion from the trap. In practice, the lifetime

of trapped ions is dominated by inelastic collisions with background gas.

2.2 Full Treatment: the Mathieu Equation

The complete motion of a trapped ion may be written down without recourse to

the secular approximation. For the sake of completeness, I will sketch the technique

here, again for the z direction. For more details, see Ghosh [64] or Walker [69]. The

method is also nicely sketched out by Cirac, et al. [70] and by Bardroff, et al. [71].

To be more general, I will allow for the possibility of a static voltage U0 being

applied to the ring electrode in addition to the rf potential, so that Eq. (2.1) becomes:

V = (U0 + V0 cos(ΩT t))

(
x2 + y2 − 2z2

d2
0

)
. (2.10)

Then the equation of motion for the z direction becomes:

z̈ −
( 4Q
md2

0

)(
U0 − V0 cos(ΩT t)

)
z = 0. (2.11)

With the substitutions ζ = ΩT t/2, az = −16QU0

md2
0Ω2

T
, and qz = −8QV0

md2
0Ω2

T
, we can put Eq. (2.11)

into the canonical form:

d2z

dζ2
+ (az − 2qz cos(2ζ))z = 0. (2.12)

(Note that, if we instead treat the radial direction, we have ar = 8QU0

md2
0Ω

2
T
, and qz =

4QV0

md2
0Ω2

T
). This equation is called the Mathieu equation, and its solutions are known (see,

for example, Abramowitz and Stegun [72]). What we seek are stable solutions of this

equation, i.e. solutions for which the particle trajectory remains bounded (trapped).

Given that the coefficients in the differential equation are periodic, we may express

the solution in terms of the two, independent “Floquet solutions:”

u1(ζ) = eµζφ1(ζ), (2.13)
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u2(ζ) = e−µζφ2(ζ), (2.14)

where φ1(ζ) and φ2(ζ) ≡ φ1(−ζ) are periodic functions of ζ with the same period as

the coefficient in the Mathieu equation: that is, since the Mathieu equation contains

the term cos(2ζ), φi is of period π. Since we are looking for bounded solutions of the

Mathieu equation, µ ≡ α + iβ must be purely imaginary, i.e. α = 0. (Note, then, that

if β gives a possible solution, then so does −β). If we use this fact and make a Fourier

expansion of φ1 and φ2, we may express the most general (bounded) solution of the

Mathieu equation as

z(ζ) = A
∞∑

n=−∞
C2ne

i(2n+β)ζ +B
∞∑

n=−∞
C2ne

−i(2n+β)ζ (2.15)

where A and B are integration constants which depend on the initial conditions, and

the C2n are the Fourier coefficients in the expansion of φi. Using Euler’s Theorem, we

may write this alternatively as

z(ζ) = A′
∞∑

n=−∞
C2n cos[(2n+ β)ζ] + iB′

∞∑
n=−∞

C2n sin[(2n+ β)ζ], (2.16)

where A′ = A+B and B′ = A−B. Looking at the above equations, we can immediately

see that the lowest-frequency motion, that for which n = 0, is given by ωz
.= 1

2βΩT .

(The next-highest frequencies in the motion are at ωz ∓ΩT .) The question, then, is to

determine the characteristic frequency β.

In order to do this, we plug (2.16) back into the Mathieu equation (2.12) and

compare, for example, the coefficients of the cosine terms, to obtain

−A′
∞∑

n=−∞
C2n(2n+ b)2 cos[(2n+ β)ζ]

+azA
′

∞∑
n=−∞

C2n cos[(2n+ β)ζ]

−2qzA′
∞∑

n=−∞
C2n cos[(2n+ β)ζ] cos[2ζ] = 0, (2.17)

which we may re-write as
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n=−∞

(
−C2n[(2n+ β)2 − az] cos[(2n+ β)ζ]− qzC2n cos[(2n+ β + 2)ζ]

−qzC2n cos[(2n+ β − 2)ζ]
)

= 0. (2.18)

Finally, we may write

∞∑
n=−∞

(
C2n[az − (2n+ β)2]− qzC2n−2 − qzC2n+2

)
cos[(2n+ β)ζ] = 0. (2.19)

If we define D2n ≡ az−(2n+β)2

qz
, then 2.19 gives us the three-term recursion relation

−D2nC2n + C2n−2 + C2n+2 = 0, (2.20)

which we can use to determine β. To determine β, we will use Eq. (2.20) in three ways.

First, writing the equation with n = 0, we obtain:

D0C0 ≡ az − β2

qz
C0 = C−2 + C2, (2.21)

which we will, in the end, solve for β. We may also use Eq. (2.20) to write, in general,

D2n =
C2n−2 + C2n+2

C2n
. (2.22)

After some re-writing, we finally obtain

C2n

C2n−2
=

1

D2n − C2n+2

C2n

(2.23)

or, applying (2.23 recursively, we obtain the continued fraction:

C2n

C2n−2
=

1
D2n − 1

D2n+2− 1
...

. (2.24)

Similarly, we can also write

C−2n

C−2n−2
=

1
D−2n−2 − 1

D−2n−4− 1
...

. (2.25)

Plugging these formulae back into Eq. (2.21), and expressing theD2n asD2n = az−(2n+β)2

qz
,

we can solve to any desired order in az and qz for β.
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To lowest order, we have

β =

√
az +

q2z
2
. (2.26)

If the static potential U0 = 0 so that az = 0, we have β = qz√
2
. Plugging into the formula

of the lowest-frequency motion, ωz = βΩT
2 , we finally have:

ωz =
2
√

2QV0

md2
0ΩT

. (2.27)

This agrees with Eq. (2.8), the expression for the frequency of secular motion in the

pseudopotential approximation of the previous Section. Indeed, rigorously speaking,

the condition az, qz � 1 defines the pseudopotential approximation. To next-highest

order in qz,

β =

√√√√√az + q2z

(
1
2 + az

8

)
+ q4

z
128

1− q2z
(

3
8 + 5az

16

) . (2.28)

The ion motion in the exact treatment, then, has frequency components at

(2n ± β)ΩT/2. The lowest frequency motion, which we identify with the secular fre-

quency ωz, occurs at a frequency lower than the drive frequency ΩT . The other motions

occur at around the drive frequency or higher. But note that there is no component

of the ion’s motion at ΩT . Thus, in particular, although the fields at ΩT trap the

charged particle, they do not couple energy into the particle’s secular motion. If, how-

ever, there are fields at frequency ΩT ±ωz (due, for example, to noise from the rf source

producing the trapping potential), then this can produce heating of the secular mo-

tion [54, 73]. As the spectral purity of typical rf sources is very high, this is rarely a

problem. Higher-order couplings of the secular motion to the trapping field can be pro-

duced by, for example, deviations of the trapping potential from pure quadrupole [73]

but, in practice, this is not frequently an issue.

The treatment thus far has only treated a single ion in an ion trap. However,

the situation for several ions is not much different. The ions interact through their

Coulomb repulsion; but, as with the case of a single ion, the ions arrange themselves so
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that, for each ion, 〈E〉 = 0. Nonetheless, in such a situation the ions cannot all occupy

the null point of the rf drive field. Thus the amplitude of the ions’ micromotion can

be substantial (recall from Eq. (2.5) that the amplitude of the micromotion is given by

zµ(t) ≈ −
(

4QV0

md2
0Ω2 cos(ΩT t)

)
z, where z is the displacement of the ion from the rf null).

The micromotion, together with the ions’ nonlinear Coulomb interaction, can lead to

“rf heating” of the secular motion for cases in which more than perhaps a few ions

are simultaneously confined [74, 75]. Roughly speaking, the nonlinear nature of the

Coulomb interaction can, when the ions are not at zero temperature, produce chaotic

motion of the ions with its concomitant continuous power spectrum. This continuous

power spectrum allows the ions to absorb energy from the trapping field, and they can

be driven out of the trap. Rf heating may also be caused by resonances due to trap

anharmonicities [76].

2.3 Quantum Treatment of Ion Motion

The simplest approach to treating the quantum mechanics of a single trapped

ion is to directly quantize the harmonic oscillator which describes the ion’s secular

motion along a principle direction of the trap, for example z. Thus one introduces the

usual harmonic oscillator raising and lowering operators â =
√

mωz
2h̄ (ẑ + i

mωz
p̂) and â†.

Inverting these relationships, we have that

ẑ = z0(â+ â†) (2.29)

and

p̂ = p0(â− â†), (2.30)

with z0 =
√

h̄
2mωz

and p0 = imωzz0. Thus, one ends up with the usual Hamiltonian

operator for a quantized harmonic oscillator:

ĤHO =
(
n̂ +

1
2

)
h̄ωz, (2.31)
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where n̂ = â†â is the number operator2 .

However, the question arises whether this procedure is appropriate, since the

secular approximation is, in the end, only an approximation. This question was first

examined in Ref. [78], and has been generalized by others [79, 70, 71]. The short answer

is that the procedure is, indeed, appropriate. I will outline some of the results, closely

following Glauber.

In the case U0 = 0, the equation of motion for (say) the z-coordinate is of the

form:

z̈ = P (t)z = 0, (2.32)

where P (t) is a c-number. This equation holds true in both the classical case and (in the

Heisenberg picture [2]) the quantum case. Eq. (2.32) is a 2nd-order ODE, possessing two

two linearly-independent solutions. A general property of such a differential equation

is that, if u1(t) and u2(t) are any two solutions to the equation, then the following

Wronskian identity holds:

u1(t)u̇2(t)− u̇1(t)u2(t) = const. (2.33)

We can use (2.33) to determine the quantum motion of the trapped atom. In

order to do this, we define a “standard” C-number solution to Eq. (2.32) u(t), with the

constraints (initial conditions)

u(0) = 1

u̇(0) = iωref , (2.34)

where ωref is an arbitrary parameter which we will choose later to simplify the math.

Note that we can solve for u(t) using the techniques discussed above for solving the

Mathieu equation. Again, Eq. (2.33) holds for any two solutions to the differential
2 The quantum version of the secular approximation was examined in Ref. [77].
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equation: even if one solution is a C-number solution and the second is an operator-

valued solution (in the Heisenberg picture). So, for example:

u(t) ˙̂z(t)− u̇(t)ẑ(t) = const. (2.35)

It follows immediately that the operator

Ĉ(t) ≡ i√
2mh̄ωref

[u(t)p̂(t)−mu̇(t)ẑ(t)] (2.36)

is constant in time:

Ĉ(t) = Ĉ(0) =
i√

2mh̄ωref
[p̂− imωref ẑ]. (2.37)

Here, ẑ and p̂ are shorthand for the values of these operators at time t = 0. An

alternative way of visualizing the situation is to view ẑ and p̂ as Schrödinger picture,

time-independent operators. We then recognize the time-independent operator Ĉ as the

annihilation operator familiar from the quantized harmonic oscillator:

â =
i√

2mh̄ωref
[p̂− imωref ẑ]. (2.38)

So â is associated with a static-field harmonic oscillator of frequency ωref . We can

construct the eigenstates, operators, etc., for this oscillator as usual, and the basis

states of this oscillator will be a convenient set of basis states upon which to expand

the motional state of the trapped atom. For example, we have for the ground state,

â|n = 0〉wref
= 0 which, through the constancy of the operator Ĉ, implies that

Ĉ(t)|n = 0〉wref
= 0. (2.39)

In order to obtain the ground-state wave function of this “reference” oscillator (and

hence, in the usual manner, the other eigenfunctions), we go over to the Schrödinger

picture, by applying the unitary time-evolution operator Û(t) to in the usual manner:

Ĉ(t) = Û−1(t)ĈS(t)Û(t) (2.40)
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to obtain the Schrödinger-picture operator ĈS(t). (We obtain Û(t) by solving the

Schrödinger equation — but it turns out that we can take a “short cut” to solving

for the oscillator wave functions.) Applying Û(t) to the left-hand side of Eq. (2.39), we

obtain

ĈS(t)Û(t)|n = 0〉ωref
≡ ĈS(t)|n = 0〉t = 0, (2.41)

where |n = 0〉t is the Schrödinger-picture state of the oscillator which evolves under the

trapping potential from the ground state of the reference harmonic oscillator. We can

rewrite Eq. (2.41) in terms of the position and momentum operators:

[u(t)p̂−mu̇(t)q]|n = 0〉t = 0 (2.42)

In the position representation, we have:

[
u(t)(h̄/i)

∂

∂z
−mu̇(t)z

]
ψ0(z) = 0. (2.43)

Finally, this first-order differential equation may be solved to obtain the time-dependent

wave function of the state which evolves from the ground state of the reference harmonic

oscillator:

ψ0(z) =
(mωref

πh̄

)1/4 1√
u(t)

exp
[ imu̇(t)z2

2h̄u(t)

]
. (2.44)

We can determine the states which evolve from the other eigenstates of the reference

harmonic oscillator by applying raising operators, and so forth [79]. These states all

have the form of the usual harmonic oscillator wave functions, with the exception that,

as with the ground state shown above, the size of the wave functions changes with

time because of the factor u̇(t)/u(t). The time dependence is parametric only, and this

treatment justifies the simple-minded approach taken at the beginning of this section.

This treatment is not yet complete, however — we have yet to determine a value

for the frequency ωref of the reference oscillator. To clarify, what we do have is the

expansion of our system upon a basis set of states in Hilbert space. In general, for

any quantum mechanical problem, we can expand the state vector in terms of any
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set of basis functions of the Hilbert space. However, some sets of basis functions are

more convenient than others. For example, given a regular, static harmonic oscillator of

frequency ω, we could expand in the basis of a harmonic oscillator of different frequency.

However, this would only complicate the math and obscure the issue — that is why,

in practice, we expand in the natural set of basis functions: those associated with an

harmonic oscillator of the given frequency, ω.

The question, then, is: can we find a “natural” choice of ωref which will simplify

solution of the quantum Mathieu equation and which will give us a clear picture of

the underlying physics. The answer (of course!) is yes. To get at this picture, recall

from Sect. 2.2 that our “standard” solution u(t) may be written in terms of the Floquet

solutions 2.13 and 2.14 as:

u(t) = AeiβΩT t/2φ(ΩT t/2) +Be−iβΩT t/2φ(−ΩT t/2), (2.45)

where A and B are constants. In general, this is a very complicated time dependence.

But, by judicious choice of initial conditions for our “standard” solution, we will be

able to simplify this dependence considerably. Recalling Eqs. (2.34) and choosing to

normalize the Floquet solutions such that φ(0) = 1, we have that

u(0) = 1 = A +B (2.46)

and

u̇(0) = iωref = (A−B)iβΩT /2 + φ̇(0). (2.47)

Now then, if we choose ωref such that

iωref = iβΩT/2 + φ̇(0) (2.48)

then we obtain A = 1, B = 0, and

u(t) = eiβΩT t/2φ(t) (2.49)
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where we have investigated the behaviour of φ(t) in Sec. 2.2. From Eq. (2.48) we see

that, to lowest order, the frequency of the reference harmonic oscillator is that of the

secular motion; that the only effect of the rf drive is to produce a “breathing” motion

of the usual harmonic oscillator wave packets.

To sum up, then: for both the classical and the quantum cases, we may, to high

accuracy, picture an ion trapped in a Paul trap as moving in a harmonic oscillator

potential of frequency ω. The micromotion (at Ωt ± ω) does not directly affect this

harmonic oscillator motion.3

2.4 Real Paul Traps, Linear Traps, etc.

The experiments described in this thesis were performed in three different ion

traps: two elliptical microtraps and a micro-machined linear trap. I will describe this

latter trap in Sec. 2.4.2 and, for now, will focus on the microtraps, which behave very

much like the ideal quadrupole trap.

2.4.1 Elliptical Ion Trap

Consider Fig. 2.1 for a moment. If the geometry in the x − y plane is stretched

so that the ring and endcaps are elliptical, rather than circular, when looking down

the z-axis, then the potential remains quadratic but the degeneracy between the x-

and y-axes is broken [80, 81, 82, 83]. This has several advantages. First, there are

now three, non-degenerate secular modes of motion with which to perform quantum

state engineering. Second, non-degenerate trap frequencies facilitate ground state laser

cooling in three dimensions (see Ch. 3). Finally, if several ions are held in the trap,

they will preferentially line up along the weakest axis of the trap (given a sufficient

anisotropy). Thus they will be easily addressable by laser beams.
3 Note, however, that the micromotion could lead to excitations of the ion’s motion, were we to drive

the ion at ΩT ± ω.
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For experiments in quantum state engineering, it is advantageous to work with

high trap frequencies. This facilitates resolved-sideband laser cooling to the ground state

of motion and the Lamb-Dicke regime [81, 84], simplifies the interaction of the ions with

the lasers (see Ch. 3), and reduces the deleterious effects of background heating on the

harmonic oscillator occupation number, n. From Eq. (2.8), it is apparent that high

secular frequencies can be achieved with small traps (i.e. small d0) and/or high rf drive

voltages V0.

Fig. 2.2 shows a schematic of the small traps used for many of the experiments

described in this thesis. Two such traps were used. In order to achieve high secular

frequencies, the electrode spacing of these traps was about 200 µm. With such small

electrode sizes, it becomes very difficult to machine hyperboloidal electrode surfaces,

which is why a somewhat simpler approach was taken: the “ring” electrode was an

elliptical hole drilled in a metal sheet, and the “endcap” electrodes were formed from a

second metal sheet with a slot cut into it.

One of the elliptical traps (which I will refer to from here on as Trap I) [81] was

constructed of 130 µm-thick molybdenum. For this trap, r0 ≈ 170 µm and z0 ≈ 130 µm,

and the combination of the ellipticity and the asymmetry of the endcap fork electrode

gave (ωx : ωy : ωz) ≈ (0.38 : 0.61 : 1). The trap was typically operated with ΩT /2π ≈

230 MHz, V0 ≈ 600 V, and U0 = 0 V (the trap construction precluded adding a static

voltage). These operating parameters gave ωx/2π ≈ 11.2 MHz. This was the trap used

for ground-state laser cooling, the Controlled-NOT quantum logic gate, the Schrödinger

cat experiment, and much of the quantum state engineering and reconstruction work.

The second trap (which will be referred to as Trap II) was constructed from

beryllium metal sheets 125 µm thick, and had a pronounced ellipticity. This trap had

z0 ≈ 125 µm. The semi-major axis of the elliptical ring electrode was ≈ 210 µm long,

and the ellipse had an aspect ratio of approximately 3 : 2. With ΩT/2π ≈ 240 MHz,

V0 ≈ 520 V, and U0 = 0 V, (ωx, ωy, ωz)/2π ≈ (4.6, 12.7, 17.0) MHz. With this trap, we
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Figure 2.2: Typical “elliptical” ion trap electrode structure for the work described in this
thesis, with inset showing two trapped 9Be+ ions, held in “Trap II.” The ring electrode
is formed by the elliptical hole in the one metal plate. The endcaps are formed by
the slot in the other plate. The plates are either molybdenum or beryllium, and are
≈ 130 µm thick. The applied potential φ(t) = V0 cosΩtt+ U0, with U0 giving rise to a
static electric field. With an x-axis secular frequency of ωx/2π = 4.6 MHz, the ion-ion
spacing is approximately 3 µm.

were able to apply a static voltageU0 to the ring electrode, in addition to the rf potential.

Recalling that the secular frequency is given by Eq. (2.27) as wm = Ωt
2

√
am + q2

m
2 (where

m ∈ {x, y, z}) and, from Eq. (2.12), that az ∝ −U0 while ar ∝ +U0, we see that U0 > 0

increases ωx and ωy at the cost of lowering ωz. For example, with U0 = 18.2 V (typical

operating conditions), (ωx, ωy, ωz)→ (8.6, 17.6, 9.3) MHz.

In the previous sections, I discussed a Paul trap with ideal electrodes (as shown in

Fig. 2.1a). The electrode geometries of the microtraps was very far from ideal. However,

for trapping small numbers of cold ions, where the extent of the ions’ motions is much

less than d0, the restrictions on the electrode configuration are not stringent. Traps I

and II, though far from having the “ideal” geometry, still produced a harmonic trapping

potential in the region where the ions were held [81]. Even for non-ideal electrode
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geometries, the lowest term in the expansion of the trapping potential is harmonic

and, near the trap centre, this term dominates. A relevant expansion parameter is the

amplitude of the ion’s motion divided by the size of the electrodes, a factor of < 10−4

for the work in this thesis. If the trap exhibits reflection symmetry about the z-axis4 ,

then next-highest term in the potential expansion is of order (d/d0)2 ≈ 10−8. For this

reason, the elliptical microtraps were easily “harmonic enough” for our experiments 5 .

In operation, each of these traps was mounted at the high-voltage point of a

quarter-wave, coaxial resonator [81]. This resonator was designed to produce large

values of V0, again for the purpose of having high secular frequencies. A schematic

such a resonator is shown in Fig. 2.3. Constructed of OFHC copper, the resonator

was vacuum compatible, with a (loaded) Q on the order of 700 6 . Optical access was

through several holes cut in the outer conductor of the resonator. The resonator was

excited by the loop antenna at its base, whose area was carefully adjusted so that,

on resonance, the antenna/resonator assembly presented a nominal 50 Ω load to the

generator. This design was meant to circumvent the problem of passing high-voltage rf

through vacuum feedthroughs (both in terms of the capacitive loading and impedance

mismatch introduced by the feedthrough and in terms of high-voltage breakdown at the

feedthrough) and thus to allow high V0 with the concomitant high secular frequencies.

In practice, the voltage which could be applied to the trap was limited to ≈ 1 kV, due

vacuum rf discharges7 .

The resonator assembly also held four “compensation” electrodes, which were

formed from bent pieces of metal rod (≈ 2 mm diameter). By applying voltage to these
4 Of course, care was still taken to align the trap electrodes as well as possible, to minimize the

contributions from the higher order terms in the potential
5 The one price to be paid for using a non-ideal geometry is that the strength of the pseudopotential

is reduced with respect to that of an ideal trap of the same physical dimensions. For our traps, the
reduction was approximately 10%.

6 This agrees well with a theoretical estimate based on the resonator geometry and the conductivity
of copper.

7 Vacuum rf discharges are thought to be initiated at field- emission points on the rf system. The
high field at these emitters creates a plasma, wherein the material of the system (the electrode surfaces
plus any gas adsorbed onto them) provides the material which makes up the plasma.
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Compensation ElectrodesVacuum Flange Positioners

Antenna

Inner Conductor
(transmission line) Outer Conductor

(transmission line)
Trap Electrodes

λ /4  (≈ 200 MHz)

Figure 2.3: Quarter-wave coaxial resonator for producing high voltages V0 at the ion
trap electrodes. As indicated, the ion trap ring electrode is mounted at the antinode
of the rf standing wave. The endcap (or fork) electrode is attached to rf ground. The
positioners allow for alignment of the two trap electrodes with respect to each other to,
e.g., ensure reflection symmetry of the trap about the x− y plane.

electrodes, we were able to compensate for stray electric fields due to patch fields on

the trap electrodes. Such fields are undesirable since they displace a trapped ion from

the rf null position and hence increase the amplitude of the micromotion. Rudimentary

rf filters (a “π-network” with a roll-off frequency of approximately a half MegaHertz),

consisting of hand-made metal-mylar-metal capacitors and wire inductors provided rf

isolation of the compensation electrodes from the outside world (see Fig. 2.4).

2.4.2 Micromachined Linear Trap

When several ions are held in a Paul trap (either ideal or non-ideal), they cannot

all occupy the position where the rf field is zero. As mentioned in Sec. 2.2, this results

in enhanced micromotion for most of the trapped ions. For small numbers of ions, this

is not an issue, but as the number increases, rf heating becomes more and more likely.

Although the elliptical geometry does reduce the micromotion with respect to a spher-
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Figure 2.4: (a) Schematic of the “π-network” rf filters on the compensation electrode
feeds of the elliptical trap resonators. The rods were insulated from the rf-grounded
metal discs (part of the resonator’s outer conductor structure) with mylar: these as-
semblies formed the capacitor in the “π-network.” The inductors consisted of a few
turns (≈ 8) of wire hand-wound around the rods. (b) The equivalent “π-network”
formed by this assembly.

ical quadrupole trap [82, 83], and the micromotion can be reduced along a particular

direction by the addition of a static potential U0 [82], the micromotion becomes more

of an issue as the number of ions grows. For this reason, ion trappers have turned to

“linear ion traps” [85, 86].

A linear ion trap confines ions in a two-dimensional Paul trap (which, really is

just a Paul-type mass spectrometer [66]), and uses a static potential to contain them

in the third direction. A typical electrode configuration is shown in Fig. 2.5(a). Two
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of the four rods are held at rf high, and the other two at rf ground. This produces an

effectively two-dimensional rf field with a nodal line along the line of symmetry (the

z-axis). Trapping along the rf nodal line is accomplished by applying positive static

potentials to the outermost segments of the segmented electrodes. Note that the static

electric fields, although they provide trapping in the axial direction, reduce the trap

strength in two other (“radial”) directions, by Poisson’s theorem. That is, the effective

radial trapping strength is lower than it would be were the static fields absent, since

these fields counteract the confinement produced by the radio-frequency fields. Thus,

there is a trade-off between the trap strength in the three directions. If the z-direction

(static-field trapping) is much weaker than the other two directions, then multiple ions

will be confined along the rf nodal line [86, 87]. Since the rf field is zero along this

line, they will not experience significant micromotion (when cold). Note that, in the

z-direction, the trapping potential is (near the centre of the trap) purely harmonic:

since the trapping potential along this direction is produced by static fields, there is no

pseudopotential approximation necessary (see Sec. 2.1).

Although linear traps offer advantages for spectroscopy [88, 85, 86], they offer

significant manufacturing challenges when their dimensions are small. Thus, in order to

produce a linear-type trap with characteristic dimensions on the order of our elliptical

microtraps (200 µm), we turned to micro-machining techniques. Fig. 2.5(b) shows the

geometry of such a trap, and indicates the relationship between its electrodes and that

of a more traditional linear trap.

The trap consisted of two alumina wafers, 1.5 cm long by 1.0 cm wide by 125 µ m

thick. These wafers were held 200 µm apart by two, gold-coated spacer wafers —

one at each end. The spacer wafers were 175 µm thick, with the remaining 25 µm

consisting of the silver paint used as cement. The trapping region consisted of a series

of laser-machined slots in the two wafers: the slots in one wafer were the reflection

about the z-axis of the slots in the other. The main slot in each wafer, which separated
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Figure 2.5: (a) Electrode configuration for a linear rf ion trap, with an inset showing
several trapped ions. Ion-ion spacing is on the order of ten micrometers for these
pictures. (b) Exploded view of the micromachined linear ion trap, with a linear ion
trap shown above it for comparison. The rf and static potentials are indicated on the
bottom plate. The potentials on the top electrodes 1 through 4 are the same as on
the corresponding (unprimed) electrodes on the bottom plate. The right-hand side is a
composite image showing a close-up photograph of the electrodes and an image of five
trapped beryllium ions.
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the continuous rf electrode on one side from the segmented static voltage electrodes (rf

ground) on the other, was 2 mm long and 200 µm wide. The two slots in the static

voltage electrodes were each 20 µm wide, and were separated by 200 µm. The edges of

the main slots were bevelled at a 45◦ angle sloping away from the trapping region. This

created a geometry somewhat closer to the ideal of infinitely thin wire electrodes than

if the edges were not bevelled. However, the main reason why the slots were bevelled

was for optical access.

The alumina wafers were coated with gold to form conducting electrodes and to

allow electrical connections to the “outside” world. A ceramic chip capacitor was spot-

welded between ground and each static-potential electrode. These capacitors, along with

1 kΩ resistors, formed RC filters (see Fig. 2.6) which provided rf-grounding and electrical

isolation between these electrodes and the outside world. The rest of the filters were

placed on two additional alumina wafers which were attached to the sandwich structure

with silver paint and glass-and-gold frit. Each of the two filter stages (Fig. 2.6) had a

nominal roll-off frequency of ≈ 200 kHz.

It is relatively straightforward to estimate the strength of the z- direction (static)

trapping field. To do this, consider the simplified geometry in Fig. 2.7(a). (This is a

two-dimensional structure, rather than the true, three-dimensional sandwich structure

of the trap, but will allow an estimate of the trap strength, nonetheless.) The potential

due to this structure, in turn, is equivalent to the superposition of the potential due to

the electrodes in Fig. 2.7(b) with that of its mirror image (up to the definition of zero

potential). It is relatively straightforward [89] to write down the potential as:

Φ(x, z) =
∞∑

n=1

An sinh
[nπ
2L

(y + a/2)
]
cos
[nπz

2L

]
(2.50)

Applying the boundary conditions indicated in Fig. 2.7(b), we find that

An = −4 U0 sin(nπd
2L )

π sinh(nπa
L )

(2.51)
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Figure 2.6: Connections of the DC voltages to the linear trap’s static-potential electrodes
(only three of the six electrodes are shown). The RC filters provided filtering of the DC
lines as seen by the trap, while also shorting the electrodes to ground at radio frequencies.
All the resistors were 1 kΩ, and all the capacitors were 800 pF. The filters rolled off
around 200 kHz. U1, U2, and U3 represent the voltage supplies for the electrodes.
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Figure 2.7: (a) Simplified electrode structure for two-dimensional estimate of the static-
potential trapping frequency. (b) The potential created by this electrode structure, plus
that due to its mirror image, is equivalent to the potential produced by the electrode
structure of (a).
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In particular, along the z-axis, we end up with

Φ(0, z) =
∞∑

n=1

4 U0 sin(nπd
2L ) sinh(nπa

4L )
π sinh(nπa

L )
cos(

nπz

L
). (2.52)

We get an extra factor of two from the contribution of the other “tongue.” Expanding

the cosine term, we identify the quadratic term:

Φ(2)(0, z) =
∞∑

n=1

U0 sin(nπd
2L ) sinh(nπa

4L )
π sinh(nπa

L )
4n2π2

L2
x2. (2.53)

Taking into account the charge Q of the ion, and identifying with the harmonic oscillator

potential Φ(z) = −1
2mω

2x2, we see that

(
ωz

2π

)2

=
8U0Q

mL2

∞∑
n=1

sin
[nπd

2L

] sinh
[

nπa
4L

]
sinh

[
nπa
L

]n2. (2.54)

The trigonometric and hyperbolic functions make it difficult to sum the series analyti-

cally, or even to check convergence. However, evaluating the expression numerically, we

see that we would expect ωz
2π ≈ 60 MHz for U0 = 30 V, the usual operating voltage.

In the actual trap, a static voltage of 30 V gave a z-axis trap frequency of ωz
2π ≈

11.3 MHz. This difference from the predictions of Eq. (2.54) was due to the differences

between the actual trap geometry and the one assumed in deriving Eq. (2.54).

In operation, the micromachined linear trap was, as with the elliptical microtraps,

placed at the antinode of a quarter-wave coaxial resonator (of essentially the same design

as indicated above). A difference between the linear trap’s resonator structure and that

of the other traps was that an alumina plug was placed inside the resonator during a

rebuild of the vacuum system. This was done in order to lower the resonance frequency

ΩT of the resonator, and thus raise the secular frequency (see Eq. (2.8)). Although

stability requirements in the Paul trap require that ωm < ΩT /2, the secular frequency

was limited by V0 due to vacuum rf discharge, and so this stability requirement was not

a limiting factor. In this case, it made sense to lower the drive frequency, and thus the

resonance frequency of the coaxial resonator had to be lowered with the dielectric filler.
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Unfortunately, the quality factor of the resonator degraded during the re-processing of

the system, and our rf amplifier was unable to put out enough power to compensate for

this degradation. For this reason, no real net gain in secular frequencies was realized.

2.4.3 Vacuum System

In operation, the rf resonator structures, with the ion traps at their high-voltage

end, were enclosed in quartz envelopes, which had (UV-transparent) optical-quality

quartz windows fritted onto them (see Fig. 2.8). The vacuum assembly primarily con-

sisted of standard 2 3/4” UHV conflat fittings, with some 3 3/8” fittings as well. Pump-

ing was provided by a Varian StarCell ion pump, which had a 22 L/s pumping speed.

Additional pumping (particularly for hydrogen gas) was provided by a titanium subli-

mation pump. The pump filament was housed in a 3 3/8” jacket. A photograph of a

portion of the glass envelope, showing the trapping region of the coaxial resonator, is

shown in Fig. 2.9.

The vacuum chamber, resonator, trap, and associated hardware were prepared for

use with a “bake-out” to drive water vapour and hydrogen gas off of the various surfaces.

In order to accomplish this bake, the entire assembly was enclosed in a custom-built oven

(constructed from insulating bricks and heater filaments). After preliminary pumping

with a turbo pump, the system was pumped into an external ion pump for several

days, while the vacuum assembly was maintained at a temperature of approximately

350◦C. During this time, the titanium sublimation pump was also fired off to clean

its electrodes. The valve leading to the external ion pump was then closed, and the

assembly was pumped with its internal ion pump for another few days at the same

temperature. During the course of the trap’s lifetime the titanium sublimation pump

was turned on every few days to few weeks, in order to deposit a fresh layer of titanium

on the vacuum sleeve.
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Figure 2.8: Schematic of the vacuum system enclosing the micromachined linear ion trap
and its quarter-wave, coaxial resonator. The resonator was mounted to a vacuum blank
which was mounted at the back of a six-way vacuum cube (all tubing and fittings were
standard, 2 3/4” or 3 3/8” vacuum components). The quartz envelope was attached to
a quartz-to-metal seal, which was fastened to the front of the vacuum cube. This design
minimized the footprint of vacuum system. The titanium sublimation pump and the
ion pump were mounted vertically for the same reason. The valve allowed the vacuum
system to be hooked up to external roughing and ion pumps for use while baking the
system out.

With Trap II and the micro-machined linear ion trap, the pressure was moni-

tored with a Granville-Phillips ion gauge: the vacuum inside the envelope assembly was

approximately 4 nPa.8

At these pressures, the collisions between the ion and background gas particles

were infrequent. To obtain an upper limit on the collision rate, we may estimate the

Langevin rate: this is the rate at which background neutral atoms penetrate the an-

gular momentum barrier and spiral into a permanent or temporary orbit about the
8 1 Pa≈ 7.5× 10−3 torr. Thus, the background pressure was ≈ 3 × 10−11 torr
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Figure 2.9: A photograph of a portion of the coaxial resonator and quartz envelope of
Trap I, showing the trapping region. Several lens mounts are visible outside the quartz
envelope.

ion [90]. In cases in which the ion’s charge polarizes the electron cloud of the incoming

neutral, the interaction potential is given by U(r) = −αQ2/(8πε0r4) (where α is the

atomic polarizability). Spiralling collisions result if the impact parameter, b, is less than

some critical value: bcrit = (αQ2/πε0µredν
2)1/4. Here, µred is the reduced mass of the

ion/neutral system, and ν is the relative speed of the two particles (which, since the

ion is laser-cooled, is just the speed of the room-temperature, background gas particle).

The velocity-independent Langevin rate constant kLangevin ≡ σν = πb2critν leads to an

overall reaction rate

γLangevin = ρkLangevin = ρQ

√
πα

ε0µred
, (2.55)
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where ρ is the density of the background gas. In a metal/glass vacuum envelope such

as those described herein, the dominant background gas constituent is usually H2, for

which kLangevin = 1.64× 10−15 m3/s at room temperature. At a pressure of 5 nPa and

a temperature of 300 K, this gives γLangevin ≈ 0.002/s, or about one collision every ten

minutes.

A more careful calculation, takes into account energy transfer during an “elastic”

collision (i.e. one which does not change the electronic state of the ion or neutral). A

conservative estimate for the heating rate may be derived using the total collision cross

section. This is given by [73, 91]

σel = πΓ
(

1
3

)[
αQ2

16ε0h̄ν

]2/3

(2.56)

(where Γ is the gamma function). Averaging over a room-temperature thermal distri-

bution of background H2 velocities [73], we obtain γel ≈ 0.015/s, or approximately one

collision per minute. This is much longer than the time required for a single experiment

(≈ 1 ms), so that “elastic” heating collisions were negligible.

For inelastic collisions, the above rate must be multiplied by the probability of a

chemical reaction occurring: this probability is much less than one. From our experience

in the lab, such collisions occurred approximately once every ten hours: such inelastic

collisions were the limiting factor in the trapped ions’ lifetime. For example, with

9Be+, collisions with background hydrogen gas produced9 BeH+, which resulted in

the effective loss of the ion. Thus, the ultra-high vacuum was a prerequisite for our

experiments.

2.4.4 Ion Source

Ions were created in the trapping region by producing a non-collimated “beam” of

neutral beryllium atoms with an oven, and ionizing these atoms in the trapping region
9 We could determine the identity of the molecule by the spectral shift of the normal modes of two

trapped ions in the case in which one of them had undergone a chemical reaction
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with an electron beam. The oven consisted of a coil of 25 µm tungsten wire, with

12 µm beryllium wire wrapped around it. The beryllium was wound so that it entirely

covered the tungsten: this prevented the problem of the beryllium melting and flowing

to some inconveniently located “hot spot” on the tungsten. The use of a heat gun

while winding the beryllium wire made the beryllium more malleable and facilitated

the process. Passing current through the tungsten wire heated it up and so heated up

the beryllium, producing an effusive source. In practice, approximately 1 A of current

was typically passed through the oven filament.

The electron beam was produced from a filament formed by either a coil of tho-

riated tungsten wire or a strip of thin tantalum ribbon. The filament was biased at

-100 V, and the electrons were accelerated into the trapping region by passing through

a hole in a grounded metal plate. Typically, 4 A of current were passed through the

electron filament during loading. With this electron filament current and the above

oven current, we loaded single ions a majority of the time.

The oven and the electron gun were mounted on the resonator structure, approxi-

mately 2.5 cm from the trapping region. Baffles were installed on the resonator structure

to prevent the optical windows from being plated with beryllium. With the linear trap,

a copper plate was placed between the ovens and the trap structure. Attached directly

above the alumina wafers, this plate had a hole drilled in it to allow atoms to pass into

the trapping region, and for optical access. The purpose of the plate was to prevent

beryllium metal from the ovens from short-circuiting the trap structure.



Chapter 3

Atomic Structure of 9Be+ and Interaction with Lasers

If the Paul trap (spherical or elliptical) is the stage for our experiments, then it is

the interaction of the ion(s) with light which sets the action in motion. Of course, atoms

interacting with radiation are nothing new, but what is different with the experiments

described herein is the well-controlled coupling between the ion’s electronic degree of

freedom and its motional degrees of freedom. This interaction is mediated by the field

gradients inherent in the laser beams.

In this chapter, I will discuss the atomic structure of the 9Be+ ion in sufficient

detail to understand our experiments. I will then go on to describe the interaction of

the trapped ion with laser beams, and explain how this interaction couples the ion’s

electronic and motional degrees of freedom. In particular, I will focus in on two par-

ticular electronic levels, which I will describe in detail below. Note that the formalism

used herein to describe the electronic degree of freedom relies heavily on the formal

equivalence of a two-level system to a spin-1/2 particle. Indeed, I will use the terms

“electronic degree of freedom” and “spin” interchangeably. For more on this topic, the

reader is referred to Ref. [2].

The idea, then, is that our system presents us with two, basic quantum systems:

the two-level system (formally equivalent to a spin-1/2 particle), and the quantum har-

monic oscillator. Although these are two of the best-understood quantum systems, the

coupling between them provides a wealth of interesting behaviour. A similar coupling,
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and a similar wealth of behaviour, is found in cavity-QED systems [92], although there

are differences between that system and the one described in this thesis.

3.1 Energy Levels of 9Be+ and Single-Photon Transitions

Fig. 3.1 shows a simplified energy-level diagram for 9Be+. The two-level system

which is of interest to us is formed by two ground-state hyperfine levels: the 2s 2S1/2|F =

2, mF = −2〉 and 2s 2S1/2|F = 1, mF = −1〉 states, abbreviated by | ↓〉 and | ↑〉,

respectively.1 These levels are separated by their hyperfine splitting. While running

the experiment, we added a magnetic field of ≈ 8 Gauss, which further split the different

mF sub-levels of the F = 2 and F = 1 hyperfine levels, by ∆E = gFmFµBB. (Here,

µB ≈ 1.4 MHz/Gauss is the Bohr magneton, g1 = −1
2 and g2 = +1

2 are the Landé g-

factors, and B is the magnitude of the magnetic field. The quantization axis determined

by this magnetic field lay in the direction2 − 1√
2
ex + 1

2(ey − ez). (Ambient magnetic

fields such as that due to the Earth were nulled out using shim coils.) If we denote

the total splitting of | ↑〉 and | ↓〉 by ω0 then, in the course of the experiments, we had

ω0/2π ≈ 1.26 GHz.

The 2p 2P1/2 and 2p 2P3/2 excited states are separated from the 2s ground state

by 313 nm. The fine-structure splitting between the 2p levels is ≈ 197 GHz. The 2P1/2

hyperfine splitting is ≈ 237 MHz, and the 2P3/2 hyperfine splitting is less than 1 MHz.

The natural linewidth of these states is ≈ 19.4 MHz.

When the ion is trapped in a strong harmonic potential, such as produced (in the

pseudopotential approximation) by the ion trap, each of the electronic states is “dressed”

with an associated “ladder” of motional eigenstates. In the diagram, I have only shown

these motional states for | ↓〉 and | ↑〉. In addition, for clarity and simplicity, I have
1 Upon occasion, we used the 2s 2S1/2|F = 2, mF = 2〉 and |F = 1,mF = 1〉 states for the two level

system. Aside from a slightly different energy separation between | ↓〉 and | ↑〉, this had no significant
effect upon the physics

2 Note that, in this Chapter, I shall use the coordinate convention that the z-axis lies along the axis
of symmetry of the coaxial resonator. The x- and y-axes lie along the other two principal directions of
the trap. This is the convention used with the micromachined linear trap.
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Figure 3.1: Simplified energy level diagram for 9Be+, with energy increasing towards the
top of the diagram (not to scale). The two levels of interest are the |F = 2, mF = −2〉
and |F = 1, mF = −1〉 hyperfine sub-levels (denoted | ↓〉 and | ↑〉) of the 2s 2S1/2 ground
state. The motional energy levels, spaced by ≈ 10 MHz, are indicated for these two
states but are omitted for clarity in the other states. Single-photon transitions are driven
by beams D1 and D2 to the 2p 2P3/2 level (radiative linewidth γ/2π ≈ 19.4 MHz), and
| ↓〉 and | ↑〉 are coupled through the 2p 2P1/2 level using two-photon, stimulated Raman
transitions driven by beams R1 and R2 (∆/2π ≈ 40 GHz). Beam D3 clears population
out of the 2s 2S1/2|F = 2, mF = −1〉 level. These optical transitions correspond to a
laser wavelength of 313 nm. For further details, see Ch. 3. The 2S1/2 hyperfine splitting
is ω0/2π ≈ 1.25 GHz, the 2P fine-structure splitting is ≈ 197 GHz, the 2P1/2 hyperfine
splitting is ≈ 237 MHz, and the 2P3/2 hyperfine structure (< 1 MHz) is unresolved.
The Zeeman splitting between adjacent mF levels is ≈ 0.7 MHz/Gauss. Under typical
operating conditions, the Zeeman contribution to the | ↓〉 − | ↑〉 splitting was about
12 MHz.
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indicated only the motional eigenstates associated with a single direction m (m = x, y,

or z). These states are spaced by energy h̄ωm.

One may use an ultraviolet laser beam with λ ≈ 313 nm to couple either | ↑〉

or | ↓〉 to the 2p 2P3/2 excited electronic state. In particular, the transition | ↓〉 →

|2p2P1/2, F = 3, mF = −3〉 is a cycling transition (driven by laser beam D2). Thus, if

the atom is in | ↓〉 and the laser light is polarized σ+, then the atom repeatedly cycles

between this state and the excited state |F = 3, mF = −3〉, spontaneously emitting a

photon each time. It repeats this cycle until slight imperfections in the laser polarization

cause transitions to a different excited state, from which the atom can decay to a

different ground-state level where the laser is off-resonant. Thus, this transition allows

determination of whether the ion is in the state | ↓〉 (and, by inference, | ↑〉) with almost

unit quantum efficiency [56, 57, 58].

On the other hand, the transition | ↑〉 → |2p 2P1/2, F = 3, mF = −2〉, which is

driven by beam D1, is not a cycling transition. From the excited state, the atom can

decay back to | ↑〉, to | ↓〉, or to the |2s 2S1/2, F = 2, mF = −1〉 state. In the latter case,

we have to re-pump the atom back into the two-level system. In practice, we did this

with laser beam D3, resonant with the |2s 2S1/2, F = 2, mF = −1〉 → |2p2P1/2, F =

2, mF = −2〉 transition, which optically pumped the ion back into the | ↑〉/| ↓〉manifold.

When D2 and D3 were turned on together, the ion was optically pumped into | ↓〉. This

optical pumping was used to initialize the spin state of the ion at the beginning of each

experiment.

Returning to state detection with the cycling transition, Fig. 3.2 shows histograms

of the number of photon counts measured per experiment with the ion in | ↓〉 and in

| ↑〉.3 In practice, several factors limited the quantum efficiency of spin detection.

Since the hyperfine splitting in the 2p2P3/2 level is negligible, the efficiency of the cy-

cling transition is, in part, determined by the degree to which beam D2 is pure σ+.
3 | ↑〉 is prepared from | ↓〉 using a π-pulse Raman transition (see next Section)
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Figure 3.2: (a) Photon number histogram on the cycling transition when the ion starts
out in the state | ↓〉. (b) Photon number histogram for the state | ↑〉. The counts in
channels one and two are due to background and to off-resonant pumping out of | ↑〉 by
the cycling transition beam (see Appendix A).

The quantum efficiency of the | ↑〉/| ↓〉 determination is also fundamentally limited by

the atomic physics of 9Be+: since the ground-state hyperfine splitting is only about 60

times the excited state linewidth, spontaneous emission after off-resonant transitions

from | ↑〉 to the excited state can transfer population from | ↑〉 into the cycling transi-

tion. For a given effective quantum efficiency of the photodection system (solid angle

and photodetection quantum efficiency), this places a limit on the quantum efficiency of

| ↑〉/| ↓〉 discrimination. For our typical operating conditions, this discrimination quan-

tum efficiency was 96-98%. For a more complete discussion of this effect, and a discussion

of other uses of the photon number histograms, see Appendix A.

3.2 Coupling Spin and Motion

Single-photon transitions are thus useful for optical pumping and for detecting

which of the states (| ↓〉 or | ↑〉) the atom is in. However, we still need a way to couple

the ion’s electronic levels coherently to the its motion if we wish to produce quantum

entanglement between the spin and motion, or to use entangle the spins of separate ions

using their collective motion as an intermediary. Such a coupling must be spectrally
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narrow enough to resolve different states of ionic motion. Furthermore, in order to

couple the ion’s electronic state with its motion, we require strong field gradients.

To see how this coupling occurs, first consider the Hamiltonian of a single, trapped

ion interacting with an applied electric field in the case when two of its levels (which I

will denote ↓ and ↑) have an allowed electric dipole transition between them:4

Ĥ = Ĥ↑↓ + ĤHO + Ĥint. (3.1)

Here, Ĥ↑↓ = 1
2 h̄ω0σ̂3 is the free Hamiltonian for the two-level system {| ↑〉, | ↓〉} and,

in the usual spin-1
2 formalism, σ̂3 is the Pauli spin operator.5 ĤHO = h̄n̂ · ω is

the Hamiltonian for motion along the x-direction, with n̂ = (n̂x, n̂y, n̂z), (n̂m being

the number operator for direction m), ω = (ωx, ωy, ωz), and the zero-point energy

suppressed.

Finally,

Ĥint = −µ̂ · E(x̂, t) (3.2)

expresses the interaction between the ion and the laser beams, in the electric-dipole

approximation [93]. In Eq. 3.2, µ̂ = erel is the electric dipole moment of the atom (with

rel the electron-nucleus relative position operator) and x̂ is the position operator for the

ion’s centre- of-mass. This dependence of Ĥint on the ion’s position gives the desired

coupling between the ion’s motional and spin degrees of freedom. For example, suppose

that E = E(ẑ, t)ex (where ex is the unit vector in the x-direction). If we expand the

electric field in a power series, we have that

Ĥint = −µ̂x

[
E(z = 0, t) +

∂E

∂z
|z=0 ẑ +

∂2E

∂z2
|z=0 ẑ

2 + · · ·
]
. (3.3)

The key term in Eq. (3.3) is the gradient term. Suppose, for instance, that the electric

field were constant in time, but spatially non-uniform. Since the ion is oscillating in
4 The 9Be+ ground state hyperfine levels which I identified as ↓ and ↑ above do not have such a

transition. However, they may be be coupled by two-photon, stimulated Raman transitions, which I
will discuss in Sec. 3.3.

5 Another notation for the Pauli operators uses σ̂x ≡ σ̂1, σ̂y ≡ σ̂2, and σ̂z ≡ σ̂3. However, to avoid
confusion with the motional operators, I will use the present notation. The Pauli operators act in the
Hilbert space of the ion’s spin degree of freedom.
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the z-direction, it experiences a modulation of E at the ion’s oscillation frequency (in

the rest frame of the ion). So, if the oscillation frequency were equal to the atomic

transition frequency ω0, the static field could still cause transitions between electronic

levels.

In practice, time-dependent fields are used to drive transitions. However, the idea

remains the same: field gradients couple the spin and motion and drive transitions. To

flesh this out a bit, consider the one-dimensional case of a single ion constrained to move

only in the z-direction, interacting with an electric field E(z, t) = E0ex cos(kz−ωLt+φ).

For the following derivation, I shall assume that the laser linewidth is much less than

the motional frequency, so that the different motional sidebands are spectrally resolved.

This is the so-called “resolved-sideband” regime.

The interaction Hamiltonian for such a situation is given by

Ĥint = h̄Ω(Ŝ+ + Ŝ−)(ei(kẑ−ωLt+φ) + e−i(kẑ−ωLt+φ)), (3.4)

where Ω̂ .= −µ̂E0/2 is the Rabi frequency, giving the interaction strength between the

ion and the field, and Ŝ± = h̄(σ̂1± iσ̂2)/2 are the atomic raising and lowering operators

which indicate the effect of the interaction on the atomic levels | ↓〉 and | ↑〉. Now let us

go into an interaction picture defined defined by Ĥ0 = Ĥ↑↓+ĤHO and V̂interaction = Ĥint.

Then

Ĥ ′
int = h̄Ω(Ŝ+e

iω0t + Ŝ−e−iω0t)
[

exp(i[η(âe−iωz t + â†eiωzt)]) e−i(ωLt+φ)

+ exp(−i[η(âe−iωzt + â†eiωzt)]) ei(ωLt−φ)
]
. (3.5)

In this last equation, I have expressed ẑ = z0(â+ â†), where z0 =
√

h̄
2mωz

is the spread of

the ground state harmonic oscillator wave function (ψ0(z) =
(

mωz
πh̄

)1/4 exp[−mωzz
2/2h̄]),

and then defined the Lamb-Dicke parameter: η .= kzz0.

Now, I will make the “rotating wave” approximation: assuming that ωL ≈ ω0,

I will drop terms which have an exponent oscillating at optical frequencies. The idea
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behind this is that such terms will average to zero on the long (compared to optical

time scales) time scales of interest to us.6 Defining the detuning δ = ωL − ω0 of the

laser from resonance, we have:

Ĥ ′
int = h̄Ω

[
S+ exp

(
iη(a†ze

iωzt + aze
−iωzt)− iδt+ iφ

)]
+H.C. (3.6)

We may expand the first term in the exponential in Eq. 3.6 in a power series in η to

obtain

Ĥ ′
int = h̄Ω

[
S+

∞∑
k=0

(iη)k(a†zeiωzt + aze
−iωzt)k

k!

]
e−i(δt−φ) +H.C. (3.7)

At this point, if we make one final rotating-wave approximation, it may be apparent

that the detuning δ picks out different powers of a, a†: that is, depending on δ, different

motional levels are coupled together.

Going back to the general expression, Eq. (3.7), we can put Ĥ ′
int into the Schrödinger

equation for the interaction-picture state vector. Since I will assume that we are close

to one of the resonances implicit in Eq. (3.6), let δ = (n −m)ωz + ε, where |ε| � ωz,Ω

and n,m are the indices of the motional levels coupled by the resonance. Representing

|Ψ〉 = ∑
{j=↑,↓}

∑
nC

′
j,n(t)|j, n〉, we obtain:

Ċ′
↑,n = −i(1+|n−m|)e−i(εt−φ)Ωn,mC

′
↓,m (3.8)

Ċ′
↓,m = −i(1−|n−m|)ei(εt−φ)Ωn,mC

′
↑,n. (3.9)

In these equations,

Ωn,m = Ω〈n|eiη(âz+â†
z)|m〉 (3.10)

is the Rabi frequency for the coupling between levels | ↑, n〉 and | ↓, m〉. Another way

to express Ωn,m is:

Ωn,m = Ω〈n|D̂(iη)|m〉, (3.11)

6 Note that these terms have very large energy denominators in a perturbative expansion and, thus,
are indeed negligible
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where D̂(α) = eαâ†−α∗â is the displacement operator [94]. We may evaluate the expec-

tation value in Eq. (3.27) to obtain:

Ωn,m = Ω e−η2/2

√
n<!
n>!

η|m−n| L|m−n|
n<

(η2), (3.12)

where Lm
n is an associated Laguerre polynomial [72, 94]. In the Lamb-Dicke limit, η � 1,

this expression simplifies considerably and, for example, we have that Ωn,n−1 = ηΩ
√
n,

and that Ωn,n+1 = ηΩ
√
n+ 1.

The dynamics described by Eq. (3.9) exhibit Rabi oscillations between | ↑, n〉 and

| ↓, m〉. In particular, if we express |Ψ〉 as a column vector, |Ψ〉 ≡
[

C↑,m

C↓,n

]
, then we have

|Ψ(t)〉 = e−iεt/2[cos(Xn,mt
2 ) + i ε

Xn,m
sin(Xn,mt

2 )] −2iΩn,m

Xn,m
e−i(εt−2φ−π|m−n|)/2 sin(Xn,mt

2 )

−2iΩn,m

Xn,m
ei(εt−2φ−π|m−n|)/2 sin(Xn,mt

2 ) eiεt/2[cos(Xn,mt
2 )− i ε

Xn,m
sin(Xn,mt

2 )]


× |Ψ(0)〉, (3.13)

where Xn,m =
√
ε2 + 4Ω2

n,m. On resonance, ε = 0, Eq. (3.13) simplifies to:

|Ψ(t)〉 =

 cos(Ωn,mt) −iei(φ+π|m−n|/2 sin(Ωn,mt)

−ie−i(φ+π|m−n|/2 sin(Ωn,mt) cos(Ωn,mt)

 |Ψ(0)〉, (3.14)

which indicates sinusoidal oscillations between | ↓, n〉 and ↑, m〉.

To put all this on a more physical footing, suppose that we prepare the atom in

| ↓〉 through optical pumping and turn on the laser interaction for some time tpr, then

measure the occupation of the state | ↓〉 through the cycling transition. If we repeat

this process for various relative detunings δ of the laser, we build up a spectrum of the

form shown in Fig. 3.3.

The central feature in Fig. 3.3 is the so-called “carrier” transition at δ = 0. This

transition couples the levels | ↓, n〉 ↔ | ↑, n〉; that is, it flips the spin but leaves the ion’s

motional state unaffected. If we sit on resonance, δ = 0, and apply the interaction for

time tpr, then the probability P↓ is (in the Lamb-Dicke limit) given by

P↓(tpr) = cos2(Ωtpr). (3.15)
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Figure 3.3: Representation of the spectrum swept out when the Raman laser beam
difference frequency δ + ω0 is swept, holding the length of the probe pulse constant
(Ωtpr = π/2). The signal we measure is proportional to the probability that the ion
remains in | ↓〉 after the probe pulse. The feature at δ = 0 is the carrier, which flips
the ion spin but does not affect the motion. The upper motional (or “blue”) sideband,
at δ = +ωx couples the levels | ↓, n〉 ↔ | ↑, n + 1〉. The lower (or “red”) sideband, at
δ = −ωx couples | ↓, n〉 ↔ | ↑, n− 1〉, and vanishes if the ion starts out in | ↓, n = 0〉.

This sort of behaviour is indicated by the “Rabi flopping curve” in Fig. 3.4(a). In the

usual nomenclature, a pulse for which Ωtpr = π/2, and thus for which the population is

inverted (since P↓ oscillates at 2Ω) is referred to as a “π pulse.” One for which Ωtpr = π

is referred to as a “2π pulse,” and so on.

The feature at δ = +ωz in Fig. 3.3 is the first upper motional (or “blue”) sideband,

which couples the levels | ↓, n〉 ↔ | ↑, n + 1〉. In this case, the ion undergoes Rabi

flopping between these two levels with Rabi frequency Ωn,n+1. In the Lamb-Dicke

regime Ωn,n+1 = ηΩ
√
n + 1. However, outside the Lamb-Dicke regime contributions to

the Rabi frequency from higher-order terms in the sum of Eq. (3.7) with equal powers of

a and a† also contribute to the Rabi frequency, and we must use the general expression,
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Figure 3.4: (a) “Rabi flopping curve” showing the ground-state occupation probability
P↓(tpr) for the carrier transition: δ = 0 (see Eq. 3.15). Each point represents an average
of ≈ 4000 measurements, or 1 s of integration. The slow decay of the envelope is
mostly due to technical noise, with small contributions due to background heating of
the ion’s motion (which affects the single-photon carrier Rabi frequency at order η2).
(b) Ground state occupation probability P↓(tpr) for the first upper (“blue”) sideband:
δ = +ωx, starting in the ground state. The envelope decay is due to both technical
noise and some background heating of the ion’s motion.

Eq. (3.12). A typical upper (“blue”) sideband Rabi flopping curve for a harmonic-

oscillator motional eigenstate is shown in Fig. 3.4(b).

Finally, the feature at δ = −ωz in Fig. 3.3 is the first lower (or “red”) sideband,

coupling | ↓, n〉 ↔ | ↑, n−1〉. Thus, if the ion starts out in the motional state | ↓, n = 0〉,

this feature vanishes (since there is no lower vibrational state with which to couple). The

Rabi frequency on the lower sideband is Ωn,n−1 = Ωη
√

1
ne

−η2/2L1
n−1(η

2) (or Ωn,n−1 = 0

if the ion is in its ground state), which, in the Lamb-Dicke regime, reduces to Ωn,n−1 =
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η
√
nΩ. In this regime, the interaction Hamiltonian for the trapped ion interacting with

the laser beam is formally equivalent to the Hamiltonian of Cavity-QED [92].

It is worth noting that one can treat the interaction between the lasers and the

ion’s complete motion (including the micromotion) in a completely quantum-mechanical

manner [70]. However, such a treatment does not alter any of the results significantly.

Although this treatment does show that one can perform, for example, laser cooling on

rf-sidebands (i.e. sidebands induced by the ion’s micromotion), we shall see in Sec. 6.4.1,

we can predict much of the relevant behaviour by treating the micromotion as classical,

as indicated in Ch. 2.

3.3 Two-Photon, Stimulated-Raman Transitions

Rather than use single-photon transitions to couple | ↓〉 (|F = 2, mF = −2〉) and

| ↑〉 (|F = 1, mF = −1〉) in our experiment, we use two-photon, stimulated Raman

transitions. That is, we apply two laser beams with ∆ωL = ωL1 − ωL2 = ω0 + δ and

∆k = k1 − k2. Each laser beam is detuned by ∆R from resonance with the 2p2P1/2

level. The result is that transitions are driven from | ↓〉 to | ↑〉, with the 2p2P1/2 level

serving as a “virtual level” (which I will refer to as |v〉). The difference frequency

between the two Raman beams is determined by a radio frequency, with its associated

low level of frequency jitter. At the same time, by choosing ∆k judiciously, we have

the high field gradients (e.g. ∂E
∂z ∝ kzE) associated with optical wavelengths. Using

Raman transitions also allows us to be selective in coupling the spin and the motion. In

general, these transitions are sensitive to motion in all three principal trap directions.

But, for example, if ∆k‖ez, we are only sensitive to motion in the z-direction, and if

∆k ≈ 0, we are highly insensitive to motion.

To quantify the situation, let E1(x, t) = ε1E1 cos(k1 ·r−ωL1t+φ1) and E2(x, t) =

ε2E2 cos(k2 · r− ωL2t+ φ2) (where εj gives the polarization of the jth laser). Then the
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interaction Hamiltonian may be written as:

Hint = −h̄
[
ĝ
†
1e

ik1·x̂eiωL1t + ĝ
†
2e

ik2·x̂eiωL2t +H.C.
]
, (3.16)

where ĝi = Eie e
−iφiεi · x̂/2h̄ (i = 1, 2) and e is the charge of the electron.

Let Cj,n = 〈j,n|ψ〉, where j ∈ {↑, ↓, v} and |ψ〉 is the state of the system. If we go

into an interaction picture defined defined by Ĥ0 = Ĥelec + ĤHO (where Ĥelec includes

contributions from H↑↓ and the energy of the level |v〉), and V̂interaction = Ĥint, then we

find that

Ċ′
↓,n = ig∗1

∑
n′
〈n|e−ik1·x̂|n′〉ei[ω·(n−n′)−∆R]tC′

v,n′ (3.17)

Ċ′
↑,n = ig∗2

∑
n′
〈n|e−ik2·x̂|n′〉ei[ω·(n−n′)−∆R−δ]tC′

v,n′ (3.18)

Ċ′
v,n = ig1

∑
n′
〈n|eik1·x̂|n′〉ei[ω·(n−n′)+∆R]tC′

↓,n′ +

ig2
∑
n′
〈n|eik2·x̂|n′〉ei[ω·(n−n′)+∆R+δ]tC′

↑,n′ . (3.19)

Here, g1
.= 〈↓ |ĝ1|v〉, g2 .= 〈↑ |ĝ2|v〉, and the C′

i,n are the coefficients of the interaction-

picture state vectors. In writing these three equations, I have made the “rotating

wave approximation:” that is, I have neglected terms with time-dependences at optical

frequencies. If we now make the substitution C̃v,n
.= Cv,ne

−i∆R t (corresponding to a

transformation to a new interaction picture), we obtain:

Ċ′
↓,n = ig∗1

∑
m

〈n|e−ik1·x̂|m〉ei[ω·(n−m)]tC̃v,m (3.20)

Ċ′
↑,n = ig∗2

∑
m

〈n|e−ik2·x̂|m〉ei[ω·(n−m)−δ]tC̃v,m (3.21)

˙̃Cv,n + i∆C̃v,n = ig1
∑
m

〈n|eik1·x̂|m〉ei[ω·(n−m)]tC′
↓,m +

ig2
∑
m

〈n|eik2·x̂|m〉ei[ω·(n−m)+δ]tC′
↑,m . (3.22)

At this point, we perform an adiabatic elimination of the excited state |v〉: we assume

˙̃Cv,n � i∆C̃3,n and solve the last of the three equations above for C̃3,n. Plugging this

into the first two equations, we obtain:

Ċ′
↓,n = i

|g1|2
∆R

C′
↓,n + i

g∗1g2
∆R

∑
m

〈n|e−i∆k·x̂|m〉ei[ω·(n−m)+δ]tC′
↑,m (3.23)



50

Ċ′
↑,n = i

|g2|2
∆

C′
↑,n + i

g∗2g1
∆R

∑
m

〈n|ei∆k·x̂|m〉ei[ω·(n−m)−δ]tC′
↓,m. (3.24)

with ∆k = k1 − k2. The first terms in these equations, i|gj|2/∆R, represent AC Stark

shifts of | ↑〉 and | ↓〉. These can be eliminated from our discussion by redefining the

energies of | ↑〉 and | ↓〉 to include them, or by transforming to yet another interaction

picture. The interesting dynamics are induced by the second terms in the equations.

The expressions 〈n|ei∆k·x̂|m〉 determine the strength of the coupling between

the different motional levels. For example, if ∆k = 0, then only levels for which m = n

are coupled; that is, the interaction with the lasers changes the spin state but not the

motional state, as claimed above. Moreover, in contrast to Eq. (3.12), the | ↓〉 ↔ | ↑〉

carrier Rabi frequency is independent of the motional state. If ∆k‖ez, then the coupling

is sensitive to motion only in the z-direction, and only different z-motional states are

coupled; in this case, the sums collapse down to one-dimensional ones (i.e. sums over

nz).

The detuning δ picks out particular terms in the sums. For example, assume,

that ∆k‖ez so that ∆k = kzẑ, and assume that δ ≈ ωz(nz −mz) for some particular

nz−mz. Then this term will be slowly-varying with respect to all the other terms in the

sum, and another rotating-wave approximation allows us to drop all these other terms

(which average to zero). Then Eqs. (3.24) become:

Ċ′
↓,nz

= −iΩ∗
n,me

iδtC′
↑,m (3.25)

Ċ′
↑,nz

= −iΩn,me
−iδtC′

↓,m. (3.26)

Here, m is the natural number closest to n− δ
ωz

, and I have defined:

Ωn,m = −g
∗
2g1
∆R
〈n|ei∆kz ẑ|m〉

= −g
∗
2g1
∆R
〈n|eiη(âz+â

†
z)|m〉, (3.27)

where ηz
.= ∆kzz0 is the Lamb-Dicke parameter for the two- photon transition and

z0 =
√

h̄
2mωz

is the spread of the ground state harmonic oscillator wave function in z.
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In general ηm = ∆k · êmm0 (m ∈ {x, y, z}), where m0 is the spread of the ground state

harmonic oscillator wave function in direction m.

Thus, according to Eq. (3.26), the dynamics induced by the two-photon, stimu-

lated Raman transitions are qualitatively the same as those described in the last Section

for a single laser beam, with the exceptions that k→ ∆k and ωL → ω1 − ω2. The ad-

vantage is that, for transitions between atomic levels separated by radio frequencies, we

retain the frequency and phase control associated with rf, but at the same time achieve

the high field gradients associated with optical transitions. We also achieve the benefit

of being able to arrange ∆k so that we are sensitive to all directions of the ion’s motion,

only one direction of ion motion, or such that we are entirely insensitive to the ion’s

motion.

One possible issue with stimulated Raman transitions is that there will be some

population in the “virtual” level |v〉, which decays with a time constant of 8 ns. We may

make an estimate of the probability that the virtual level is populated in, for example,

a π-pulse operation, by solving Eq. (3.22) for C̃3,n. Roughly speaking, |C̃3,n| ∼ | g
∆R
|,

where g is on the order of the single-photon coupling strengths g1 and g2. However, from

Eq. (3.27), we also have that the carrier Rabi frequency is roughly given by Ω = g2

∆R
, so

that g ≈ √Ω∆R. Thus,

C̃3,n ≈
√

Ω
∆R

(3.28)

Pv = |C̃3,n|2 ≈ Ω
∆R

. (3.29)

For typical operating conditions, Ω/2π ≈ 1 MHz and ∆R/2π ≈ 10 GHz, so that Pv ≈

10−4 in a π-pulse operation. Decay from the virtual level is thus a small effect7 .
7 In principle, we would like to increase ∆R as much as possible in order to minimize the effects

of decay from the virtual level. However, if ∆R is bigger than the 2p 2P fine-structure splitting (≈
197 GHz), destructive interference between the 2P1/2 and 2P3/2 virtual levels makes the stimulated-
Raman coupling between | ↓〉 and | ↑〉 ineffective.
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3.4 Spin Diagnostics: the Ramsey Experiment

One experiment which will appear in different forms throughout this thesis is

the “Ramsey experiment” [95], which is typically used for high-precision spectroscopy.

In the Ramsey method, a π
2 pulse is applied to an atom or sample of atoms which

previously has been prepared in some pure state. The state is then allowed to evolve

without perturbation by applied fields for a time TR, after which time a second π
2 pulse

is applied and the probability that the atom(s) remains in its initial state is probed. In

the usual nomenclature, the first and second π/2-pulses are referred to as the first and

second “Ramsey zones.” If the applied radiation is on resonance and the Ramsey zones

have the same laser phase, then the probability of the atom remaining in the initial

state is zero; for a general detuning from resonance, a series of narrow fringes is found

as a function of the detuning. The Ramsey method offers an approximate factor of two

improvement in resolution over the (optimum) Rabi flopping in spectroscopy, as well as

offering practical advantages for atomic beam standards (in particular, for microwave

spectroscopy) [95].

In our experiments, we typically build up spectra by keeping TR fixed while

sweeping the frequencies νpr of the π/2-pulses. In order to determine P↓(νpr), we may

multiply the matrices corresponding to on-resonance π/2-pulses from Eq. (3.13), with

a matrix Mfp sandwiched in between to account for the effects of the free evolution

during the time TR between the π/2-pulses:

Mfe =

 e−iδt/2 0

0 eiδt/2

 . (3.30)

This procedure is straightforward, but the expressions are complicated enough to ob-

scure the underlying physics.

To obtain a clearer picture of the Ramsey experiment, consider instead the case

in which the laser is on resonance with the | ↓〉 ↔ | ↑〉 transition, but where we sweep
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the phase φ of the second π/2-pulse. In this case, Eq. (3.13) becomes: 1√
2

−i√
2
eiφj

−i√
2
e−iφj 1√

2

 , (3.31)

where φj (j = 1, 2) is the phase of the jth laser pulse. Taking φ1 = 0 and φ2 = φ, and

multiplying the matrices together, we have 8 :

1
2

 1− eiφ −i(1 + e−iφ)

−i(1 + eiφ) 1− ie−iφ

 . (3.32)

Thus, if we start out in the state | ↓〉 and perform the experiment, the probability P↓(φ)

of finding the atom in | ↓〉 at the completion of the second Ramsey zone is given by:

P↓(φ) =
1
2
(1− 2 cosφ) = sin2 φ . (3.33)

This describes sinusoidal oscillations in P↓ as a function of the phase difference between

the π/2-pulses. For small detunings of the laser from resonance, the predominant effect

is due to the free evolution matrix, Eq. (3.30), which results in a net phase difference

between the first and second Ramsey zones. Thus, Eq. (3.33) also applies to such cases.9

Fig. 3.5 shows typical Ramsey fringes, from an experiment in which the Ramsey zone

pulse frequencies were varied near resonance.

3.5 Mapping Information From Motion to Spin

The interactions between the ion and the lasers couple the ion’s spin and motional

degrees of motion, through the field gradients of the laser. We may use this coupling to

engineer the ion’s quantum state of motion, as will be discussed in Ch. 6. Alternately,
8 This equation is the same as that obtained in the case where the phase is held constant, but the

detuning is changed — in the case that the detuning is small enough to ignore during the π/2-pulses,
but where TR is large enough that the detuning plays a large effect during the free evolution. This is
easy enough to verify by using Eq. (3.31) for the π/2-pulses and Eq. (3.30) for the free evolution, and
comparing the result to Eq. (3.32). Aside from an irrelevant overall phase factor, the two results are
identical.

9 For larger detunings, the complete result also exhibits an envelope which is given by the same line
shape which would result from Rabi spectroscopy
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Figure 3.5: Ramsey fringes taken with an initial | ↓〉 state. For these data, the fre-
quencies of the Ramsey zones (π/2-pulses) were varied near the | ↓〉 ↔ | ↑〉 resonance
frequency. For small detunings, the Ramsey fringes are well-fit by the sinusoidal form
of Eq. (3.33).

we may use the coupling to map information about the ion’s motion onto its spin

degree of freedom. This is necessary because we do not have the ability to measure

the motional state occupation numbers directly. To do perform the mapping, we start

with the ion in spin down and in some “unknown” (but reproducible) motional state:

|ψ〉 = | ↓〉∑Cn|n〉. We then turn on the Raman beams, tuned to some particular

motional sideband; in practice we choose to tune to the blue sideband.

If we leave the interaction on for a time tpr, then measure the probability P↓ that

the ion is in | ↓〉, we find that

P↓(tpr) =
∑

Pn cos2(Ωn,mtpr) =
1
2

∑
Pn(1 + cos(2Ωn,mtpr) (3.34)

as discussed in Sec. 3.2 and indicated for a Fock state in Fig. 3.4(b). In Eq. (3.34),

Pn = |Cn|2. By performing a Fourier decomposition of the Rabi flopping curve, we

can extract the Pn’s. Furthermore, we can do this with unit quantum efficiency as

long as the different Rabi frequencies Ωn,m are well-resolved. On the blue sideband, in
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the Lamb-Dicke regime, Ωn,n+1 = ηΩ
√
n+ 1, and so it is easy to resolve the different

Fourier components.

In the experiment, background heating of the ion’s motion and technical noise

(laser beam intensity fluctuations, fluctuating background magnetic fields, etc.) wash

out the Rabi flopping curves, as is evident in Fig. 3.4(b). To approximate these effects,

we may write:

P↓(tpr) =
1
2

∑
Pn(1 + cos(2Ωn,mtpr)e−γntpr + B (3.35)

where B is due to background counts and the γn are n-dependent decay coefficients.10

The data analysis proceeds as before except that a singular-valued decomposition

analysis with decaying sinusoids as basis functions is used instead of Fourier analysis [96].

The frequencies of the various (decaying) sinusoidal basis functions are calculated from

a base Rabi frequency (either the carrier or the | ↓, n = 0〉 ↔ | ↑, n = 1〉 transitions)

using Eq. (3.12).

In summary, then, the interaction between the ion and the motion provides us

with the “handle” we use to manipulate the ion’s motion and also with the “camera”

we use to analyze this motion.

10 For example, if the decay is due to slow laser intensity fluctuations, then different Fock state
flopping curves decay in the same number of flops and so, in a different absolute time.



Chapter 4

Apparatus

In this chapter, I will describe the apparatus used to realize the interactions

discussed in the last Chapter (the ion trapping apparatus was discussed in Ch. 2).

First, I will discuss the laser and optical systems used to cool and manipulate the ion’s

motional state. Then I will describe the digital logic and rf control used to switch the

laser beams on and off and control their frequency. The experiment was a fluid object,

constantly changing and evolving. In order to describe it, I have had to choose one

particular configuration. However, this setup was generically the same as any of the

other incarnations of the laser systems.

4.1 Optics

The optical setup of the experiment was divided into three sets of beam lines: (i)

the beams used for optical pumping, Doppler cooling and driving the cycling transition,

(ii) the “repumper,” used to clean out the 2s 2S
1/2F = 2, mF = −1 level, and (iii) the

Raman beams. The orientation of these beam lines with respect to the vacuum envelope

of the trap is shown in Fig. 4.1. For each of these beam lines, the wavelength of the

light at the ion was ≈ 313 nm. This light was created by frequency-doubling light from

a 626 nm dye laser (the dye was Kiton Red), pumped by green light from an argon-ion

laser. The argon-ion laser was a Spectra Physics Model 2030, which was usually run
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Figure 4.1: Laser beam geometry. The long axis of the vacuum envelope was parallel to
the x-axis for the elliptical microtraps, and parallel to the z-axis for the micromachined
linear ion trap. The Blue Doppler, Red Doppler and repumper beams entered the
trap through the same window. The Red Raman ⊥ beam entered through the opposite
window. The Blue Raman beam and the Red Raman co beam entered at 90◦ to the Red
Raman ⊥ beam. The resonant beams were polarized σ−, Blue Raman was π-polarized,
RRco was polarized (σ+ + σ−)/21/2, and RR⊥’s polarization was selected as discussed
in Ch. 6.2.1: usually, its polarization was (σ+ + σ−)/21/2 as well.

with an output power of ≈ 16.8 W. This light was then split three ways by optical beam

splitters: roughly 5.6 W was sent to each of the dye lasers.

The argon-ion laser and all the 626 nm optics associated with the dye lasers

and their locking systems were on one optical table (the “red table”). The frequency

doubling, the 313 nm optics and optical switches, and the ion trap were on a second

optical table (the “UV table”). The 626 nm light was passed to this table through fibre

optics.
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4.1.1 Resonant Beam Lines: the Doppler and Repumper Beams

A schematic diagram of the resonant beam lines (the Doppler and repumper lines)

is shown in Fig. 4.2. There were two “Doppler” beams: the Blue and Red Doppler. The

names arose from the frequencies of the two beams: since the Blue Doppler connected

| ↓〉 with the 2p 2P3/2 level, it was of higher frequency than the Red Doppler, which

connected | ↑〉 with the same state. Blue Doppler drove the cycling transition used for

state detection (see Sec. 3.1), and provided laser cooling. Red Doppler was also turned

on during laser cooling and, in conjunction with the repumper laser, provided optical

pumping.

The Doppler beams were produced by a Coherent 699 dye laser circulating Kiton

Red (at a pressure of 40-55 psi). The conversion efficiency from the green pump light

to 626 nm output was approximately 10% (depending on the age of the dye and the

state of the laser cavity). So, with 5.6 W of green pump light, the laser produced up to

600 mW of output light. The 699 has an internal cavity assembly consisting of a thin

and thick etalon, and a Brewster-angle plate used to scan the laser over large frequency

ranges (in principle, up to tens of GigaHertz). The laser was modulation-locked to the

maximum of the thick etalon transmission. Frequency stability was provided by locking

to an external, stable reference cavity (a “side-lock” to the side of the external cavity’s

transmission). The error signal derived from the reference cavity was fed back to the

Brewster-angle plate and to a piezo-electric transducer which supported one of the laser

cavity mirrors. By tuning the laser to the side of the transmission curve of an external

cavity, we could determine that the 699 typically exhibited a linewidth of 1-4 MHz when

locked up.

A portion of the 699’s output light was split off by a beam splitter and sent to

diagnostics. These diagnostics consisted of a Burleigh Model #SA-PLUS-200-B1 spec-

trum analyzer (2 GHz free spectral range), a travelling-cart wavemeter [97, 98], and
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Figure 4.2: Resonant beam lines: Doppler (a) and repumper (b). The Doppler beams
were derived from a Coherent 699 dye laser. The 1.26 GHz hyperfine and Zeeman
splitting between Red and Blue Doppler was achieved with a 631 MHz AOM in the
red (i.e. at 626 nm). The frequencies of the beams were doubled in a BBO (β-barium
borate) crystal inside a double-ring optical resonator structure. In the UV (at 313 nm),
the frequency difference between the two beams became 1.26 GHz. The beams were
turned on and off with two more “switch” AOMs. The BBO rings and the UV optics
were on a separate optical table from the dye laser, its Ar-ion pump laser, and the
laser diagnostics. Light at 626 nm passed between the two tables through a single-mode
optical fibre. The repumper beam was derived from a home-built dye laser. This beam
line was generically equivalent to the Doppler beam lines, except that the frequency
doubling was performed by single-passing the red light through a cooled RDP crystal.
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an I2 saturated absorption spectrometer [99]. The spectral features of the iodine pro-

vided a stable reference to which to lock the laser at long times. Details of the setup are

shown in figure 4.3(a). The laser light first passed through a double-pass AOM, where it

picked up a frequency offset (from the laser output) of ∆ν = −2×72 MHz = −144 MHz.

This double-pass configuration allowed us to change the frequency offset between the

laser light and the iodine lock without causing appreciable beam steering. From there,

the light passed through a thick beam splitter (approximately 4% reflectance per face),

which produced the weak probe and reference beams for the saturated spectroscopy.

The transmitted beam passed through another AOM: this AOM produced a frequency

shift of ∆ν = −72 MHz in the pump beam. The frequency of the rf driving this AOM

was modulated at ≈ 3 kHz in order to allow lock-in detection of the iodine fluores-

cence.1 The modulation depth was on the order of the linewidth of the iodine features

(≈ 5− 10 MHz).

As usual in saturated absorption spectroscopy [99], the strong pump beam sat-

urated the I2 population with which it was resonant. This depleted the absorption

signal of the weak (counter-propagating) probe beam in the velocity class of I2 which

was simultaneously in resonance with the pump and probe beams. Subtraction of the

reference beam signal from the probe beam signal removed the background absorption

profile of the probe beam (and also reduced the effects of laser intensity fluctuations),

leaving only the narrow, Doppler-free, saturated-absorption dip. The pump beam was

frequency-modulated at 30 kHz to move the saturated-absorption signal away from

DC, using standard phase-sensitive detection techniques [100]. The probe and reference

beams were detected and subtracted in a New-Focus Nirvana auto-balanced photodiode-

pair detector, and the output was sent to a lock-in amplifier, which fed back into the

699 control box lock circuitry.
1 Note that, if the beam had been modulated before the beam splitter, then the reference beam would

have had 30 kHz FM on it. If the amplitude of this beam fluctuated, the fluctuations then would have
passed through the phase-sensitive detection to the lock signal.
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Figure 4.3: Schematic of the saturated absorption spectrometers used to lock the
Doppler (a) and repumper (b) lasers to iodine. The frequencies driving the various
AOMs are indicated. Note that the “modulation” AOM frequency shift was effectively
half the frequency driving the AOM. The beam which went to the iodine lock from the
repumper laser was first down-shifted by 661 MHz.
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The 699 was locked to hyperfine feature (a) of line # 961 of the “Iodine at-

las” [101]. See Fig. 4.4(a) for a spectrum of this iodine line. Feature a lies at the blue-

most edge of line # 961: thus, if the laser (on resonance with the 9Be+, | ↓〉 → |2p 2P3/2〉

transition jumped out of lock, it would not re-lock to the blue of resonance (which would

cause heating). There was no lock point to the blue of Feature (a).

From Figs. 4.2 and 4.3(a), we can determine the relationship between the fre-

quency νI2 of Feature a of line # 961 of I2 and the | ↑〉 → |2p 2P3/2〉 resonance 2

frequency νBe of the ion. First note that, in order for both the pump and probe beams

to be in resonance with the same velocity class of the I2 sample, we must have

probe beam pump beam

νL − 2νsh − νD = νL − 2νsh − νmod + νD . (4.1)

Here, νL is the frequency of the laser’s output, νsh = 72 MHz is the frequency driving the

double-pass AOM, νmod = 72 MHz is the frequency driving the pump-beam modulation

AOM, and νD is the magnitude of the Doppler shift of the selected velocity class.

Equation (4.1) implies that

νD =
1
2
νmod. (4.2)

Finally, we have

νBe = 2 (νI2 + 2νsh + νmod + νD)− 80 MHz

= 2
(
νI2 + 2νsh +

1
2
νmod

)
− 80 MHz

= 2νI2 + 280 MHz . (4.3)

The main part of the Doppler laser’s power passed through a high-frequency

AOM which was driven at 631 MHz (half the 9Be+ hyperfine splitting, plus Zeeman

shifts). The undeflected beam produced the Red Doppler beam when doubled, while
2 Recall that | ↑〉 ≡ |2s 2S1/2, F = 1,mF = −1〉.
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Figure 4.4: (a) Portion of I2 line # 961, as traced out by saturated absorption spec-
troscopy. The line is the result of the phase-sensitive detection signal of the photodiode
current difference between the probe and reference beams, as described in the text. The
Doppler laser was locked to Feature (a). Features (o) through (u) are not shown on
this trace: they lie to the right of Feature (n), which is towards lower frequencies. The
relative position of the 9Be+, | ↑〉 → |2p 2P3/2〉 resonance (after frequency doubling) is
indicated by the arrow. From the text, the 626 nm light which was doubled to be on
resonance with this transition lay 140 MHz to the blue of Feature (a). (b) Complete
trace of I2 line # 954. The repumper laser was locked to Feature (a) of this line. The
626 nm light which, when frequency doubled, drove the |F = 2, mF = −1〉 → |2p 2P1/2〉
transition, was 681 MHz to the blue of this feature.



64

the (positive) first-order diffracted beam produced the Blue Doppler. These two beams

were then coupled from the “red” table to the “UV” table through single-mode fibres.

The fibres were a convenient way to pass the light from one table to the other, since they

allowed us to change the alignment of the “red” optics without affecting the doubling

ring or UV optics alignment.3

Frequency doubling of the 626 nm Doppler-line light occurred in a BBO crystal

which was enclosed in a double-ring cavity (see Fig. 4.5). The two rings shared three of

the four mirrors which comprised their respective cavities, as well as the BBO crystal

in which the frequency-doubling took place, and the UV output-coupler. The mirrors

which the two rings did not share were mounted on piezo-electric transducers, which

allowed feedback of an error signal to lock the cavity. Sharing one BBO crystal between

the two beams was a convenient way to maximize the use of the BBO crystal.

As Fig. 4.5 indicates, each ring was in a bow-tie configuration. The long side of

the bow-tie was 15 cm in length, whereas the short side was 10.6 cm long. The other

relevant dimensions are shown in Fig. 4.5. Two of the mirrors were high-reflectance

(R > 99.9%), 10 cm radius of curvature mirrors. The piezo-mounted mirror was a high-

reflectance (R > 99.9%) flat. The final mirror, which served as the input coupler, was

a 98.5% reflectance flat. Coupling into the cavity was achieved through two telescopes,

each of which consisted of two, 10 cm lenses. The polarization of the 626 nm light inside

the cavity was in the plane of the ring (horizontal). The cavity had a finesse of ≈200 and

a free spectral range of approximately 0.5 GHz. The power build-up factor was measured

to be ≈75. The cavities were locked on resonance by monitoring the polarization of the

626 nm light reflected off the input coupler, according to the scheme of Hänsch and

Couillaud [102], and feeding the resultant error signal back to the piezo-mounted cavity

mirrors.
3 Of course, changing the red alignment necessitated realignment of the fibres’ input couplers.
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Figure 4.5: Resonant power build-up ring cavities for frequency doubling 626 nm to
313 nm. With 220 mW of 626 nm light coupled into one of the cavities, approximately
15-20 mW of 313 nm light was produced. Type II phase matching was used.

The BBO crystal was approximately 6 mm (length) by 4 mm by 4 mm. It lay in

the short section of the cavity bow-tie, and its front and rear facets were cut at Brewster’s

angle with respect to the horizontally polarized, 626 nm light. The two fundamental

beams (for Blue and Red Doppler) passed through the BBO crystal parallel. Second-

harmonic generation was achieved through angle-tuned, Type II phase matching, and

the crystal was cut so as to satisfy the phase-matching condition. The relevant BBO

optical properties at 626 nm are listed in Table 4.1. From the nonlinear coefficient d20

and the beam characteristics, we would expect a conversion efficiency [103] ηnl = P 2ω

[Pω ]2
≈

1 × 10−4/W (where the powers are measured in Watts). In practice, with 200 mW of

power entering the cavity, 10 mW of UV was produced (corresponding to an inter-cavity

doubling efficiency of η ≈ 5× 10−5/W). The UV was coupled out of the cavity with a

dichroic beam splitter, which reflected the 313 nm light out of the ring while presenting

little loss (< 0.5%) to the 626 nm light.
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Table 4.1: Optical characteristics of β-barium borate (BBO) at 626 nm and room
temperature [104]. The second-harmonic generation scheme uses 626 nm (ordinary ray)
+ 626 nm (extraordinary ray) = 313.0 nm (extraordinary ray).

property value

refractive index (o,e) 1.66747, 1.61568
deff 1.77 pm/V
Phase matching angle 38.4◦

Walk off (o,e) 0.00 mrad, 72.89 mrad

The UV light (at 313 nm) passed from the cavity to an AOM (Intra-Action

Model #ASM-802B8.4 The negative first order diffracted spot (with a frequency shift

∆ν = −80 MHz) was then sent to the trap. Thus, by turning the rf which drove the

AOM on and off, we could turn on and off the UV at the trap. Details of the rf switching

will be discussed in Sec. 4.2.1. The conversion efficiency of this switch AOM was ≈ 80%

when driven with ≈ 2 W of rf.

Since the Blue Doppler beam drove the cycling transition, which was our only

observable in the experiment, it was imperative that this beam have stable intensity.

For this reason, the Blue Doppler beam passed through a “noise-eater” AOM before

the switch AOM. Blue Doppler’s intensity was monitored by fast photodiodes after

the frequency-doubling ring, and the results were accumulated on a fast integrator,

which derived an error signal. This error signal was mixed with the rf driving the

noise-eater AOM in order to control the light intensity: intensity fluctuations were

shunted into the AOMs first-order deflected beam. The undeflected beam thus exhibited

reduced amplitude fluctuations (up to ≈ 100 kHz), and this beam was passed on to the

Blue Doppler switch AOM. The noise-eater circuitry did not have a sample-and-hold

capability, and so had to be placed before of the switching AOM.

From the switch AOMs, the light passed through a linear polarizer and then

through a quarter-wave plate. This produced pure circularly polarized light so that the
4 This was the same model as all the other UV AOMs.
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ion could be illuminated by pure σ− light.5 The quantization axis for the ion was set

with a magnetic field coil whose axis of symmetry was roughly coincident with the laser

beam propagation direction. The coil was outside the vacuum envelope, about 15 cm in

diameter, and about 7.5 cm from the ion trap, producing a field of about eight Gauss at

the location of the ion with several Ampères of current passing through the coil. Fine

adjustments of the quantization direction and nulling out of external fields (such as that

due to the Earth’s magnetic field) were accomplished with two similar coil coils at right

angles to the first and an equal distance from the trap.

The UV was focussed onto the ion with a 10 cm focal length, UV lens, which was

external to the glass vacuum envelope. This lens was mounted on an XYZ-translator.

As indicated in Fig. 4.1, the Blue Doppler beam was combined with the Red Doppler

on a 50-50 beam splitter. These two beams were then combined with the repumper (the

weakest of the resonant beams) on another 50-50 beam splitter before passing through

the polarizer, quarter-wave plate, the lens, the vacuum window, and into the trapping

region.

The repumper beam line was quite similar in its features to the Doppler beam

line. The main differences were in the dye laser and in the crystal used for frequency

doubling. The dye laser used to produce 626 nm light for the repumper beam was a Jim

Bergquist-designed, “home-built” ring laser. The ring cavity had a free spectral range of

100 MHz. Single direction lasing was ensured by an optical diode in the ring cavity, and

frequency selectivity was achieved by a manually-tuned birefringent filter (200 GHz free

spectral range), 6 , a galvanometer-driven thin etalon (20 GHz free spectral range) and

a thick etalon assembly (1.6 GHz free spectral range). 7 Fine tuning was accomplished

with a piezo-mounted mirror which was one of the ring cavity mirrors. The laser was
5 A method for peaking up the polarization of the light is discussed in Appendix A.
6 This birefringent filter assembly was purchased from Coherent Radiation, Inc., and was the assembly

used in their 699
7 Again, this thick etalon assembly was the same as used in Coherent’s Model 699
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kept on-mode with a dither-lock feeding back to the thick etalon — this kept the laser

at maximum output intensity. Short-term frequency stability was ensured by locking

the laser to an external Invar cavity (750 MHz free spectral range) using a Hänsch-

Couillaud scheme to feed back to one of the ring-cavity mirrors. (This is in contrast to

the Coherent 699, which uses a side-lock technique.) Unlike the 699 laser, the home-

built laser did not have a Brewster-angle plate; however, it was still possible to scan the

laser frequency by approximately 2 GHz. With 5.6 W of pump light, the laser typically

put out between 650 and 750 mW, depending on the age of the dye and the day-to-day

condition of the laser cavity. With the described locking scheme, the linewidth of the

laser varied between 50 and 200 kHz, again depending on the day-to-day condition of

the laser cavity.

As with the Doppler laser, a small portion of the output of this laser was split off

with a beam splitter, and sent to the spectrum analyzer and travelling-cart wavemeter.

The rest of the light passed through a high-frequency AOM: the undeflected beam was

coupled through a single-mode optical fibre to the UV table, whereas approximately

30 mW in the negative first-order diffracted beam was sent off to a saturated-absorption

iodine spectrometer.

This iodine setup, which is shown in Fig. 4.3(b), was used for long-term frequency

stability of the repumper. The apparatus was very similar to that described above for

the I2 lock of the 699 dye laser, except that the double-pass AOM was absent in the

repumper beam line. The error signal from the lock-in amplifier was fed back to the

piezo-mounted cavity mirror of the laser ring cavity. The high-frequency splitter AOM

which deflected the beam into the I2 set up was driven with 661 MHz rf, the modulating

AOM shifted the pump beam by ∆ν = −80 MHz= ν′mod, and, as Fig. 4.2 shows, the

UV switch AOM added a frequency shift of ∆ν = +80 MHz to the UV (instead of the

-80 MHz in the Doppler beams). The laser was locked to Feature (a) of Line # 954 of

iodine [101], which is shown in Fig. 4.4(b). Thus, the complete frequency offset between
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Table 4.2: Optical characteristics of rubidium dihydrogen phosphate (RDP) at 626 nm
and room temperature [104]. The second-harmonic generation scheme uses Type I
phase-matching: 626 nm (ordinary ray) + 626 nm (extraordinary ray) = 313.0 nm
(extraordinary ray).

property value

refractive index (o,e) 1.51, 1.49
deff 0.379 pm/V
walk off angle (o,o,e) 0 mrad, 0 mrad, 3.02 mrad

the iodine frequency νI2 and the frequency νr of the repumper light at the ion satisfied

νr = 2νI2 + 2× 661 MHz + 2× 1
2
ν′mod + 80 MHz

= 2νI2 + 1362 MHz. (4.4)

The 626 nm light in the repumper beam line was doubled by single-passing it

through an rubidium dihydrogen phosphate (RDP) crystal. The relevant optical char-

acteristics of RDP are at 626 nm are shown in Table 4.2. The crystal was 5 cm long,

and was cooled (using a thermoelectric cooler) to −1.86◦C for 90◦ (non-critical) Type I

phase matching. The red light was focussed into the crystal with a 10 cm focal length

lens. With 200 mW of power at 626 nm, the crystal produced ≈ 17 µW of 313 nm

UV light, which corresponds to ηnl ≈ 3.5 × 10−4/W. As indicated in Fig. 4.2, the UV

passed through a +80 MHz switch AOM, before being combined with the Red and Blue

Doppler beams on a 50-50 beam splitter and passing into the trap.

4.1.2 The Raman Beam Line

The Raman beams were produced by another home-built ring dye laser, of the

same design as that which produced the repumper light. This laser was locked to an

external Invar cavity similar to that in the repumper setup, which provided frequency

stability. Since stimulated-Raman transitions were used to couple the ion’s spin and

motion (see Ch. 3), the overall laser frequency stability was not as important as that
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of the frequency difference of the two Raman beams. This difference frequency was set

by a high-frequency AOM (driven at 550 MHz) through which the Raman light passed

before being coupled into two single-mode fibres and over to the UV table (see Fig. 4.6).

Drifts in the overall Raman laser frequency produced only higher-order effects in the

laser coupling to the ion: from Eq. (3.27),

δΩ =
g∗2g1
∆2

R

δ∆R

⇒ δΩ
Ω

=
δ∆R

∆R
, (4.5)

where δ∆R is the fluctuation in the Raman laser detuning. For this reason, it was not

necessary to stabilize the laser to a narrower linewidth than the 50−100 kHz it exhibited

when locked to the external Invar cavity. Nor was it necessary to lock the Raman laser

to an iodine feature for long-term stability.8

Once the 626 nm light passed through the optical fibres to the UV table, it was

coupled into a two-ring buildup cavity of the same design as that in the Doppler beam

lines. The 626 nm light was doubled in BBO. The design parameters and the doubling

efficiency of this setup were the same as with the Doppler beam rings.

From the doubling ring, the Blue Raman (which was detuned by ∆R from the

| ↓〉 ↔ |v〉 transition) beam passed through a noise-eater detector and AOM setup

identical to that in the Blue Doppler beam line. The undeflected beam from the noise-

eater AOM (which had reduced amplitude fluctuations) then passed through a switch

AOM driven at 80 MHz: the negative first-order beam was selected for use in the

experiment. This beam was combined with the Red Raman (detuned by ∆R from the

| ↑〉 ↔ |v〉 transition) co-propagating beam on a polarizing beamsplitting cube, and

then focussed onto the ion by a 10 cm focal length lens, which was mounted on an

XYZ-translation stage.
8 The Raman laser typically exhibited a drift rate of ≈ 200 MHz/h.
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Figure 4.6: Raman beam line. The Red and Blue Raman beams were split in the red,
then sent to the UV table through optical fibres. Blue Raman was detuned by ∆R from
the | ↓〉 ↔ |v〉 transition, while Red Raman was detuned from the | ↑〉 ↔ |v〉 transition.
Since we used Raman transitions to couple spin and motion, frequency fluctuations of
the laser were not significant to first order. For this reason, no I2 lock was needed.
The double-pass AOM in the Red Raman beam line determined the overall frequency
separation of the Red and Blue beams: the double-pass configuration allowed us to
scan the frequency over a large (30 MHz) range without introducing appreciable beam
steering.

The Red Raman UV beam line was somewhat more complicated. This beam

had the frequency-control elements in it. It was also split into two, independent beam

lines: the co-propagating9 (RRco) and the perpendicular (RR⊥) beams. From the

doubling ring, the Red Raman UV beam went to a double-pass AOM which set the

overall difference frequency between the Blue and Red Raman beam lines. The rf which

drove this AOM came from a switchable rf multiplexer, which could switch one of many

different rf sources to the AOMs rf input. By selecting the frequencies of these rf sources

appropriately, we could drive any of the interesting ion-laser couplings (see Ch. 3):

carrier, blue sideband, red sideband, etc. Usually, a frequency of approximately 80 MHz
9 This beam, in conjunction with the Blue Raman beam, drove transitions for which ∆k ≈ 0, which

were insensitive to the ion’s motion (see Sec. 3.3).
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sent to the double-pass AOM drove the carrier transition (90◦ configuration): this

frequency corrected for Zeeman shifts of the atomic levels due to the applied quantization

magnetic field (see above). The details of the rf switching will be discussed in Sec. 4.2.1.

The double-pass configuration of the AOM allowed us to change the frequency of the

Red Raman beam by a large amount (up to 30 MHz) without appreciable beam steering.

After the double-pass AOM, the beam passed through a noise-eater AOM setup

similar to those in the Blue Doppler and Blue Raman beam lines. Since the noise-eater

was downstream of the double-pass AOM, it could correct for imbalances in the rf levels

of the various synthesizers which drove the double- pass.

Having passed through the noise-eater AOM, the Red Raman beam continued on

through an AOM which split the perpendicular and co-propagating Red Raman beams.

This AOM was driven with 80 MHz rf, and the negative, first-order deflected beam was

combined on a polarizing beamsplitting cube with the Blue Raman beam (see above).

This beam constituted the co-propagating (“...with the Blue Raman”) beam, and could

be switched off by turning off the rf driving the “splitter” AOM. The undeflected beam

from the splitter AOM passed into a final AOM (the “Red Raman switch”) driven

with 80 MHz rf, and the negative, first-order deflected beam passed through a 10 cm

focal-length lens (mounted on an XYZ-translation stage) and into the trap.

From Fig. 4.6, we may determine the frequency differences between the RRco and

BR beams, and between the RRco and RR⊥ beams at the ion. These are:

∆νBR,RR = 2× 550 MHz− 80 MHz + 2νdp + 80 MHz

≈ 1100 MHz− 80 MHz + 2× 81 MHz + 80 MHz

= 1262 MHz , (4.6)

∆νco,⊥ = −80 MHz + νsplt . (4.7)

In Eq. (4.6), νdp is the frequency driving the double-pass AOM: for the last equality, I

have assumed that this frequency was set to drive the carrier transition. In Eq. (4.7),
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νsplt is the frequency driving the splitter AOM: had this frequency been set to 80 MHz,

then the two carrier transitions (perpendicular and co-propagating) would have been at

the same double-pass frequency. In practice, the frequency was usually set to 80 MHz−

ωm/2π so as to allow coherent-state generation (see Sec. 6.1.3), so that the the two

carrier transitions did not correspond to the same double-pass AOM frequency.

4.1.3 Revisions to the Laser Beam Lines

The optical setup described above held for many of the experiments described in

this thesis. However, two major changes were made to this setup in the spring of 1998.

One involved the resonant beams, and the other involved the Raman beams.

The Coherent 699 laser used to produce the Doppler beams frequently exhibited

a linewidth of ≈ 4 MHz at 626 nm. This translated into a spectral width of ≈ 8 MHz

in the UV — a substantial fraction of the 9Be+ excited-state linewidth. The laser noise

produced a widening of the normally Poissonian photon distributions of the cycling

transitions (see Sec. 3.1). Since the homemade lasers had much narrower linewidths,

we decided to use what had formerly been the repumper dye laser to drive the cycling

transition, and the 699 as a repumper. However, we continued to use the 699 to produce

the Red Doppler beam. This necessitated changing the Red Doppler transition from

being resonant with the | ↑〉 → |2p2P3/2〉 transition to being resonant with the | ↑〉 →

|2p2P1/2〉 transition. However, this was a minor change. This switch in laser roles had

the desired effect on the photon statistics.

A second major change was prompted by the discovery that the single-mode fibres

used to translate the Red and Blue Raman beams from the red table to the UV table

introduced significant phase noise between the two beams. This problem was resolved

by the purchase of several 250 MHz UV AOMS, which enabled the ≈1.25 GHz hyperfine

splitting between the Red and Blue Raman beams to be achieved in the UV. In the new

scheme, the 626 nm light was transported to the UV table with a single fibre, and then
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doubled. The double-pass AOM frequency was changed slightly, but the Red Raman

splitter and the Red Raman switch frequencies were kept the same. A high-frequency

AOM was placed upstream of the double-pass AOM and driven at 257 MHz. Its positive,

first-order diffracted beam was then passed through three other AOMs, all driven at

257 MHz. In each case, the positive, first-order beam was passed on to the next AOM,

and the resulting beam was taken as the Blue Raman, with the last high-frequency

AOM being used as the new Blue Raman switch.10 The total frequency separation of

the Red and Blue Raman beams at the trap was thus given by

∆νtot = 4× 257 MHz + 2× νdp + 80 MHz

≈ (1028 + 2× 77 + 80)MHz

= 1262 MHz = ω0/2π . (4.8)

A schematic of the modified Raman beam line is shown in Fig. 4.7.

4.1.4 Photon Detection

Fluorescence from the ion was collected by an f/1 optical system, the details of

which are shown in Fig. 4.8. This system consisted of two lenses, with an aperture

between the two.

The first lens was a six-element compound lens (designed by Howard Smith and

assembled by Coastal Optics), with a working distance of 40 mm. A 600 µm diameter

aperture was located at the position of the primary focus. After passing through this

aperture, the collected fluorescence was focussed by a second lens (a 2.5 cm focal length,

Newport UV doublet consisting of two, 5 cm lenses) onto either one of two photon

counting devices (see below). The magnification of the first lens assembly was 5 and

that of the second was 25, for an overall magnification of 125.
10 The higher frequency operation had the added benefit of increasing the angular separation of the

different diffracted orders, making it easier to separate the desired order from the others and reducing
stray light
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Figure 4.7: Raman beam line as modified to avoid fibre-induced, differential phase
noise in the Red and Blue Raman beams. The 626 nm light now passed to the UV table
through a single fibre, and was frequency doubled to 313 nm before being split. The
Red Raman beam line was identical to before (see Fig. 4.6). The Blue Raman beam
passed through four, 257 MHz AOMs in order to pick up a frequency shift with respect
to Red Raman equal to the hyperfine splitting plus Zeeman shifts.

The fluorescence was either imaged onto a micro-channel plate imaging tube or

a photomultiplier tube (PMT). The former was convenient for forming an image of the

trapped ion and its environs, but had lower quantum efficiency than the photomultiplier

tube. For this reason, the imager was used for loading the trap, but the PMT was usually

used for taking data.

Two imager tube systems were used in the experiments described in this thesis.

The first was manufactured by Quantar Technologies. It had a quantum efficiency

of ≈5%. The second was produced by Photek, and had roughly the same quantum

efficiency. Both tubes produced voltage outputs proportional to the x − y position of

the detected photons: these outputs could be displayed on an oscilloscope, producing a

real time image of the fluorescing ion. In addition, both tubes had digital outputs which

allowed an integrated picture to be displayed on a computer. The inset of Fig. 2.2 shows
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Figure 4.8: Schematic of the imaging optics. The first lens was a custom-made (Howard
Smith, design/Coastal Optics, assembly) six-element lens with a working distance of
40 mm. The second was a 2.5 cm focal length Newport UV doublet. The overall
magnification of the system was 125, and its f/# was equal to one.
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an image of two trapped ions held in the beryllium-electrode elliptical microtrap. These

data were taken with the Photek imager. Finally, both imaging tubes output a TTL-

compatible pulse for every photon they detected. These pulses could then be counted by

the data-acquisition system (see Sec. 4.2.2), or converted to an average count rate. The

photomultiplier tube was a Hamamatsu Model #H6240-01 “side-on” PMT. Its quantum

efficiency was ≈ 20%. This unit takes +5 V in an puts out a TTL-compatible pulse for

every photon it detects.

The imager tube (whichever one was in use) and the photomultiplier tube were

mounted on the base plate (see Fig. 4.8). The imager was mounted facing the ion and

the PMT at right angles. The fluorescence was usually focussed directly onto the imager

photo-anode. However, by putting a 45◦ mirror into the path of the fluorescence, the

light could instead be diverted onto the PMT’s window. This mirror was mounted on

a motorized stage, and the whole assembly was made light-tight.

When counting photons with the photomultiplier tube, the overall detection effi-

ciency of the system was calculated from the measured ion fluorescence to be ≈ 8×10−3,

when it was used with the linear trap. The detection efficiency includes effects due to

the ion’s dipole radiation pattern, the solid angle of the detection system, losses in the

optics, and the quantum efficiency of the PMT. Due to said dipole radiation pattern,

the detection efficiency with the elliptical traps was two-thirds this value (since these

traps were viewed at 90◦ to the plane of the laser beams).

4.2 Experiment Control and Data Acquisition

Before delving into the details of the control logic for the experiment, or into

the details of the photon-counting, it will be worthwhile to provide an overview of how

the experiment ran. Each single experiment generically consisted of four parts: (1)

laser cooling (Ch. 5) and optical pumping to | ↓, n = 0〉, (2) quantum state engineering

(Chs. 6 through 9), (3) mapping motional information onto the spin (Sec. 3.5), and (4)
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measuring fluorescence on the cycling transition (Sec. 3.1 and Appendix A). Of course,

sometimes certain of these parts were absent, or mingled together: as an example,

in creating Schrödinger cat states (see Sec. 6.2.1), the state engineering was actually

sandwiched between two parts of the motion/spin mapping.

In taking data, the experiment was usually repeated many times while some pa-

rameter was changed. To be more concrete, let us assume that the particular experiment

at hand consists of creating some motional state and then taking a Rabi flopping curve

(Sec. 3.2) on the blue sideband. To acquire such a curve, we would change the parame-

ter tpr: the length of the blue sideband “probe” pulse. At each value of tpr, we would ,

in principle, repeat the experiment enough times to obtain good signal-to-noise on the

probability P↓ that the atom is in | ↓〉 after the probe pulse. In actuality, the dwell

time was chosen to make the settling time of the pulse-producing instrument negligible

with respect to the dwell time. Typically, about one hundred experiments were taken

at each value of tpr . By repeating this procedure for tpr ranging from zero to tmax, we

would obtain a curve such as Fig. 3.4(b).

A typical experiment took about one millisecond to execute, so that each data

point took about one-tenth of a second. Thus, for example, the entire Rabi flopping

curves of Fig. 3.4 took about 20 s to obtain.

The experiment thus consisted of two time scales: a fast time scale on which, in

the course of a single shot, the various laser beam combinations needed for cooling, state

creation, and mapping were turned on and off, and a slower time scale on which (every

ten to one thousand repetitions of the single shots), parameters such as the length or

frequency of the probe pulses were changed. This latter time scale was the time scale on

which the data acquisition took place. I shall describe this in Sec. 4.2.2. First, however,

I shall discuss the laser beam switching.
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4.2.1 Switching Logic

A diagram showing the control aspects of a single experiment is shown in Fig. 4.9.

As this diagram indicates, it was necessary not only to switch laser beams on and off

in various combinations, but also to change the frequency of the Red Raman beam

within the course of a single experiment. This change in frequency was accomplished by

changing the frequency of the rf sent to the Red Raman double-pass AOM. The on/off

switching for all the beams was accomplished by switching on and off the rf driving

the various “switch” AOMs. Typical pulse lengths ranged from sub-microsecond (for a

carrier transition) to hundreds of microseconds (for driving the cycling transition).11

The rf control (both on/off and frequency) was accomplished through a large rf

“switchbox.” The heart of this box were the Mini-Circuits ZYSWA and GSWA, TTL-

controlled rf switches. The ZYSWA switch has two rf inputs and one rf output (although

the switch could also equally well work in reverse configuration with one input and two

outputs). A TTL input controlled which of the two rf inputs was connected to the

output. If only one rf input was connected to an rf source, the switch functioned as a

TTL-controlled on/off switch. If both inputs were connected to rf sources, the switch

acted as a multiplexer. The TTL inputs floated high (logic 1). The GSWA is a four

input version of the ZYSWA and, for our use, four of these were wired up as a 16- input

multiplexer, controlled by four TTL lines.

The rf portion of the rf switchbox contained the 4-bit, 16-input multiplexer, two

2-bit, 4-input multiplexers, and seven (one-input) on/off switches. The box also con-

tained some TTL logic, which I will discuss below. A schematic of these parts of the rf

switchbox is shown in Fig. 4.10(a).
11 Of course, these values are meant to be representative. The actual pulse lengths were determined

by the relevant Rabi frequencies, which depended on the laser power, beam waist at the ion, Raman
laser detuning from the 2p 2P1/2 level, etc. These factors varied from day to day and from week to
week. However, this variation was rarely more than a factor of two.
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Figure 4.9: Timing diagram for a typical experiment. In this experiment, a coherent
state (Sec. 6.1.3) is created in ↑, then a Rabi flopping curve is taken on the red sideband.
The experiment consists of (1) Doppler cooling (2) optical pumping to | ↓〉 by Red
Doppler and the repumper (3) Raman cooling (4) a π-pulse on the co-propagating
carrier to flip the spin (5) a 10 µs coherent displacement pulse on the two Red Raman
beams (“walking standing wave”) (6) a probe pulse on the red sideband for variable
time tpr (7) detection of P↓(tpr) by driving the cycling transition with Blue Doppler.
The indicated pulse lengths are typical values.

The 16 input multiplexer controlled the rf signal source which was sent to the

Red Raman double-pass AOM. Each frequency of interest (i.e. corresponding to the

blue sideband, the red sideband, the co-propagating or perpendicular carrier, etc.) was

derived from a separate rf synthesizer, and this rf source was selected at the appro-

priate point in the experiment. We typically used either Fluke Model #6160B or HP

Model #3335A synthesizers. The “probe” frequency, however, had to be swept when we
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Figure 4.10: (a) Schematic of the rf portion of the “rf switchbox” circuitry. The indi-
vidual rf switches were Mini-Circuits ZYSWA, TTL-controlled rf switches. These either
operated as on/off switches, or were cascaded together to make rf multiplexers. The box
contained one 4-bit, 16-input multiplexer, two 2-bit, 4-input multiplexers, and seven rf
on/off switches. (b) Schematic of the TTL circuitry inside the “rf switchbox.” This
circuitry performed a logical OR operation between the BR, RR, and/or Co outputs of
the HP 8175 and the output of the Stanford Research DG535 “probe” pulse generator.
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wished to take spectra. The rf source for this pulse was a GPIB-controlled HP Model

#8660D. The GPIB interface was fast enough to allow the frequency to change in a few

milliseconds, as will be discussed in Sec. 4.2.2. All the rf synthesizers driving the UV

AOMs were phase-locked together.

One of the two 4-input multiplexers was used to switch in different rf sources to the

Red Raman splitter AOM, which separated the co-propagating from the perpendicular

Red Raman beams. These two beams were turned on simultaneously to create coherent

or squeezed states using the “walking standing wave” technique (see Sec. 6.1.3), and

the multiplexer allowed us to switch rf of different phases to the splitter AOM, thus

putting different relative phase shifts between the co-propagating and perpendicular

Red Raman beams. Note that the rf could also be turned off by not connecting one

of the inputs to an rf source, and selecting that vacant input when the co-propagating

Red Raman beam was wished to be off.

The other 4-input multiplexer was usually left unused. It was, however, used for

creating coherent states (Sec. 6.1.3) by driving the trap electrodes with electric fields

(oscillating at the trap frequency) — again, the multiplexer allowed us to switch in rf

of different phases. It was also used in trying the Sørensen and Mølmer scheme for

creating maximally entangled states (Sec. 6.4.2).

The TTL control pulses which turned the rf switches on and off and selected the rf

multiplexer inputs were produced by an HP Model #8175 digital pulse generator. This

instrument has up to 24 TTL output channels. By setting the appropriate control bits,

any combination of the outputs can be set to logic 0 or 1 (0 or ≈5 V). The 8175 scans

through its memory one 24-bit word at a time, and sets the appropriate TTL values

on its outputs. The length of time spent at each 24-bit word is programmable: it may

be any length of time from 20 ns to one second. This allows one to efficiently output a

pulse sequence even if it contains pulses of widely varying lengths (for example, a carrier

π-pulse versus driving the cycling transition). The repetition rate at which the HP 8175
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repeated its scan through its memory was set by a Stanford Research Model #DG535

digital pulse generator: each pulse from the DG535 triggered one scan through the HP

8175’s memory. The frequency of the pulses from the DG535 was set to be the inverse

of the sum total of the pulse lengths in a single shot of the experiment.12

The HP 8175 output the four control bits for the 16-input multiplexer and the four

control bits for the two 4-input multiplexers. It also output the on/off signals for the

Red Doppler (RD) (which also controlled the repumper switch), Blue Doppler (BD), the

Blue Raman (BR), Red Raman perpendicular (RR), and Red Raman co-propagating

(Co) beams. However, the HP 8175 output for these latter beams was logically OR-ed

with the output of a second Stanford DG535 pulse generator, as will be discussed below.

The HP 8175 also put out the TTL- logic Detection Gate (DG) pulse, which determined

when photons detected by the imager tube or the photomultiplier tube were counted by

the data acquisition systems. Finally, it put out trigger signals for the “probe” DG535

and trigger signals which could be used to change the trap voltages (to change the trap

frequency or to move ions around in the trap).

In the course of taking data, it was desirable to be able to quickly change the

length of the probe pulse. This probe pulse consisted of either Blue and Red Raman, or

Blue Raman and the co-propagating Red Raman beam. As discussed in the introduction

to this section, this probe length had to be changed every ten to hundred milliseconds.

The GPIB interface for the HP 8175 was far too slow to allow this. For this reason, and

to allow differing configurations of the probe pulse, the probe pulse was created by the

second DG535 pulse generator, which was triggered by the HP 8175 at the appropriate

point in each experiment. This pulse was then logically OR-ed with the Blue Raman

(BR) 8175 output and either the Red Raman (RR) or co-propagating Red Raman (Co)

output. The circuitry to do this was housed inside the rf switchbox, and is shown
12 with some extra time added in for a margin of error
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Figure 4.11: User interface for the LabView program which set up the HP 8175 pulse
generator to run the experiment. This program offered the user a convenient, menu-like
means of selecting which laser beams to turn on, then converted this information to
ASCII arrays of “which beams” and pulse length information, then downloaded these
arrays to the HP 8175.

in Fig. 4.10(b). The length of the probe pulse was controlled by the data acquisition

programs (see Sec. 4.2.2).

The GPIB control of the HP 8175 was accomplished through a LabView program

running on a PC. This program offered a convenient user interface, which allowed us to

select pulse combinations and pulse lengths in a menu-like format. The user interface

to the program is shown in Fig. 4.11. Once the desired sequence of pulses was selected,

the program produced an array of pulse lengths and a corresponding array of “which

beam is on” information, and transmitted these arrays in ASCII format to the HP 8175

according to the IEEE 488.2 (GPIB) interface standard.

4.2.2 Data Acquisition

As mentioned in the introduction to this section, the data acquisition occurred on

a slower time scale than that of a single experiment. Nonetheless, the data acquisition
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equipment had to take in photon counts every experiment — that is to say, every

millisecond — and change the probe pulse length, phase, or frequency every ten to

hundred experiments. These timing requirements were too stringent to allow control

by, say, a PC, and less straightforward methods were required.

Much of the data were taken on HP Model #9826 computers. These computers,

which dated from the early 1980’s, were old, but dated from a time when the micro-

processors were “weighted down” by far fewer interrupts than those in modern PC’s.

When running the FORTH operating system/programming language, they were able

to identify and service an experiment-generated flag in as little as tens of nanoseconds.

Thus, they were more than adequate for our needs. The programs for these computers

were written and maintained by Wayne Itano.

In their data-taking role, these computers worked with a home-built counter/buffer

box. This box took in photon counts (which were logically AND-ed with the Detection

Gate pulse from the HP 8175), and stored them in a buffer until the computer could

process the data. A schematic of this counter/buffer box is shown in Fig. 4.12. The

computer processed the data and updated the probe time, phase, or frequency by com-

municating with the appropriate device — Stanford Research DG535, HP 3335A, or

HP 8660D, respectively — over the GPIB bus.

The programs used to take much of the data actually ran asynchronously with

the experiment.13 A separate clock set the rate at which the counter/buffer box

accepted counts and passed them onto the computer, and also the rate at which the

computer updated the instruments over the GPIB bus. The clock rate was set by hand

to be roughly ten times (for spectra) or one hundred times (for flopping curves)14 the

experiment repetition rate. Although this meant that the exact number of experiments
13 Synchronous versions of these programs were created, but the desire for familiarity led to continued

use of the original program versions.
14 The HP 8660D executed GPIB updates much more quickly than the DG535, and settled to its

new parameter values faster. For this reason, the spectrum program could spend less time at each data
point than the flopping program, as there was a smaller time period during which the parameter values
were ambiguous.
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per data point differed at different data points (by perhaps one experiment), this was

not significant. The same could be said for the settling time of the instruments after

the GPIB update command received: this effect merely amounted to a smoothing of

the data. In any case, the programs were carefully evaluated, and these effects were not

found to be appreciable.

As alluded to above, there were three main types of programs run on the HP 9826

computers. The first was a spectrum-taking program, which changed the frequency of

the probe HP 8660D synthesizer. Typically, each data bin was 10 ms long when using

this program (although this was changeable), so that each data point consisted of about
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ten experiments. The second type of program used was one which changed the length

of the pulse put out by the probe DG535 pulse generator in order to take Rabi flopping

curves. For this program, the dwell time was usually 100 ms per data point, or on the

order of a hundred experiments. Finally, we used a third type of program to sweep the

phase of the rf put out by one of the HP 3335AA synthesizers driving the Red Raman

splitter AOM. This program was useful for taking Ramsey spectra, but was mostly used

in the Schödinger cat experiments (see Sec. 6.2.1) and for density-matrix reconstruction

(see Sec. 6.3). The dwell time with this program was also 100 ms per data point.

Various varieties of these programs were used at different times. Most of these

were minor variations on the basic programs. However, it is worthwhile as an example

to single out the program used to perform density-matrix reconstruction of the ion’s

motional state. As will be discussed in Sec. 6.3, this required us to displace the motional

wave packet in various directions in the z−p plane. This was done by applying different

rf phases to the Red Raman splitter AOM. For each phase, the probabilities Pn that

the ion was in the motional Fock state |n〉 had to be determined from blue sideband

Rabi flopping curves. The data acquisition program for this experiment thus had two

control loops. The inner loop changed the probe DG535 pulse length to obtain a Rabi

flopping curve at each phase of the HP 3335A. Once a flopping curve was completed,

the outer control loop then changed the phase of the HP 3335A.

As discussed at the beginning of this section, it was not straightforward to imple-

ment similar programs on a PC. Due to calls by different interrupts at different times, a

PC cannot be trusted to execute data-acquisition code at sub-millisecond to millisecond

timescales in a deterministic fashion. Nonetheless, it was possible to create programs

which used plug-in data acquisition cards. These programs could not acquire data at

the sub- millisecond level (as the HP 9826’s could), but could reliably acquire data with

only a few (2 to 5) milliseconds dead time in between acquiring one data point’s data

and being ready to receive the next point. The programs were thus suitable for our
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experiments, and performed with no noticeable increase in experiment dead time. The

programs were written in LabView.

The heart of these programs was a National Instruments PCI-MIO16E multi-

function data acquisition board. This board featured two available “DAQ-STC”

counter/timer chips, which allowed buffered counting. The photon counts from the

imager tube or PMT were logically AND-ed with the Detection Gate pulse from the HP

8175, and sent to the input of one of the counters. Detection Gate also served as a clock

to synchronize the counter’s acquisition of counts. These programs, therefore, were run

synchronously with the experiment. The counters stored the number of photon counts

at each Detection Gate “clock tick” into a different buffer location. Every few exper-

iments, the PC was triggered to send a GPIB update to the appropriate instrument.

The data at one instrument setting constituted one data point, as it had on the HP

9826 programs. Details of this set up are shown in Fig. 4.13.

On a longer timescale (usually two to four data points), the PC was triggered

to read out the buffer, bin the data into the respective data points, average the data

with corresponding previous data points, and update a graph with the new, averaged

data.15 Unfortunately, the AT-MIO-16E board could not generate a hardware interrupt

from the counter chips. It was not possible, therefore, to simply count the number of

Detection Gates received and send an interrupt to the PC after the appropriate number

of experiments. However, the board did allow its analog input functions to generate

interrupts upon completion of a channel scan. By using Detection Gate as the update

clock of a “dummy” analog input scan, it was possible to achieve the desired effect.16

Each Detection Gate triggered the measurement of the voltage on an input of the

D/A converter. At the end of one scan of the input channels, the D/A chip set a
15 The graph update was the major bottleneck in the program. Unfortunately, it was not possible to

run the graph update separately from the rest of the data acquisition program, due to LabView and
Windows 95 OS constraints

16 It was also possible to achieve the same end using an analog output scan — this could be convenient
for experiments in which a trap electrode voltage is changed in the middle of an experiment
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(b) Timing diagram for PC-based data acquisition. Detection Gate enables photon
counting and serves as the scan clock for the “dummy” analog input scan. For this
example, the probe instrument is updated every five experiments, and the data buffer
is read and analyzed every ten experiments. In a typical experiment with a repetition
rate of ≈ 1.5 kHz, the probe instrument was updated every 500 experiments, while the
data buffer was read in every 1000 experiments.
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hardware/software interrupt, which flagged the data acquisition software to change the

probe instrument (DG 535, HP 8660D, or HP 3335A) settings over the GPIB bus. After

several (usually two) such scans, another interrupt (similarly generated) triggered the

buffer read out, etc. Details are shown in Fig. 4.13.

Programs were created on the PC which reproduced the HP 9826’s spectrum,

flopping, and phase programs with an efficiency appropriate for our data acquisition

rates. In addition, a histogram-creating program was written which calculated and

displayed a histogram of the number of photons received per experiment (typically,

1000 experiments were binned together for a single histogram update). As is discussed

in Appendix A, this program was very convenient for peaking up the experiment.17

17 Another diagnostic useful for peaking up the cycling transition was stand-alone Ortec Turbo MCS
multi-channel analyzer. This instrument binned the photon counts according to their arrival time from
the start of the Detection Gate.



Chapter 5

Ground State Laser Cooling

Cooling the ion’s motion to its ground state is the prerequisite for most of our

experiments. An ion at room temperature is in a highly classical thermal state of motion.

Cooling takes the ion into the quantum regime, with its interesting dynamics. In this

chapter, I will briefly discuss Doppler cooling, and then go on to describe resolved-

sideband cooling (using stimulated-Raman transitions) for a single ion and for multiple

ions. Finally, I will discuss the observed heating of the ion out of the ground state and

possible sources for this heating.

There are different possible diagnostics of the ion’s temperature. In practice,

we determined the ion’s temperature through it’s interaction with the lasers. Recall

from Ch. 3, Eq. (3.12) that, in the Lamb-Dicke regime, the Rabi frequency on the red

sideband (first lower motional sideband) is Ωn,n−1 = ηΩ
√
n (where Ω is the carrier Rabi

frequency). So if the ion is in its motional ground state, the red sideband vanishes. On

the other hand (in the Lamb-Dicke limit) Ωn,n+1 = ηΩ
√
n + 1, so even if the ion is in

its ground state the blue sideband doesn’t vanish. Indeed, the ratio r of the red to the

blue sideband can tell us the average excitation number n of the ion’s motion.

If an ion is in a thermal state with density matrix ρn,n =
∑
Pn|n〉〈n| with average

occupation number n, then the Pn are given by [105]:

Pn =
n

(1 + n)n+1
. (5.1)
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If we have a single trapped ion in | ↓〉, and turn on the Probe for a time tpr on resonance

with the blue sideband, then measure P↓ with the cycling transition, we find that

P↓,BSb(tpr) =
∞∑

n=0

1
2
Pn cos2(Ωn,n+1tpr)

=
∞∑

n=0

1
2

nn

(1 + n)n+1
cos2(Ωn,n+1tpr) . (5.2)

On the other hand, if we drive on the red sideband, we find:

P↓,RSb(tpr) =
∞∑

n=0

1
2
Pn cos2(Ωn,n−1tpr)

=
∞∑

n=0

1
2

nn

(1 + n)n+1
cos2(Ωn,n−1tpr)

= 0 +
∞∑

n=1

1
2

nn

(1 + n)n+1
cos2(Ωn,n−1tpr)

=
∞∑

n=0

1
2

nn+1

(1 + n)n+2
cos2(Ωn+1,ntpr)

=
n

1 + n
P↓,BSb(tpr). (5.3)

It follows that the ratio of the red sideband signal to the blue sideband signal is

r =
P↓,RSb(tpr)
P↓,BSb(tpr)

=
n

1 + n
, (5.4)

which gives:

n =
r

1− r . (5.5)

Thus the ratio of the red to the blue sideband signal strengths gives a measure of the

effectiveness of laser cooling.

5.1 Doppler cooling

Laser cooling of atoms was first proposed in 1975 [106, 107], and the first demon-

stration occurred three years later [61, 60]. In these first experiments, the linewidth

γ of the cooling transition was greater than the ions’ motional frequency. This is the

so-called weak-binding, or Doppler limit: ωm � γ. In this case (c.f. [26]), the scattering
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of a photon takes place in a time much shorter than that required for one oscillation of

the ion in its binding potential, and the ion essentially may be treated as if it were free

during the scattering. If the laser is tuned below resonance, then the ion is more likely

to absorb a photon when it is travelling towards the direction in which the laser beam

is propagating, since in that case the ion is Doppler shifted closer to resonance. Upon

absorbing a photon, the ion receives a momentum “kick” which, being in the opposite

direction to the ion’s motion, slows the ion down. Of course, when the ion re-emits,

it receives another momentum kick from the emitted photon (the so-called “recoil mo-

mentum,” pr = h̄k = h/λ). However, since the emission occurs symmetrically, this

kick averages to zero over the course of many scattering events. The overall effect is

that the ion’s motional energy is reduced. If the ion were free, it would eventually turn

around and start moving in the opposite direction. For this reason, effective cooling

of all three motional degrees of freedom requires at least four laser beams for a free

atom. For a bound atom, the situation is different. In this case, a single laser beam,

directed obliquely to the trap’s principal axes, generally suffices. (However, if the trap

frequencies along different axes are degenerate, then there is always a mode of motion

which is uncoupled to the modes being laser cooled [26], and this mode heats due to

recoil. This was not the case for any of the traps discussed in this thesis.)

The limiting kinetic energy for Doppler cooling is 〈Emin,D〉 = h̄γ/4 (when

pr/(2matom)� h̄γ). This limit is due to the random times of the photon absorption and

the random direction of the spontaneous emission. Even though the average momentum

kick due to spontaneous emission averages to zero, for example, its random nature

results in a non-zero root-mean-square momentum for the ion. One may think of this as

a random walk in momentum space — the random walk about zero mean momentum

produces a lower limit to the temperature attainable.

In order to perform Doppler cooling, we turn on Blue Doppler, Red Doppler,

and the Repumper for typically 10µs (enough time for hundreds of absorption/emission
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cycles). We then turn off the Blue Doppler to optically pump the ion to | ↓〉, whereupon

we turn on the Probe beam long enough to drive a nominal π-pulse (≈ 1 µs), on the

motional sidebands, mapping the motional information onto the spin degree of freedom.

We then measure P↓ by turning on the cycling transition1 .

A typical spectrum taken after Doppler cooling is shown with solid points in

Fig. 5.1. These data, taken in the molybdenum elliptical microtrap, show cooling of

the x degree of freedom, with ωx/2π = 11.2 MHz. For these curves, the usual probe

pulse was preceded by a π-pulse on the carrier transition, which flipped the spin from

| ↓〉 to | ↑〉2 . This served to reduce the noise in the background due to photon shot

noise. From the ratio of red to blue sidebands, we determined that n ≈ 0.47(5). Thus,

Doppler cooling put us in the Lamb-Dicke regime (η
√
n ≈ 0.1 � 1). However, the

non-vanishing red sideband for the solid points shows that Doppler cooling alone was

not enough to cool the ion to its ground state of motion. In order to do that, we must

employ resolved-sideband laser cooling (hollow points), which I will now discuss.

5.2 Resolved Sideband, Stimulated-Raman Cooling

The Doppler cooling limit occurs in the weak-binding regime for two-level atoms.

Much progress has been made in circumventing this limit in this regime for multi-level

atoms [22, 23, 24]. However, in the strong-binding case, the cooling limit is already sub-

Doppler [26]. For strongly bound atoms, ωm � γ, and the ion’s absorption spectrum

consists of well-resolved sidebands.

Resolved-sideband cooling occurs in a trapped, two-level atom if laser radiation

tuned to a lower motional sideband irradiates the atom. Consider, for example, the

situation when the laser is tuned to the first lower motional (Red) sideband. In this
1 Note that, since Blue Doppler is detuned red of resonance, the cycling transition actually provides

some laser cooling. However, this does not affect the temperature measurement, since the motional
information has already been mapped onto the spin degree of freedom before the cycling transition is
turned on.

2 The probe pulse was then chosen to drive the Red, rather than blue, sideband
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Figure 5.1: Laser cooling of a single 9Be+ ion. The spectra show the fluorescence rate
on the cycling transition as the probe frequency was swept near the first upper (right)
and lower (left) motional sidebands. The probe pulse was preceded by a π-pulse on the
carrier, in order to reduce the photon shot noise on the background. The count rate
is normalized to the probability P{|2,−2〉} of the ion being in the state | ↓〉 = |2,−2〉.
The solid points indicate the result of Doppler cooling alone. In this case, n ≈ 0.47(5).
The addition of five cycles of Raman cooling reduces n to ≈ 0.014(10), as evidenced by
the vanishing lower motional sideband (hollow points). The widths of the features are
consistent with the 2.5 µs Raman probe time. Each point represents an average of 400
measurements. The lines are meant only as guides to the eye.

case, photons of energy h̄(ω0 − ωm) are absorbed and (neglecting the recoil energy,

Er � ωm) spontaneously emitted photons of average energy h̄ω0 return the atom to

its initial internal state3 . In one such cycle, the atom’s motional energy is reduced by

h̄ωm, on average. This cooling process continues until the ion reaches the motional state

|n = 0〉, which is a dark state for the red sideband interaction (see Ch. 3).

For this type of cooling process, the cooling limit is nmin ≈ (γ/2ωm)2 [26]. This

limit reflects the probability that, once the ion reaches |n = 0〉 it may absorb an off-

resonant photon on the carrier or higher motional sidebands. Note that, since γ � ωm,

the resolved-sideband cooling limit is much smaller than the Doppler cooling limit.
3 The spontaneous emission is the dissipative process which allows cooling
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Resolved sideband cooling in 2D was achieved in 199Hg+ using a narrow, single-photon,

optical quadrupole transition [108].

In the case of 9Be+, γ/2π = 19.4 MHz, whereas ωm/2π ≈ 10 MHz for our typical

operating conditions. Thus, single-photon transitions do not put us in the resolved-

sideband regime. We can circumvent this limitation by using two-photon, stimulated

Raman transitions instead of single-photon ones. To perform “Raman cooling,” we

apply the Raman interaction on the red sideband (starting in spin down) to drive

| ↓, n〉 → | ↑, n − 1〉. In order to dissipatively recycle the ion to its original internal

state, we then turn on the Red Doppler to drive the atom from | ↑〉 to |2p2P3/2〉,

from where it spontaneously decays back to | ↓〉. As in the single-photon case, the

spontaneous emission increases the ion’s motional energy by Er, on average, whereas

the red sideband drive reduces the ion’s motional energy by h̄ωm � Er: thus the ion is

cooled in nearly every cycle of Raman cooling.

Because the ion sometimes ends up in the |2s 2S1/2, F = 2, mF = −1〉 state

during the Red Doppler recycling, we also turn on the Repumper laser during the

recycling pulses. If the ion ends up in the |2,−1〉 state, the Repumper promotes it

to the |2p 2P1/2, F = 2, mF = −2〉 state. From Fig. B.1(a) and (b), the ion has

a 1/3 probability of ending up in the desired state (| ↓〉) from this level. Thus, if

the ion ends up in the |2s 2S1/2, F = 2, mF = −1〉 state, it requires an average of∑∞
k=1 k pk =

∑∞
k=1

k
3 ( 2

3 )k−1 = 3 photons to reach | ↓〉 (here, pk represents the probability

that the ion ends up in | ↓〉 after k scattering events of the repumper).

With Raman cooling, the effective linewidth of the transition is usually insignifi-

cant (see Ch. 3), and the effective linewidth of the transition is Fourier-limited. Thus,

nmin ≈ (Ω/ωm)2, due to off-resonant transitions. In addition, spontaneous emission

from the (small) population of the 2p2P1/2 level during the Raman transitions also can

limit the cooling: nmin,sp.em. ≈ (γη2/∆R).
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In order to perform Raman cooling, we typically apply five pulses on the red

sideband, with each pulse followed by a recycling pulse (Red Doppler and Recycler

beams). If M is the number of red sideband pulses, then we choose the length of the

first red sideband to drive a π- pulse on the transition | ↓,M〉 → | ↑,M − 1〉, the length

of the second pulse to be a π-pulse on | ↓,M〉 → | ↑,M − 1〉, and so on. Thus, the last

pulse is a π-pulse on | ↓, 1〉 → | ↑, 0〉. In this manner, the motional levels are sequentially

“cleared out.” The recycling pulses are typically ≈ 7µs long. This is more than enough

time for the ion to scatter the ≈ 3 photons needed on average to return to | ↓〉.

Fig. 5.1 indicates the effects of five pulses of Raman cooling on the x-mode of

motion, showing the further reduction in the red sideband amplitude (hollow points) over

the Doppler cooling case (solid points). In this case, the five pulses were all on the x red

sideband. By alternating pulses on the x,y, and z red sidebands, we could sequentially

cool all three modes of ion motion.4 By analyzing the ratio of red to blue sidebands

on the probe transition, we determined that {nx, ny, nz} ≈ {0.033, 0.022, 0.029} when

simultaneous Raman cooling was performed on these three modes of motion. When

we varied tpr, the ratio of sidebands did not vary, which indicated that the vibration

number distribution was thermal.

From the theoretical estimates of nmin, one would expect nmin ≈ 10−3, which is

considerably lower than the data indicate. We believe this to be due to heating of the

ion’s motion by fluctuating stray electric fields, whose origin we are still investigating.

I will discuss this heating in more detail in Sec. 5.5.

We have also performed “continuous” cooling of the z-mode of motion of a single

ion trapped in the micromachined linear trap. In this case, the red sideband interac-

tion was turned on simultaneously with the Red Doppler and Repumper beams. This

interaction was left on for 10− 20 µs, and the subsequent n was measured in the usual
4 Since the weakest trap direction is most likely to heat due to photon recoil, it is advantageous to

cool the modes with alternating pulses, with the weakest mode last: in our case, we therefore cooled
first z (strongest), then y, and finally x (weakest).
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fashion. The continuous mode of cooling worked with approximately the same efficiency

as the pulsed cooling.

5.3 Cooling the Collective Motion of Two Trapped Ions

When two (or more) cold ions are held in the trap and undergo small oscillations

about their equilibrium positions, we may solve the equations of motion using normal

mode coordinates [109]. For two ions lying along the x-axis there are two modes involv-

ing motion along this axis: the center-of-mass (COM) mode (in which the ions move

together with frequency ωCOM = ωx) and the stretch mode (wherein the ions move

out of phase, with frequency ωstr =
√

3ωCOM). The other motional frequencies are ωy

(y center-of-mass), ωz (z center-of-mass),
√
ω2

y − ω2
x (xy rocking), and

√
ω2

z − ω2
x (xz

rocking) [45].

In the case of two ions driven on the carrier transition, each ion independently

undergoes Rabi oscillations between | ↓〉 and | ↑〉 with Rabi frequency Ω. In our exper-

iments, the laser beam waists (≈ 20 µm) were much larger than the ion-ion separation

(≈ 2 µm), and so the ions were equally illuminated, and had equal Rabi frequencies5 .

Since the sideband transitions affect the motional state, which is a shared property

of both ions, such transitions produce entanglement between the ions’ spins and their

collective motion [110]. The system can no longer be treated as two, independent, two-

level systems and the measured fluorescence following a Raman probe is a complicated

function of the probe pulse duration tpr . For example, in the Lamb-Dicke regime, given

an initial state | ↓, ↓, n〉 (where n is the vibrational level of the COM or stretch motion

along the x-axis) driven on the corresponding lower sideband for a time tpr, the wave

5 However, had the micromotion of the two ions been different, then the reduction of the carrier (and
sideband) transition strengths due to the micromotion would have given a different Rabi frequency for
each ion. This will be discussed in Sec. 6.4.1.
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function evolves as [45]

|ψn(tpr)〉 =
{

1− n

2n− 1
[1− cos(Gntpr)]

}
| ↓, ↓, n〉

−iei(θ−φ)/2
√

n

2n− 1
sin(Gntpr)

(
| ↓, ↑〉 ± eiφ| ↑, ↓〉

)
|n− 1〉

√
2

∓eiθ
√
n2 − n

2n− 1
[1− cos(Gntpr)]| ↑, ↑, n− 2〉, (5.6)

where Gn =
√

2(2n− 1)Ω ηx,m and θ, φ are the sum and difference of the Raman beam

phases at the ions. On the COM sideband (top sign in Eq. (5.6)), ηx,m = ηx,COM =

ηx/
√

2 (down by a factor of
√

2 from the single-ion case due to the extra mass of the

two-ion string), whereas on the stretch sideband (lower sign), ηx,m = ηx,str = ηx/
√

2
√

3.

The expressions for transitions on the upper motional sidebands are similar. If, before

the Raman probe pulse, the ions have probability Pn of being in the motional state |n〉,

the subsequently-measured average fluorescence from the cycling transition is

S(tpr) ∝
∑
n

Pn

(
2 |〈↓, ↓, n|ψn(tpr)〉|2 + |〈↓, ↑, n− 1|ψn(tpr)〉|2 + |〈↑, ↓, n− 1|ψn(tpr)〉|2

)
.

(5.7)

This signal is proportional to the expectation value of the number of atoms in the state

| ↓〉.

It is not as straightforward to extract n from experimental data as in the one-ion

case. In particular, the more complicated time dependence of the wave function when

the ion is driven on the motional sidebands Eq. (5.6) means that n can no longer be

expressed as a simple ratio of the red to blue sideband amplitudes. Indeed, this ratio

is no longer even time-independent. However, it is still possible to extract n from the

data.

To see how this can be done, plug Eq. (5.6) into Eq. (5.7). After some algebra,

we obtain:

S(tpr) ∝ 2

(
P0 +

∑
n

Pn

[
1− n[4n− 3 + cos(Gntpr)][1− cos(Gntpr)]

2(2n− 1)2

])
. (5.8)
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Since the population of |n = 0〉 is dark to the red sideband interaction, the fluorescence

due to P0 remains constant; the fluorescence due to higher Pn’s oscillates in time due.

If we substitute a thermal distribution (Eq. (5.1)) for the Pn’s and allow for some signal

B due to background counts, we have that

S(tpr) = (S0 −B)
( 1
1 + n

+
∞∑

n=1

nn

(1 + n)n+1

[
1− n[4n− 3 + cos(Gntpr)][1− cos(Gntpr)]

2(2n− 1)2

])
+ B,

(5.9)

where S0 is the ion count rate at tpr = 0 (or off-resonance). Now, the location of the first

minimum of the fluorescence rate is almost entirely determined by P1, so we can make

the simplifying assumption that tpr,min ≈ π
2G1

= π
2
√

2Ωηx,m
. Then Eq. (5.9) becomes

Smin = (S0 − B)
( 1
1 + n

+
∑
n

nn

(1 + n)n+1

[
1− n[4n− 3 + cos(

√
2n− 1π/2)][1− cos(

√
2n− 1π/2)]

2(2n− 1)2

])
+ B. (5.10)

Thus, in principle, given Smin, S0, and B, we must invert this equation to determine

n: in practice, higher terms in the sum decrease in magnitude, so that the sum can be

truncated and the equation solved numerically. For cold ions, this procedure is robust

with respect to small changes in the measured background and overall count rate.

Fig. 5.2 shows laser cooling of the COM and stretch modes of motion of two

trapped 9Be+ ions. The lower traces, taken with δk ‖ êx, show an x-axis normal mode

spectrum after Doppler cooling. The stretch mode is colder than the COM because its

motional frequency is higher. Results for the y- and z-modes were very similar. We took

the data with the following steps: first we Doppler cooled the ions to the Lamb-Dicke

regime. Next, we optically pumped both ions to the | ↓〉 state. We then performed a

Raman probe pulse for time tpr, with relative detuning ω0 + δpr. Finally, we drove the

cycling transition and measured the ions’ fluorescence. We repeated the experiment at
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Figure 5.2: Spectrum of sidebands due to two-ion x-axis normal mode motion: (from
left to right) lower stretch, lower COM, upper COM, and upper stretch. The ordinate is
the detuning of the Raman probe beam difference frequency from the carrier transition.
The abscissa shows the ion fluorescence (proportional to the expectation value of the
number of atoms in the state | ↓〉), plus a constant background (whose approximate
level for the lower curves is indicated by the dashed line). The solid lines, meant as
guides to the eye, are fits to Gaussians. The lower traces show the effects of Doppler
cooling. The upper traces, offset vertically for clarity, show the effects of several pulses
of Raman cooling on the mode which is displayed. Vanishing lower motional sidebands
indicate cooling to the ground state of motion. The peak widths are consistent with the
Raman probe pulse lengths (≈ 3 µs).

a rate of a few kilohertz while slowly sweeping δpr. If the probe Raman beam difference

frequency was resonant with a transition, then an ion was driven from | ↓〉 → | ↑〉 and

the fluorescence rate on the cycling transition dropped, as discussed above. For these

data, tpr ≈ 3 µs was chosen to maximize the sideband features.

The upper traces in Fig. 5.2 show the effects of adding several cycles of Raman

cooling [44] on one particular x-mode after the Doppler cooling but before the probe

pulse. The reduction in the mean vibrational number n is indicated by the reduction

in size of the lower sideband, which vanishes in the limit n → 0. Analysis of the data

according to the technique outlined above showed that the data were consistent with a

thermal state of nCOM = 0.11+0.17
−0.03 or nstr〉 = 0.01+0.08

−0.01. This implies that the COM and
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stretch modes are in their ground states 90+3
−12% and 99+1

−7% of the time, respectively.

We believe that the cooling limits are again due to anomalous heating of the ions out of

the ground state between the last red sideband pulse and the probe pulse (see Sec. 5.5).

We have also simultaneously cooled the COM and stretch modes along x, to

comparable values of 〈n〉 (and have separately cooled the other four motional modes—y

and z COM, xy rocking, and xz rocking)—to near their ground states.

5.4 Cooling Three Trapped Ions

For the sake of completeness, I will present here data indicating cooling of the

collective modes of motion of three trapped ions. In this case, only Doppler cooling

was performed. Fig. 5.3 shows spectra for the three normal modes along the weak trap

direction: the COM, the stretch, and the “Egyptian” mode (in which the outer two

ions move 180◦ out of phase with the central one). Again, the mode with the highest

motional frequency had the lowest n: since the ratio of the COM:stretch:Egyptian mode

frequencies is 1 :
√

3 :
√

29
5 , this meant that the “Egyptian” mode had the lowest n.

5.5 Heating of the Modes of Motion

In all the traps used for quantum state engineering and quantum logic experiments

(i.e. both the elliptical traps and the linear trap), heating of the ions’ motional degrees

of freedom was observed. The heating rate was much higher than one would expect from,

for example, thermal noise. Fig. 5.4 shows a summary of the heating rates measured

in the various traps at different trap frequencies and at different times. These heating

rates were measured by putting a varying delay τd between the last cooling pulse and

the probe π-pulse. The heating rate is continuous: that is, the ion is heated uniformly

from |n = 0〉 to |n = 1〉 and so on,6 rather than making a discontinuous jump from
6 This was determined by taking a flopping trace on the blue sideband instead of varying the frequency

of the probe pulse. The distribution over the Fock states determined from the flopping traces indicated
a thermal distribution, with n consistent with continuous heating
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Figure 5.3: Spectrum of sidebands due to three-ion x-axis normal mode motion: (from
left to right) lower “Egyptian,” lower stretch, lower COM, carrier upper COM, upper
stretch, and upper “Egyptian.” The ordinate is the detuning of the Raman probe beam
difference frequency from the carrier transition. The abscissa shows the ion fluorescence,
plus a constant background. The ratio of the COM:stretch:Egyptian mode frequencies
is 1 :

√
3 :
√

29
5 .

a low n ≈ 0 to a high n. The exact source of the heating is still not well-understood

although, as I will explain below, it might be caused by fluctuating patch fields on the

electrodes.

By looking at the heating rates of the COM, stretch, and rocking modes of motion

for two trapped ions, we have determined that the heating is due to fields rather than

field gradients. Table 5.5 shows heating rate data for the normal modes: note that the

COM modes heat at a rate of about one quantum per hundred microseconds, whereas

the stretch and rocking mode heating is unmeasurable out to a millisecond. Now, since

these latter modes involve differential motion of the ions, they cannot be heated by

a uniform field, which affects both ions in the same manner. Therefore, the stretch

and rocking modes can only be heated by field gradients, or higher-order terms in an

expansion of the field. This is not the case for the COM modes, in which both ions



104

0.001

0.01

0.1

1

10

100

he
at

in
g 

ra
te

 [q
ua

nt
a/

m
s]

4 5 6 7 8 9
1

2 3 4 5 6 7 8 9
10

2

trap frequency [MHz]

molybdenum elliptical trap
 ,  

beryllium elliptical trap:
 11-19-97 (improper fork term.)
 12-04-97 (proper fork term.)

linear trap:

 

Figure 5.4: Summary of the heating rates in the various traps. The data set for the
beryllium-electrode, elliptical microtrap labelled “improper fork term.” was taken when
the fork electrode was connected to a cable of such length that the fork was no longer
held at rf ground. The other data set for this trap was taken with the fork connection
properly terminated. The heating rate ranged between 1 and 10 quanta/ms at the
typical secular frequencies.

move together. If the fluctuating field at the ion is E(t), than an estimate of the field

gradient is E(t)/d0. For Gaussian-distributed stochastic sources, the heating rate of the

COM mode scales as 〈E2(t)〉, so that the stretch mode heating rate scales as 〈E2(t)∆x
d0
〉,

where ∆x ≈ 2 µm is the ion separation and d0 ≈ 200 µm the electrode size [45, 73, 111].

Thus, for example, one would expect the heating rate of the stretch mode to be down

from that of the COM mode by at least a factor of ≈ (∆x
d0

)2, a factor of ≈ 104 for the

Be-electrode trap in which the data were taken. That the stretch mode heating was

observed to be at least several orders of magnitude lower than that of the COM mode

is a strong indication that field gradients do not play a significant role in the heating

process.
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mode ωm/2π (MHz) δ〈n〉/δt (ms−1)
xCOM 8.6 19+40

−13

yCOM 17.6 > 10
zCOM 9.3 > 20
xstr 14.9 < 0.18
xyrocking 15.4 < 1
xzrocking 3.6 < 0.5

Table 5.1: Heating rates of the six normal modes of two trapped ions. The Raman
beams were counter-propagating for the y- and z- axis data, making the Raman probe
sensitive to motion in all three dimensions. Note that the COM modes are heated at a
much higher rate than the non-COM modes (see text). (The precision with which the
heating rates are given for the last five modes is limited by measurement noise.)

Various possible heating mechanisms can be ruled out, either from measurements

or from theoretical estimates of the heating rate they would produce. For example, one

may make a simple estimate (see Sec. 2.4.3) to show that elastic or inelastic collisions of

the ions are infrequent at the operating pressures (< 5 nPa). Furthermore, we observed

no change in the measured heating rates upon turning off the ion pump in the vacuum

envelope. Finally, since the Langevin critical impact parameter is much less than the

ion-ion separation (see Sec. 2.4.3), collisions should couple to the stretch as well as

the COM mode: this is inconsistent with the COM vs. stretch/rocking mode heating

measurements. The low stretch/rocking mode heating rate also rules out mode cross-

coupling as a heating mechanism, since this, too, would have required field gradients.

We were able to rule out other heating mechanisms by changing the trap frequency

(i.e. by lowering the rf voltage V0 providing the secular trapping potential). The fact

that the heating was broadband ruled out “heating resonances” [73], such as those

wherein the rf drive couples secular modes in two trapping directions. As Fig. 5.4

indicates, the heating rate (in quanta per millisecond) scales roughly as 1/ωm, consistent

with a constant rate of change of energy. This behaviour also argues against field

emission, which is expected to exhibit an exponential dependence on the voltage (which

determines ωm).
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A general approach to discussing heating from noisy electric fields (whatever

their origin) follows the work of Savard, O’hara, Thomas, and Gehn [112, 113, 73,

111]. Although they considered heating mechanisms in neutral atom dipole traps, their

approach is applicable in a more general context. It indicates that the rate Γ0 at which

the ground motional state is vacated due to noisy electric fields is given by:

Γ0 =
Q2

4mh̄ωm
SE(ωm). (5.11)

Here, SE(ωm) is the electric field noise spectral density in (V/m)2/Hz. In actuality,

this equation is complete only for static-field trapping (i.e. the z-direction in the linear

trap). For a Paul trap, it is also possible for electric field noise at ΩT ± ωm to couple

into the secular motion. A field of amplitude E0 at this frequency behaves as a resonant

electric field at ωm with effective amplitude [114, 73] E0ωm√
2ΩT

, so a noisy electric field at

this frequency results in an effective noise spectral density of

ω2
m

2Ω2
T

SE(ΩT ± ωm), (5.12)

In this case, Eq. (5.11) may be generalized to [111]:

Γ0 =
Q2

4mh̄ωm

[
SE(ωm) +

ω2
m

2Ω2
T

SE(ΩT ± ωm)

]
. (5.13)

We may use Eq. (5.13) to estimate the effects of various noise sources on the ions.

Consider, for example, the effects of noise on the rf or static field drives which produce

the trapping fields. Such noise cannot directly cause heating of the ion, since the noise

voltage is applied symmetrically to the trap electrodes. Thus it can only heat the ion’s

motion through field gradients, which the two-ion heating data rule out.

However, if patch fields exist on the electrodes, they can displace the ion from the

nominal trap centre. In the case of static field confinement (e.g. the axial confinement

a linear trap), the amount of displacement depends on the trap strength: that is, on

the static potential U0. Thus, if U0 is varying in time, with average 〈U0〉, then the trap

centre is randomly displaced with time, allowing excitation of the ion’s axial motion. Let
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us write the electric field at the ion due to patch potentials as Estatic ≈ φ/d0, where φ

is the effective axial potential difference between the electrodes and d0 their separation.

Then SE(ω) ≈ (Estatic/〈U0〉)2SU0(ω) ≈ φ2/(〈U0〉d0)2SU0(ω), where SU0 is the noise

density of the static voltage U0 at the trap electrodes. Thus, Eq. (5.13) gives [73]:

Γ0 =
Q2

4mh̄ωzd
2
0

F 2
(

φ

〈U0〉
)2

SU0(ωz). (5.14)

Let us take φ ≈ 1 V, U0 ≈ 30 V, d0 ≈ 200 µm, and ωz ≈ 10 MHz. If the static

voltage power supply has an rms noise of 0.1 mV uniformly distributed across a 20 MHz

bandwidth, then the filter network on the trap structure will reduce this noise voltage

by a factor F ≈ 10−4, yielding Γ0 ≈ 1 × 10−5/s. for the assumed parameters. This is

obviously too small to explain the observed heating.

Similarly, such patch fields could displace the ion from the rf null, converting

noise on the trapping potentials into noisy fields at the ion’s location. In general, the rf

at the ion trap is produced using step-up transformer, which can be characterized by its

characteristic impedance Z0 and its quality factor Q. Given the resonant nature of the

step-up transformer, we may neglect the first term in Eq. (5.13) entirely. The filtering

provided by the transformer/trap circuit will be at least the F ≈ 10−4 assumed in the

static case. The rf voltage will be a factor of approximately 100 times greater than the

static voltage but, even if the noise voltage scales by this amount, the second term in

Eq. (5.13) is smaller than the first term by a factor of (ωm/2ΩT )2 ≈ 10−4, so that noise

on the rf drive is no more significant than that on the static voltage supplies.

One may also use Eq. (5.13) to estimate the effects of blackbody radiation on the

ion [73, 111]. Since the frequencies of interest are relatively low (MHz), the effect of the

“cavity” formed by the trap electrodes is significant. However, these low frequencies also

mean that such effects may be treated in the long-wavelength limit, which is to say that

we may consider the electromagnetic field in terms of lumped circuit elements [115, 116].

In this case, the blackbody radiation is manifested as Johnson noise in the resistive part
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of the equivalent resistance R through which currents induced by ion motion flow. Since

the voltage noise spectral density from a resistor R at temperature T is given by 4kBTR

(where kB is Boltzmann’s constant) [117], we have that SE(ω) ≈ 4kBTR(ω)/d2. Thus,

for static-field trapping, we have

Γ0,s ≈ Q2kBTR(ωz)
mh̄ωzd2

(5.15)

and for rf trapping,

Γ0,rf ≈ Q2kBT

mh̄ωzd2

(
R(ωm) +

ω2
m

2Ω2
T

R(ΩT ± ωm)

)
. (5.16)

In the case of the elliptical microtraps, we may consider two resistive paths which

would most likely have produced the largest resistances [73, 111]: one around the perime-

ter of the slot which formed the endcap electrodes, and the other through the step-up

transformer used to produce the rf voltages at the trap electrodes, from the ring to the

endcaps. For the path from one endcap to the other, around the slot, we may estimate

the resistance as R(ω) ≈ %l/A(ω). Here, % is the resistivity of the electrode material

(molybdenum or beryllium) and A(ω) is the effective cross-sectional area of the resis-

tive path, which is proportional to the skin depth. If we are conservative, we estimate

R(ωx) ≈ 0.04 Ω at 11 MHz for the molybdenum trap and, with ΩT/2π = 241 MHz,

R(ΩT ± ωx) ≈ 0.20 Ω. This leads to Γ0,rf ≈ 0.7 s — much smaller than the observed

heating rate. Similar results are obtained for Γ0,s.

If we consider the other possible resistive path, between the ring and endcaps

through the step-up transformer (in our case, a quarter-wave, coaxial resonator) we

find that the impedance between ring and endcaps is given by [73]

Z(ω) = Z0 tanh
[
π

4Q
√

ω

ΩT
+ i

π

2ΩT

]
, (5.17)

where Z0 is the characteristic impedance of the coaxial resonator (nominally, 96 Ω).

Taking the real part of Eq. (5.17), we find that R(ωm) ≈ πZ0
4Q
√
ωm/ΩT ≈ 0.01 Ω with
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ωm ≈ 10 MHz, and R(ΩT ± ωm) ≈ Z0
πQ(ΩT /ωm)2 ≈ 9 Ω. I have taken Z0 = 96 Ω,

Q ≈ 700 and ΩT ≈ 200 MHz. Plugging into Eq. (5.13), this gives Γ0 ≈ 1.2/s, with

approximately equal contributions from each term.

From these estimates, it is clear that thermal noise/blackbody radiation cannot

quantitatively explain the heating rates measured in any of the traps. There is an-

other reason why thermal fields are an unsatisfactory explanation. Fig. 5.5 shows a

trap which we have just recently “commissioned.” This molybdenum trap is similar

in construction to the first two elliptical microtraps (see Ch. 2), save that there are

two ring electrodes cut into the molybdenum sheet. (The endcaps for both trapping

regions are again formed by a slot in the other metal sheet — this slot is tapered to

preserve the ring/endcap aspect ratio.) In the first trap, the radius of the ring electrode

is r0 ≈ 180 µm, and the endcap separation is 2z0 ≈ 2× 152 µm. The second trap has

r0 ≈ 395 µm and 2z0 ≈ 2 × 350 µm. ΩT /2π ≈ 150 MHz. This trap was designed for

quick vacuum processing and so, to minimize the volume of the vacuum system, the

resonator was external to the vacuum can.

Fig. 5.6 shows the relative heating rates in the small and larger traps as a function

of trap frequency. These rates were measured in the usual manner. The rates scale as a

strong function of the trap size (i.e. > d5
0) whereas Eq. (5.15) and Eq. (5.16) show that

thermal fields from external sources produce a d2
0 scaling.

The outstanding question, then, is what causes the observed heating of the ion’s

motion? One possibility is that the heating is caused by fluctuating patch fields on the

trap electrodes [73]. Although most investigations into patch fields have been done on

time-independent or slowly varying (< 500 Hz) fields [118], there have been some studies

at higher frequencies [119, 120]. These studies found different behaviour at times less

than a surface diffusion time constant, but at higher frequencies, they both predict a

spectral density S(Φn, ω) of rms potential fluctuations Φn which scales as ω−χ, with
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small trap big trap

Figure 5.5: “Double trap” used for heating studies. It was constructed from molybde-
num sheets. One sheet had two holes drilled in it, forming two ring electrode trapping
regions. The endcaps were formed by an slot in the second sheet, cut to preserve the
aspect ratio between the two traps. One trap, had r0 ≈ 180 µm and z0 ≈ 152 µm (z is
one-half the endcap spacing), which produced a trap frequency of ωx/2π ≈ 8 MHz with
≈ 250 V of rf applied to the ring electrodes at ΩT ≈ 150 MHz. The other trap had
r0 ≈ 395µm and z0 ≈ 350µm, which yielded ωx/2π ≈ 2 MHz with the same applied rf.

χ ≈ 3/2. The high-frequency fluctuations appear to be caused by surface diffusion,

rather than adsorption/desorption [120].

The field from one such patch potential may be estimated by assuming a circular

patch is on the surface of a sphere of radius R. The sphere is assumed to be held at

ground, except for the patch, which is at potential V . (This estimates the effect of the

electrodes.) At the centre of the sphere, the field produced by the patch is [89] Ep ≈
3V
4R sin2 θ ≈ 3V r2

p

4R3 in a direction pointing away from the patch. Here, θ = arcsin rp/R ≈

(rp/R) is the angle subtended by the patch’s radius rp, as viewed from the centre of the
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Figure 5.6: Heating rates for the small and large traps in the “double trap,” as a function
of trap frequency. The heating rate was a strong function of the trap electrode size. A
fluctuating patch field model of trap heating scales approximately as r40, or higher.

sphere. If N patches cover the surface of the sphere, with randomly distributed voltages

Vi, then 〈E2
tot〉 = N

9〈V 2〉r4
p

32R6 in any given direction. Using the fact that N = C 4πR2

πr2
p

(where

the coverage C � 1), we obtain:

〈E2
tot〉 = C

3〈V 2〉r2p
4R4

∝ 1
R4

. (5.18)

Since 〈E2
tot〉 =

∫
SE(ω)dω, this tells us that, for randomly distributed patches, SE(ω) ∝

R−4. Although this is a very approximate model, it shows that patch potentials can

produce a electric field power noise spectral density which scales strongly with the

characteristic size of the trap.

In conclusion, then, it seems desirable to characterize the scaling of the trap

heating rate as a function of trap size. This would allow one to optimize trap strength

versus heating rate, and construct a trap which allows the minimum heating-induced

decoherence.



Chapter 6

Quantum State Engineering of One and Two Ions

Thus far, we have discussed the ion trap and other apparatus necessary for per-

forming quantum state engineering, investigated the interaction between the ion’s spin

and motional degrees of freedom, as mediated by the laser, and examined laser cooling,

which gets us into the “quantum regime.” We are now ready to examine some of the

ways in which these tools enable us to control the quantum state of our trapped ion(s).

In this chapter, I shall discuss ways to control the motional and electronic degrees of

freedom of the ion and create entanglement between them. I shall then discuss ways to

characterize the complete quantum motional state. Finally, I shall discuss the creation

of entanglement between two trapped ions.

6.1 Nonclassical States of Motion: One Ion

Of course, the ability to engineer various quantum states of the ion’s motion does

us no good whatsoever if we have no way to verify that we have successfully created said

state. Although I will discuss methods of completely characterizing the motional state

in Sec. 6.3, often it suffices to determine the Pn for the motional state: the probability

that a measurement in the Fock state basis will project the state of the system onto a

particular Fock state.

In other systems similar to ours (such as molecules or Rydberg atoms), the binding

potential is anharmonic, so that the populations in the various potential eigenstates can
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be resolved spectroscopically. However, since our system is a harmonic oscillator, it

is patently not anharmonic, and we cannot use this technique to determine the Pn.

Instead, we use the blue sideband to map motional information onto the spin state and

then use the cycling transition to measure P↓ and P↑, as discussed in Sec. 3.5.

6.1.1 Thermal States

There is nothing particularly nonclassical about an ion whose motion is in a

thermal state. However, it is the “natural state” of a trapped ion, which normally is in

thermal equilibrium with it’s surroundings. It is also the state in which we find the ion

after optimum Doppler laser cooling, with n+ 1
2 ≈ γ/(4ω) and n the average vibrational

quantum number. Finally, we have found that the heating discussed in Sec. 5.5 leaves

the ion’s motion in a thermal state.

We may choose to express the thermal state in terms of the number state basis:

from Eq. (5.1) the probability that the ion is in the motional state |n〉 is

Pn =
nn

(1 + n)n+1
, (6.1)

with n = (eh̄ωm/kBT − 1)−1. Figure 6.1 shows the Rabi flopping curve on the upper

motional sideband for a thermal state with n = 1.3± 0.1 [46], corresponding to a tem-

perature of T = 940µK. The inset shows the results of a singular-valued decomposition

(SVD) of the flopping curve, which extracts the various Pn. As one would expect, the

distribution falls off exponentially in the Fock state number. The solid curve is a fit to

the thermal distribution of Eq. (6.1), from which n is extracted.1

6.1.2 Fock States: Eigenstates of the Harmonic Oscillator

The Fock states |n〉 are the eigenstates of the harmonic oscillator Hamiltonian.

(In the context of the formal equivalence between our system and cavity QED, the Fock
1 Note that, as n increases, the Rabi frequencies of the different Fock state components grow closer

to each other, and the error bars on the Pn grow [46]
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Figure 6.1: Rabi flopping curve on the blue sideband for a thermal state of the ion’s
motion. Different Fock state components flop sinusoidally with different Rabi frequen-
cies (see Ch. 3), leading to the complicated dependence on the length tpr of the probe
pulse. The inset shows a singular-valued decomposition (SVD) of the Rabi flopping
curve (see Sec. 3.5), showing the exponential distribution over the Fock states that one
would expect for a thermal distribution. The solid line is a fit to a thermal distribution,
yielding n = 1.3± 0.1.

states in the latter case give the number of photons in the cavity mode.) The Fock

states are nonclassical: they are delocalized, with wave functions spread out between

the corresponding classical turning points. In the position representation, the wave

function of the Fock state |n〉 is given by:

ψn(z) =
(
mωz

πh̄

)1/4 1√
2nn!

e−mωzz2/2h̄ Hn

(√
mωz

h̄
z

)
. (6.2)

The Hn’s are the Hermite polynomials [72].

The ground state of the motional mode is obtained through Raman cooling

(Sec. 5.2). Starting in the ground state of motion, we can prepare |n = 1〉 by ap-

plying a π pulse on the upper motional sideband to drive | ↓, n〉 to | ↑, n+1〉. The pulse



115

length is required t = π/(2Ω0,1). Indeed, the minima of the curve in Fig. 3.4(b) simply

correspond to interaction times such that the ion ends up in | ↑, n = 1〉 from | ↓, n = 0〉.

In order to produce higher-n Fock states, we simply use the carrier transition to

return the ion to | ↓〉 and then apply another pulse on the upper sideband, alternating

these steps until we reach the desired value of n. Alternatively, we can return the ion

to | ↓〉 using the lower sideband which, if we start out in | ↑〉, adds another quantum of

motion to the system (since the lower sideband interaction couples | ↓, n〉 ↔ | ↑, n−1〉).

In this manner, we have created Fock states up to |n = 16〉 [46].

Similar techniques may be used to engineer superpositions of Fock states. For

example, we may create the state 1√
2
(| ↓, 0〉+ | ↓, 2〉) by applying a π/2 pulse on the

blue sideband followed by a π pulse on the red sideband. Such states are useful in

interferometers to probe certain kinds of decoherence (see Sec. 8.2). Indeed, by apply-

ing a sequence of pulses of appropriate lengths on the carrier and motional sidebands

we can, in principle, create any desired superposition of Fock states, i.e., any motional

state [121]. However, for certain classes of motional states, other techniques of produc-

tion exist. In the next few sections, we shall examine some of these.

6.1.3 Coherent States

A coherent state of motion |α〉 [2, 94] corresponds to a displaced ground state

wave packet [Eq. (6.2)] oscillating back and forth in the harmonic potential. A coher-

ent state has the same position-momentum uncertainty product as the ground state:

∆ẑ∆p̂ = h̄/2. As this is the minimum value possible for this product, a coherent state

is an example of a so-called “minimum uncertainty state.” For large amplitudes |α| of

oscillation, the zero-point width is much smaller than the amplitude of motion, and the

coherent state approximates a point object moving in a harmonic well; for this reason,

coherent states are also called “quasi-classical states” [2], and provide a means to draw

a correspondence between the quantum and classical behaviour of a particle in a har-
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monic well. They are also of interest because they represent the quantized harmonic

oscillator of one mode of the electromagnetic field as produced by a laser [2].

Mathematically, coherent states are those for which the ensemble averages 〈ẑ〉

and 〈p̂〉 of the position and momentum operators follow the same equations of motion

as the classical position and momentum, and for which the expectation value of the

energy is equal to that of the corresponding classical particle. This is mathematically

equivalent (see Ref. [2], §GV ) to the statement that |α〉 are eigenstates of the operator

â: â|α〉 = α|α〉. This leads to the expression

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!
|n〉. (6.3)

Note that this is a Poisson distribution over the Fock states. Physically, α gives the

“size” of the coherent state: for example, 〈z〉 = 2z0Re(α).

From a theoretical standpoint, coherent states are produced from the harmonic

oscillator ground state through the action of the unitary displacement operator D̂(α) =

exp(αâ† − α∗â). It is straightforward to use the Baker-Hausdorff formula to prove that

D̂(α)|0〉 = |α〉. This is the origin of the displacement operator’s name: D̂(α) “displaces”

the ground state wave packet from the origin of the {z, ip} plane by α. Physically, we

may realize the displacement operator by applying an electric field to the ion which is

oscillating at the trap frequency. If we write the field as E = ezEz sin(ωt−φ), then the

interaction Hamiltonian between the field and the ion’s charge is given in the interaction

picture by

ĤI(t) = −QEzz0
(
âe−iωzt + â†eiωzt

)
sin(ωt− φ). (6.4)

If we express the sin function in exponential form, make a rotating wave approximation

and set ω = ωz, we obtain the time evolution operator:

Û(t) = e(Ωdt)â†−(Ωdt)∗â = D̂(Ωdt), (6.5)

where I have defined Ωd
.= −QEzz0e

iφ/(2h̄).
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We may also effectively realize the displacement operator by applying a “walking

standing wave” of light which resonantly drives the ion’s motion through the optical

dipole force. In order to do this, we turn on the Raman beams such that their difference

frequency is equal to ωz (rather than ω0 ± ωz, as is usually the case). The light field

polarizes the ion’s electron cloud, and the beat note between the two beams then drives

the ion’s motion through the interaction with the induced dipole moment. One may

analyze the interaction in the same manner as in Sec. 3.3. For example, if we consider

the interaction between | ↓〉 and |v〉 induced by the Raman lasers (with ∆k‖z), and

adiabatically eliminate |v〉, we obtain [73]:

Ċ′
↓,n = i

|g1|2 + |g2|2
∆R

C′
↓,n

−
∑
m

〈n|
[
Ω∗ exp

(
iη(âe−iωzt + â†eiωzt

)
e−iδt +H.C.

]
|m〉 C′

↓,m. (6.6)

As in Eq. (3.24), the first term represents an overall Stark shift of | ↓〉. If we absorb

this into the definition of the ground state energy, then the dynamics of the C′
↓,n are

the same as those obtained in the interaction picture with the Hamiltonian

ĤI = h̄Ω∗ exp
(
i
[
η(âe−iωz t + â†eiωzt − δt

])
+H.C. (6.7)

If we make a rotating wave approximation, expand the exponentials of the operators

â and â†, and assume we are in the Lamb-Dicke limit, this gives the time evolution

operator

Û(t) = e(ηΩ∗t)â†−(ηΩt)â = D̂(ηΩ∗t). (6.8)

The above derivation is somewhat mathematical, and it is easy to lose sight of

the fundamental physics in the situation. To try and identify this physics, we must

remember that the two Raman beams are far-detuned from the virtual level |v〉, so that

they do not drive much of the atomic population from | ↓〉 to |v〉. Instead, their primary

effect on the atom is to produce an energy shift of the atomic levels through the AC

Stark effect. In order to examine this shift, we may use time-dependent perturbation
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theory to calculate the energy of the part of the state vector left in | ↓〉 (the eigenstate

of the free Hamiltonian of the atom’s spin degree of freedom). This is given by

〈↓ |Ĥint|ψ(t)〉 ≈ 〈↓ |Ĥint|ψ(1)(t)〉

≈ 〈↓ |Ĥint

[
| ↓〉+ c(1)

v (t)|v〉
]
, (6.9)

where the superscripts refer to first-order expansion perturbation theory solutions.

Now, assuming that the ion is illuminated equally by two plane waves travelling

in the z-direction, the total electric field experienced by the ion is given by:

E = exE (cos(k1z − ωL1t+ φ1) + cos(k2z − ωL2t+ φ2))

= ex2E cos(kavgz − ωavgt+ φavg) cos[
1
2
(∆kz − δt+ δφ)]. (6.10)

In the first cosine term, the avg subscripts refer to the averages of the laser wave-vectors,

frequencies, and phases. This term is very rapidly varying. The second cosine term,

however, is slowly-varying. Thus, we may express Hint as:

Hint = −2g(t)
[
ei(kavgz−ωavgt+φavg) + e−i(kavgz−ωavg t+φavg)

]
, (6.11)

where

g(t) .= 〈↓ |ex · rel
eE

2h̄
cos[

1
2
(∆kz − δt+ δφ)]|v〉 (6.12)

is a coupling strength which varies slowly in time. Substituting this interaction Hamil-

tonian into the usual time-dependent perturbation theory expansion, we find that

(Schrödinger picture):

C(1)
v (t) =

−2g∗(t)eikavgz

ωavg − ωv,↓

(
e−iωavgt − eωv,↓t

)
. (6.13)

Finally, if we plug this into Eq. (6.9) and make a rotating wave approximation, we

obtain:

〈↓ |Ĥint|ψ(t)〉 = 4|g(t)|2h̄
ωv,↓ − ωavg

[
e−i(ωv,↓−ωavg)t − 1

]
, (6.14)
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where ε↓ is the unperturbed energy of | ↓〉. Now, ωv,↓ − ωavg = ∆R − 1
2δ ≈ ∆R. Thus,

averaging over the fast time scale 1/∆R, we have

〈↓ |Ĥint|ψ(t)〉 ≈ −4h̄|g(t)|2
∆R

. (6.15)

So the effect of the “standing walking wave” is to create a time-dependent Stark shift

of the level | ↓〉. The time dependence occurs in the term |g(t)|2 and thus, at the

frequency δ ≈ ωz . This time- dependent Stark shift leads to a time-dependent force on

the ion which, in the Lamb-Dicke limit, acts like a displacement operator upon the ion.

Although the effects on | ↓〉 have been treated here, | ↑〉 is affected in a similar way.

The “walking standing wave” technique has the following advantage: the force

produced by this interaction depends on the polarization of the lasers and the matrix

elements of the atomic levels. So, for example, if the Raman beams are polarized σ−

then, since there is no |F = 2, mF = −(2 + 1)〉 virtual state in the 2p 2P1/2 level to

which | ↓〉 may couple, only the | ↑〉 state is affected by the Raman beams. This allows

us to create a coherent state only in the component of the ion’s state vector which is

in | ↑〉, which is useful for interferometry or for producing “Schrödinger cat” states. I

shall discuss these issues in greater detail in Sec. 6.2.1.

Fig. 6.2(a) shows the Rabi flopping curve on the upper sideband for a coherent

state with |α| = 3.1 ± 0.1 [46]. Notice the so-called “collapse” and “revival” in P↓:

the Rabi flopping collapses to almost a straight (50%) line around time t = 8µs, but

then coherent features reappear (“revive”) at around tpr = 15µs. These features are

characteristic of coherent states [122, 123], and are a result of the strongly peaked

Poisson distribution of Fock states which make up a coherent state.

6.1.4 Squeezed States

A coherent state is one example of a “minimum-uncertainty state.” For this state,

∆ẑ =
√

h̄
2mωz

and ∆p̂ =
√

mh̄ωz
2 , so that ∆ẑ∆p̂ = h̄/2. However, it is possible to create
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Figure 6.2: Rabi flopping curve for a coherent state, with |α| = 3.1±0.1. The “collapse”
and “revival” characteristic of such a state are evident. The solid curve is a fit to a
coherent state population distribution (yielding |α| = 3.1± 0.1 for the fit).

states such that ∆ẑ <
√

h̄
2mωz

at the expense of increasing ∆p̂ commensurately, or vice

versa. Such states are called “squeezed states” [124]. If we picture the ion’s wave packet

in the {z, p} plane then, roughly speaking, a coherent state forms a circular disk (of

finite “radius” to satisfy Heisenberg) a distance |α| from the origin. A squeezed state is

an ellipse — a squeezed circle, if you will.

Mathematically, squeezed states are produced from the ground state of motion

through the action of the unitary “squeeze operator”2 Ŝ(ε) = exp[ 12(ε∗â2 − ε(â†)2)]

where, in the traditional nomenclature, ε is expressed as ε = Re2iφ. One can show [105]

that Ŝ†(ε)(˜̂z+i˜̂p)Ŝ(ε) = ŷ1e
−R +iŷ2eR, where ŷ1+iŷ2 = (z+ip)e−iφ. Thus, the squeeze

operator causes a rotation in the {z, p} plane by angle φ, then attenuates one component

of the motion as it amplifies the other. This leads to ∆ŷ1 = e−R and ∆ŷ2 = eR, so

that indeed, the squeezed state features reduced uncertainty in one quadrature at the

expense of increased uncertainty in the other.

2 Actually, in full generality, a squeezed state is produced by D̂(α)Ŝ(ε) acting on the vacuum, rather
than only Ŝ(ε). This is a squeezed state which is displaced from the origin of the z − p plane. What I
am referring to as “squeezed states” are, to be more accurate, actually called “squeezed vacuum states.”
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We can create squeezed states by modulating the strength of the trap at twice

the trap frequency. This produces a parametric resonance (much like the parametric

resonance one uses to get oneself going when one is sitting on a swing!), which produces

a squeezed state of motion [125]. However, this technique is not practical with our

apparatus: since we would like to modulate the strength of the trap, we require strong

field gradients at frequency 2ωz (see Ch. 2), but frequency components at 2ωz are heavily

attenuated by the filters on the trap.

Instead, we use the same “walking standing wave” technique used to produce

coherent states. This time, we set the detuning δ of the laser beams to be equal to 2ωz.

Now in Eq. (6.7), δ = 2ωz, and if we are in the Lamb-Dicke limit and make a rotating

wave approximation (neglecting off-resonant terms), the result is that

ĤI =
h̄η2

2

[
Ω∗â2 + Ω(â†)2

]
, (6.16)

leading to

Û(t) = e
1
2
[(iη2Ω)∗â2−(iη2Ω)(â†)2]t = Ŝ(iη2Ωt) (6.17)

(where the laser phase is included in Ω).

Figure 6.3(a) shows the Rabi flopping curve on the blue sideband for a squeezed

state with R ≈ 1.5. Figure 6.3(b) shows the result of leaving the lasers on for a longer

period of time. In this latter case, the ion is driven out of the Lamb-Dicke regime, and

the higher-order terms in Eq. (3.7) come into play. The resulting state is no longer a

pure squeezed state, but suffers additional rotation and shearing in the {z, p} plane.

6.2 Entangling Spin and Motion: One Ion

6.2.1 “Schrödinger’s Cat”

The phrase “Schrödinger’s cat” refers to a paradoxical Gedankenexperiment [9]

in which Schrödinger envisioned correlating the state of a macroscopic object with that

of a microscopic one (which obeys quantum mechanics). In particular, he imagined a
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Figure 6.3: (a) Rabi flopping curve for a squeezed state, with R = 1.5± .2. (b) Rabi
flopping curve for a state in which the parametric, “walking standing wave” interaction
is left on long enough for nonlinearities to enter the expressions for the Rabi frequencies.
The solid curves are fits to the squeezed state population distribution.
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cat to be confined inside a box with a radioactive nucleus, a bottle of cyanide, and a

trigger device which would break the bottle if the nucleus decayed — thus killing the

cat. The paradox arises in the case when the nucleus is in a superposition of decayed

and undecayed. Although we are used to considering such a situation, in this case it

poses a problem. For, if we consider the system as a whole quantum mechanically then,

since the cat’s state is correlated with that of the nucleus, we are left with a situation

in which, according to the standard interpretation of quantum mechanics, we must

consider the cat to be in a superposition of being alive and dead. This is not a state in

which cats are normally found!

This paradox was meant to highlight some of the difficulties with the traditional

Copenhagen interpretation, which drew an (arbitrarily placed) dividing line between

the microscopic world of quantum mechanics and the macroscopic world which we ex-

perience. Much discussion has ensued on the subject of Schrödinger’s hapless feline, but

the Gedankenexperiment illustrates the general lack of agreement on exactly how the

transition from quantum mechanical to classical behaviour occurs.

In the context of quantum optics, the phrase “Schrödinger’s cat” was appropriated

to describe a situation in which a microscopic degree of freedom is entangled with a

mesoscopic one. We use the term in the same vein in the context of our trapped-

ion system, to describe the situation in which the atom’s spin is entangled with two

mesoscopically distinct motional states. In particular, such states provide a controlled

environment for studying quantum decoherence, which may shed light on the issue of

“wave function collapse” [15] and also is of interest to us in our examination of quantum

computation (see Sec. 7.1).

In particular, we can create the state [47]

|Ψ〉 = 1√
2

(| ↓, α↓〉+ | ↑, α↑〉) , (6.18)
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where |αj〉 is a coherent state of motion. If, for example, |α↑〉 = | −α↓〉, then we have a

situation when, at the extremum of the ion’s motion, it is (in some sense) simultaneously

in the state | ↓〉 and at one side of the trap and in the state | ↑〉 and at the opposite side

of the trap! We have created such a state where the two coherent state wave packets

were separated by 80 nm, about ten times the width of the wave packet.

In order to create such a state, we take advantage of the “walking standing wave”

method of generating coherent states. As mentioned in Sec. 6.1.3, the interaction be-

tween the laser beams and the ion depends on the ion’s electronic state (different elec-

tronic states have different matrix elements — see Appendix B). So, for example, if the

light is polarized σ− then, since there is no 2p 2P1/2, mF = −3 level with which | ↓〉 can

interact, the lasers only affect | ↑〉 (at least, if we ignore off-resonant transitions through

the 2p 2P3/2 level). To create the state 1√
2
(| ↓〉+ | ↑〉), we could turn on the “walking

standing wave”, exchange | ↑〉 and | ↓〉, and repeat the process. This was the technique

used in Ref. [47].

However, there is a simpler technique for producing states of the form |Ψ〉. If

we arrange the polarizations of the two laser beams correctly, then we can drive both

| ↓〉 and | ↑〉 at the same time. In practice, the RRco beam must have the polarization

1√
2
(σ+ + σ−), since it is put into the trap with a polarizing beamsplitter cube. Let

the RR⊥ beam have the polarization Λσ− + Υσ+. Assume that g1 = g2 = g. Then,

including the matrix elements between | ↓〉, | ↑〉, and the 2p 2P3/2,1/2 states explicitly

(see Appendix B), the effective Rabi frequencies when we turn on the displacement

beams are

Ω↓ =
g2

∆R + ω0

2Υ
3

+
g2

∆R + δFS + ω0

(
Λ +

Υ
3

)
(6.19)

Ω↑ =
g2

∆R

(
Λ
2

+
Υ
6

)
+

g2

∆R + δFS

(
Λ
2

+
5Υ
6

)
. (6.20)

In these equations, δFS is the fine-structure splitting of the 2p 2P levels (≈ 197 GHz).

It is convenient to set |Λ| = |Υ| when running the experiment, for then the Stark shifts
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of the two levels (| ↓〉 and | ↑〉) are the same (up to order δHF/∆R). To get a rough

idea of the effects of the two beams on the different atomic levels, assume that we are

tuned near the 2p 2P1/2 level, so that we may neglect the second terms in Eqs. (6.19)

and (6.20). Let us also neglect ω0 with respect to ∆R. If we assume that Λ is purely

real, then we may write Υ = Λe2iχ. (For example, we may alter the polarization of the

RR⊥ beam with a half-wave plate. In this case, χ is the angle of said wave plate from

the vertical, which is 90◦ from the plane of the Blue Raman polarization.) Making these

substitutions, we find that:
Ω↓
Ω↑
≈ 4

1 + 3e−2iχ
. (6.21)

Since α is proportional to Ωj, we can vary α↓/α↑ by varying the laser beam polarization.

Fig. 6.4 shows Ω↓/Ω↑ as a function of the angle of the aforementioned polarizer. In

practice, we usually chose to have α↓ = −2α↑.

Thus, in order to create a state of the form Ψ, we apply a π/2-pulse on the

co-propagating carrier, to create 1√
2
(| ↓〉 + | ↑〉), then turn on the displacement laser

beams, creating Ψ with only one displacement pulse. If |α| were large enough, we could,

in principle, spatially resolve the two wave packets and correlate the atom’s position

with its electronic state [126]. However, this is not possible for the size of cats which

we produced (which really, given their size, were more like kittens than cats).

Instead, we interfere the motional wave packets in | ↑〉 and | ↓〉, to produce

interference fringes. In order to do this, we reverse the original carrier and displacement

pulses to reverse the state creation. However, we put a variable phase between the first

displacement pulse and the reversal pulse (by putting a phase shift on the rf driving

the splitter AOM). As this phase is swept, a pattern of fringes appears in P↓. Thus,

the complete experiment is really a form of Ramsey-type interferometer (see Sec. 3.4

or Ref. [95]). The first carrier and displacement pulses create a superposition state,

playing the role of the first Ramsey zone. Similarly, the reversal pulses, which have a
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Figure 6.4: Ω↓
Ω↑

as a function of the angle of the polarizer in the RR⊥ beam line from
the vertical. This assumes that α↑ = 1, that |Υ| = |Λ|, and neglects the ground-state
hyperfine splitting. By varying the polarizer angle, we can vary the relative displace-
ments of | ↓〉 and | ↑〉 produced by the “walking standing wave” interaction, and produce
“Schrödinger cat” states.

different effective phase than the first pulses, play the role of the second Ramsey zone.

We shall return to this idea in Ch. 8.

As a function of the phase φ between the state creation and reversal (and assuming

equal Rabi frequencies on the creation and reversal pulses), P↓ is given by:

P↓(φ) =
1
2

(
1 + e−|α↓−α↑|2(1+cosφ)

× cos
[
ϑ+ 2(1 + cosφ)Im{α∗

↓α↑}+ sinφ(|α↓|2 − |α↑|2)
])
, (6.22)

where α↓ and α↑ are the coherent state amplitudes in | ↓〉 and | ↑〉 produced by the

state creation, and ϑ allows for the possibility of a phase between the two carrier π/2
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Figure 6.5: Measured and fit interference signals P↓(φ) for a “Schrödinger cat” state [see
Eq. (6.18)], as a function of the phase φ between coherent state creation and reversal.
For this data, one of the spin states was displaced while the other was not. The solid
line is a fit to theory.

pulses. Characteristic interference patterns are shown in Fig. 6.5 — they indicate the

correlations and coherence inherent in the state.3

The creation of Schrödinger cat states with trapped ions is paralleled in systems

such as atom [127, 128, 129, 130], electron [131], or neutron [132] interferometers or in

Rydberg states in atoms [133, 134, 135]. However, in our case, there is no dispersion of

the wave packet with time, since the confining potential is harmonic. This provides a

well controlled system with which to study, for example, decoherence. I shall return to

this in Ch. 8.

6.3 Determining the Complete Motional State

One of the more significant changes in our concept of the physical universe

wrought by quantum mechanics is the lack of distinction between measurement and
3 The data in Ref. [47] were taken in a slightly different manner: only one displacement pulse was

used, and the phase of the second π/2 pulse was swept.
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state preparation. In our case, for example, the same Raman interactions that we use

to create motional states are also used to map information about the motional-level pop-

ulations onto the ion’s spin, which is our observable. The fact that the Rabi frequency on

the motional sidebands depends on the motional level allows us to discriminate different

Fock state components with unit efficiency (by, for example, a singular-value decom-

position [96] of the frequency components of the Rabi flopping curve), as discussed in

Sec. 3.5.

This technique allows us to determine the n-state populations (or probabilities),

but does not give us phase information; therefore, it does not provide us with a complete

description of the motional states. However, by using a coherent state generation inter-

action — which is equivalent to a displacement in phase space — in conjunction with

the Rabi flopping curves, we can reconstruct the Wigner function or the density matrix

of the motional state [136]. The techniques we use are similar to those of quantum state

tomography [48].

Like the density matrix, the Wigner function [137] provides a complete descrip-

tion of a quantum state. It is a description formulated in phase space — the same phase

space familiar from classical mechanics. However, the Heisenberg Uncertainty Principle

prohibits us from simultaneously specifying both position and momentum, so we must

make some modifications to our classical picture of phase space and phase space prob-

ability distributions. The Wigner function W (z, ip) ≡ W (α) (where α = z + ip) is the

“best possible phase space distribution” [138]:

W (α) ≡W (z, ip) =
1
2π

∫ +∞

−∞
eipq

〈
z − q

2

∣∣∣ρ∣∣∣z +
q

2

〉
dq . (6.23)

(Here ρ is the motional state density matrix.) However, the “weirdness” of quantum

mechanics gives it some unusual properties for a probability distribution: it can, for

example, be negative! For this reason, it is usually referred to as a “quasiprobability

distribution.” Nonetheless, for a given state, the Wigner function does give the correct
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marginal distributions for z and p (as we would calculate from 〈z〉 or 〈p〉). For example:

〈z|ρ|z〉 =
∫ +∞

−∞
W (z, ip)dp > 0 . (6.24)

The basic idea for determining the density matrix ρ or the Wigner function W (α)

is to measure the overlap of the motional state with some known set of basis functions

— in our case, the Fock states. If we displace the motional states by different amounts

and in different directions in phase space, we can measure how the overlap with the

Fock states changes with the (phase-dependent) displacement and thus extract phase,

as well as amplitude, information.

If we represent the initial motional state as |ψ〉 = ∑∞
n=0 Cn|n〉, then the first step

in determining the Wigner function is to displace this state using a resonant electric

field at the motional frequency (see Sec. 6.1.3). After the displacement, the motional

state |ψd〉 is now given by |ψd〉 = ∑∞
n=0 Cn(α)|n〉, where the expansion coefficients Cn(α)

explicitly depend on the displacement. If a Raman probe pulse on the upper motional

sideband is then applied, the signal is given by (see Eq. (3.34):

P↓(tpr, α) =
∞∑

n=0

|Cn(α)|2 cos2 (Ωn,n+1tpr). (6.25)

From this, the coefficients |Cn(α)|2 (which are simply the Pn’s of the displaced motional

state) can be determined by performing a singular-valued decomposition. The Wigner

function at the point α = z+ ip in phase space is then given by the simple formula [139,

140, 141, 142]:

W (α) =
2
π

∞∑
n=0

(−1)n|Cn(α)|2. (6.26)

In practice, we truncate the sum at some nmax. Fig. 6.6(a) shows the reconstructed

Wigner function for an approximate |n = 1〉 Fock state; the negative values near the

origin indicate the highly nonclassical nature of the state. Fig. 6.6(b) shows the re-

constructed Wigner function of a coherent state. The theoretically predicted Wigner

function is a two-dimensional Gaussian, and the reconstructed Wigner function, indeed,

appears Gaussian.
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(a) (b)

Figure 6.6: (a) Reconstructed Wigner function for an |n = 1〉 Fock state. The plotted
points are the result of fitting a linear interpolation between the actual data points to
a 0.1 by 0.1 grid. The octagonal shape is an artifact of the eight measured phases per
radius (ten radii were measured). The white contour represents the line W (α) = 0.
The negative values around the origin highlight the nonclassical nature of this state.
(b) Reconstructed Wigner function for a coherent state |α〉. The points are the fit of a
linear interpolation of the data points to a 0.13 by 0.13 grid. The approximately Gaus-
sian minimum-uncertainty wave packet is centred around an amplitude of 1.5 (from the
origin). The half-width at half maximum is ≈0.6, in accordance with the minimum un-
certainty half width of ≈0.59. To suppress artifacts in the Wigner function summation,
data with nmax = 5, 6 have been averaged together (as suggested by M. Collett, private
comm.).

This technique gives the Wigner function at a particular point in phase space: in

order to map out the motional state with a given precision, a suitably large number of

measurements is required. It is also possible to make 2N measurements and completely

reconstruct the density matrix elements ρnm with respect to the Fock states up to

n = m = M − 1. To do this, we displace the state to be measured to 2M different

locations in phase space equally spaced along a circle of radius |α|, each time measuring

the Rabi flopping curve. This allows us to invert the relationship

|Cn(α)|2 = 〈n|D̂†(α)ρ̂D̂(α)|n〉, (6.27)
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where D̂(α) is the unitary operator representing the displacement interaction. (In prac-

tice, since the data over-constrained the relationship, we used a fitting procedure instead

of an inversion.) Note that |C0(α)|2/π is the Q-function [105]. The details are described

in Refs. [136, 48] and a similar technique is described in Ref. [143]. However, I shall

briefly outline the idea of the technique here. Write |Cn(α)|2 = Qn(α). Then, using the

fact that âne−αâ†
= ân−1e−αâ†

(â− α), and applying the properties of â and â†, we can

rewrite Eq. (6.27) as

Qn(α) =
e−|α|2|α|2n

n!

∞∑
l,m=0

n∑
j,j′=0

(α∗)l−jαm−j′

l!m!
(−1)−j−j′

×
(n
j

)(n
j ′
)√

(m+ j)!(l+ j ′)! ρl+j′,m+j . (6.28)

Now, suppose that we measure Qn(α) with α equally spaced on a circle: αp = aei(π/M )p,

with p ∈ {−M, . . . ,M − 1}. Then, Eq. (6.28) becomes

Qn(p) =
e−a2

a2n

n!

∞∑
l,m=0

n∑
j,j′=0

al+m−j−j′

l!m!
(−1)−j−j′

×
(n
j

)(n
j ′
)√

(m+ j)!(l+ j ′)! ρl+j′,m+j e
ip(π/M )(j+m−l−j′) . (6.29)

One can then determine ρn,m by use of the following orthonormality relationship:

1
2M

M−1∑
p=−M

eip(π/M )re−ip(π/M )s = δr,s. (6.30)

So, if we multiply Eq. (6.29) by 1
2M e−ip(π/M )s and sum over the data from p = −M, . . . ,M−

1, we obtain (after some reworking of the indices):

Q(s)
n

.=
1

2M

M−1∑
p=−M

Qn(p)e−ip(π/M )s

=
∞∑

k=max{0,−s}
M(s)

nkρk,k+s (6.31)

with matrix elements

M(s)
nk =

e−a2 |α|2n

n!

min{n,k}∑
j=0

min{n,s+l}∑
j′=0

|α|2(l−j−j′)+s(−1)−j−j′

×
(n
j

)(n
j ′
) √

(s+ n)!n!
(s+ n− j)!(n− j ′)! . (6.32)
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Figure 6.7: Reconstructed density matrix amplitudes of an approximate
1√
2
(|n = 0〉 − i|n = 2〉) state.

In practice, we can truncate the infinite sum in Eq. (6.31) at some N . Then we can

invert the matrix equation to determine ρn,m, using standard techniques.

Fig. 6.7 shows the reconstructed density matrix element amplitudes (in the Fock-

state basis) for an approximate 1√
2

(|n = 0〉 − i|n = 2〉) state.
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6.4 Quantum State Engineering of Two Ions

Cirac and Zoller’s scheme for quantum computation ([40],see Sec. 7.3) calls for a

collection of trapped ions, each of which may be individually addressed by laser beams.

Thus far, I have discussed single-ion experiments but obviously, if we wish to work

towards a quantum register along the lines of Cirac and Zoller, we need to work with

multiple ions. The challenge in this task is to focus laser beams tightly enough to address

the ions while simultaneously keeping the trap strong enough to allow easy manipulation

of the ions’ motion and minimize the effects of background heating. Of course, these

two tasks are at odds with each other: a strong trap forces the ions together, making

individual addressing more of a challenge.

We have, indeed, focussed the laser beams down to a waist of ≈ 3 µm and ad-

dressed one of two trapped ions, with negligible interaction of the other ion with the

beams. This was done in the Be-electrode elliptical microtrap, with ωx ≈ 6 MHz. How-

ever, it was a somewhat challenging task. The AOMs used to switch the beams on

and off did not produce ideal, Gaussian beams, and so there was a lot of stray light.

This was reduced by sending the beam through a single mode fiber before focussing

it through the trap. The fiber, however, added amplitude noise to the light (peaked

around several kHz), so that it was necessary to add extra “noise-eater” circuitry to

eliminate this noise. Even then, however, it was not possible to achieve high fidelity

when the beams were focussed tightly. The coaxial resonator, as it turned out, was

also a long mechanical lever arm, which transmitted acoustic and mechanical vibrations

from the room and optical table to the trap structure, and caused it to oscillate with

respect to the beam waist, reducing the fidelity of laser- induced interactions.

These technical problems are, of course, surmountable in principle. But, in the

meantime, we were able to perform interesting multi-particle experiments without hav-
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ing to focus the laser beams or reduce the trap strength. In particular, we were able to

create entangled states of two ions’ spins.

Multi-ion entangled states, such as two-particle Bell states [10, 144] or Greenberger-

Horne-Zeillinger triplets [145] ( 1√
2
[| ↓, ↓, ↓〉+ | ↑, ↑, ↑〉] ), are interesting for the oppor-

tunities they provide to test quantum mechanics versus other possible theories [146]

and for their illustration of quantum mechanics’ seemingly paradoxical nature. But

multi-ion entangled states are also of more practical and immediate interest in preci-

sion spectroscopy. For such applications, the Ramsey method of separated oscillatory

fields [95] (see Sec. 3.4) is generally used to ascertain the frequency of a transition; for

example, the frequency of the | ↓〉 → | ↑〉 transition in our case. If all sources of technical

noise are eliminated, then the fundamental limit to the Ramsey method’s accuracy is

the “quantum projection noise” [147] from the projection of the atoms onto one or the

other basis state during the probe pulse. For uncorellated atoms, this limit is given

by δω
ω = 1√

NTRτI
, where TR is the time between the two Ramsey zones, τI is the total

averaging time for the complete frequency measurement and N is the number of atoms.

On the other hand, if we could replace the first π
2 pulse with one that produces the

state |ψen〉 = 1√
2
(| ↓, ↓, ..., ↓〉+ eiφ| ↑, ↑, ..., ↑〉) , then the fundamental precision is given

by δω
ω = 1

N
√

TRτI
, which is the so-called “Heisenberg limit” [148].

6.4.1 Entangled States of Two Ions

The most straightforward way to produce entangled states such as the Bell states4

|ψ±
B〉 = 1√

2
(| ↓, ↑〉 ± | ↑, ↓〉) is to address the ions differentially. In order to do so, we

need some way of introducing a different interaction at each ion. One possibility is to

focus the laser beams tightly so that one ion is illuminated while the other is not (i.e.,

has zero Rabi frequency). However, there is another way to achieve the same effect by

using the micromotion.
4 Note that |ψ−

B〉 is the “Einstein, Podolsky, Rosen” (EPR) pair.



135

Recall from Sec. 2.1 that a trapped ion’s motion is made up of two parts: the

slow secular motion at ωm, which we cool and quantize, and the fast, small amplitude,

classical micromotion at ΩT . This micromotion can “fuzz out” the interaction with the

laser beams, thereby reducing the coupling strength. Near the null of the rf trapping

field, the amplitude of the micromotion is negligible. However, by applying a static

potential to an additional electrode [81], we can shift the two ions such that one is near

the rf null point but the other is not. In such a case, the micromotion is different for

the two ions and hence so is the coupling to the laser beams [49].

In Eq. (3.4), the micromotion is ignored. To now take it into account, we write

the position of the ion as

x̂tot = xµ + x̂ = xµ0 cos (ΩT t) + x0(â†x + âx), (6.33)

where xµ0 is the amplitude of the micromotion along the x-direction (I am considering

the x-direction now, as these experiments were performed in one of the elliptical traps).

Thus, we may re-express Eq. (3.4) as

H ′
int = h̄Ω

[
S+e

i∆k·xµ0 cosΩT t exp
(
iη(â†xe

iωxt + âxe
−iωxt)− iδt

)
+H.C.

]
. (6.34)

I have treated the micromotion as classical in Eq. (6.34). Although one may treat the

complete motion of the ions quantum- mechanically [70], we still obtain an appropriate

picture of the situation without doing so, as we shall see.5 Expanding eiδk·xµ0 cosΩT t [72],

we find that the effect of the micromotion is that the base (carrier) Rabi frequency

Ω → Ωj = ΩJ0(|δk| · xµ0,j), where j ∈ {1, 2} is the jth ion. That is, in the case of

two trapped ions, the ion with the most micromotion is more weakly coupled to the

laser beams, as discussed above. This is illustrated by the data in Fig. 6.8: as the

center of mass of the two-ion system is displaced from trap center (by an applied static

electric field), the ion which is moved closer to trap center experiences an increased Rabi

5 This occurs because
√

h̄
2mωx

� xµ0
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Figure 6.8: Normalized carrier Rabi frequency Ωi/Ω of each of two ions as a function
of center-of-mass displacement d from the rf null position d=0. Ω is the co-propagating
carrier transition Rabi frequency. The solid curves show ΩJ0(|δk| · xµ0,i), where the
distance between the maxima of the two curves sets the scale of the ordinate, based on
the known ion-ion spacing of l ≈ 2.2 µm at ωx/2π = 8.8 MHz. When the center of the
two-ion string is displaced by just under one micrometer from the center of the trap
(arrow in graph), the two ions’ Rabi frequencies are in a two-to-one ratio.

frequency while the other ion’s Rabi frequency is reduced. The agreement with theory

is quite good.

Using the micromotion to differentially address the two ions, we have found a way

to produce the state

|ψe(φ)〉 =
(

3
5
| ↓, ↑〉 − eiφ 4

5
| ↑, ↓〉

)
|n = 0〉, (6.35)

which has an overlap |〈ψ−
B|ψe(ϕ = 0)〉|2 = |〈ψ+

B|ψe(ϕ = π)〉|2 = 0.98 with the Bell

states [49]. (In Eq. (6.35), φ is a controllable phase, determined by the laser beams’

phases at the locations of the two ions.)

To do this, we displaced the ions’ center of mass from the trap center to the point

indicated by the arrow in Fig. 6.8: at this point the ions’ perpendicular carrier Rabi
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frequencies were in a 2:1 ratio. Thus, starting from the state |ψi〉 = | ↓, ↓, nstr = 0〉

we drove a 2π pulse on one ion and a π pulse on the other, creating the state |ψ′〉 =

| ↓, ↑, nstr = 0〉.

From this point, we were able to use the stretch red sideband to produce the state

|ψe(φ)〉. To see how this occurred, consider the level structure shown in Fig. 6.9, which

shows the various states coupled to | ↓, ↑, n〉 by the stretch lower motional sideband,

and let Ω1 = 2Ω2 be the carrier Rabi frequencies on ions 1 and 2, respectively. Since we

started out in nstr = 0, there is no nstr = n− 1 level to which to couple. Thus, starting

in |ψ′〉, and driving on the stretch red sideband for a time tint, we produced the state:

|ψ(t)〉 = −iΩ2−
G sinGtint| ↓, ↓, 1〉

+
[
Ω2−
G2

(cosGtint − 1) + 1
]
| ↓, ↑, 0〉

+ eiφ
[
Ω2− − Ω1−
G2

(cosGtint − 1)
]
| ↑, ↓, 0〉. (6.36)

Here, G =
√

Ω2
2− + Ω2

1−, Ωj− = Ωjηx,str

√
n+ 1 is the stretch mode red sideband Rabi

frequency (recall ηx,str = ηx/
√

2
√

3 ), and φ is the difference of the Raman beam phases

at the ions. Thus, when Gtint = π, we produced the state |ψe(φ)〉. Since the laser

beams impinge on the ions at an angle to the axis along which they line up, the phase

φ depends on the ions’ separation. Thus, by changing this separation, we could choose

the particular state produced.

By monitoring the photon-number histograms (Ch. 3 and Appendix A), we could

discriminate between | ↓, ↓〉, | ↓, ↑〉, | ↑, ↓〉, and | ↑, ↑〉, and extract the spin popula-

tions for the state which we produce. The optical pumping of the dark state | ↑〉 into

the cycling transition (Appendix A) somewhat complicated this endeavour. Were it

not for this effect, we could have turned up the intensity of D2 to a point where the

photon histograms allowed us to clearly distinguish between the cases | ↓, ↓〉, | ↑, ↓〉 or

| ↓, ↑〉, 6 and | ↑, ↑〉. However, the optical pumping precluded this. Instead, we took
6 Note that, due to the different micromotions of the two ions, these two states had different scatter

rates during the cycling transition
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Figure 6.9: Simplified level diagram showing four levels coupled by the lower (red)
motional sideband, when the lasers illuminate two trapped ions. The coupling strengths,
Ωj,±, vary depending on which ion’s spin is being flipped, due to the ions’ different
(micromotion-induced) base Rabi frequencies (see Eq. (6.36)).

“reference histograms” for the four states (see Fig. 6.10), and performed a singular-

valued decomposition [96] of the measured fluorescence signal using these references as

basis functions.

In order to demonstrate the coherence of the produced state, we applied the co-

propagating carrier. To determine the effect of this interaction on the Bell states, it

is useful to again draw the analogy between two-level systems and spin-1/2 particles.

In particular, we may split the possible two-ion coupled spin states into a triplet and

a singlet manifold, just as one does when treating two, coupled spin-1/2 systems. The

singlet, which has spin J = 0, should be unaffected by any interaction which preserves



139

|↑↑〉

 0     10       20     30     40     50     60
P

(m
)

# photons, m

|↓↑〉

 0     10       20     30     40     50     60

P
(m

)

# photons, m

|↓↓〉

 0     10       20     30     40     50     60

P
(m

)

# photons, m

|↑↓〉

 0     10       20     30     40     50     60

P
(m

)

# photons, m

Figure 6.10: Photon-number histograms for two trapped ions. Since the ions were
unequal distances from the rf null, and experience different micromotions, the mean
photon numbers for the states | ↑, ↓〉 and | ↓, ↑〉 were different (see text). The “leak” of
population from | ↑〉 into the cycling transition is discussed in Appendix A.

J. An example of such an interaction is the co-propagating carrier which, being in-

sensitive to motion, does not “sense” the micromotion and so interacts with both ions

with the same coupling strength. On the other hand, the states |ψ+
B〉 ≈ |ψe(0)〉 or

an incoherent mixture of | ↓, ↑〉 and | ↑, ↓〉 are driven to the states | ↑, ↑〉 and | ↓, ↓〉

by the co-propagating carrier. Thus, measuring the photon statistics after turning on

the co-propagating carrier allowed us to distinguish between the coherent superposition

|ψe(π)〉 and an incoherent mixture. The data are shown in Fig. 6.11. Together with

the population analysis described above, they establish that we were able to create the

desired state |ψe(φ)〉about 70% of the time [49].

Note that it is, in fact, possible to exactly produce the Bell states. This would

require Ω1 = (
√

2+1)Ω2 for the red sideband interaction, Eq. (6.36), which would create

the exact Bell state from | ↓, ↑, 0〉. In practice, it was not possible to change the ratio

of the Rabi frequencies within the course of a single experiment, and so the technique
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Figure 6.11: Probabilities P↓,↑ +P↑,↓ and P↓,↓ +P↑,↑ as a function of pulse length tpr of
the co-propagating carrier pulse applied after creation of the state |ψe(φ)〉 of Eq. (6.35).
(a) For φ = π, this co-propagating carrier pulse has no effect. (b) For φ = 0, the
co-propagating carrier pulse causes the various populations to change. An incoherent
mixture would also exhibit oscillations. The data in (a) for φ = π thus indicates our
success in producing a coherent superposition state. The solid and dashed lines in (a)
and (b) are sinusoidal fits to the data, from which we determine that we produce the
desired state with a fidelity of |〈ψactual|ψe〉|2 = 0.70.
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described above was used, instead. However, this technical difficulty is, in principle,

surmountable. For example, we could change the ion-ion separation by changing the

trap frequency of a linear trap in the middle of an experiment (see Sec. 7.5).

We note that, in contrast to previous experiments which have produced entangled

states (see references in [49]), this present technique is deterministic [149]. That is, it

allows production of a known and controllable quantum state of (all of) a particular set of

particles, generated at a specified time. Such deterministic entanglement, along with the

ability to store the states so produced, is crucial for large-scale quantum computation.

6.4.2 Creating Multi-Ion Entangled States

The techniques discussed in the last section are useful for producing Bell-type

states. However, they are not readily scalable to more than two ions. Sørensen and

Mølmer [150] have proposed a scheme to produce maximally-entangled states which is

scalable to multiple ions. It is also relatively insensitive to heating of the ions’ motion,

so long as the ions remain in the Lamb-Dicke regime.

This scheme requires one to illuminate all the ions simultaneously with the blue

and red motional sidebands. The original proposal dealt with a two-photon coupling in a

situation where, for example, the carrier would be driven by a single-photon interaction.

In our case, where the carrier and motional sidebands are driven by two-photon transi-

tions, Sørensen and Mølmer’s scheme would require four-photon transitions. This does

not change the basic physical principles of the technique. So, for the sake of simplicity,

I shall use their original case to sketch out the idea of the method.

In order to understand how the technique works, consider the case of two ions.

The situation is sketched out in Fig. 6.12. Here, two ions start out in the state | ↓, ↓, n〉.

Two laser beams illuminate the ions. One is tuned to ω0 + ε, where ε ≈ ωx but ε 6= ωx

(i.e. the levels | ↓, ↑, n − 1〉 and | ↑, ↓, n − 1〉 are used as virtual levels). The other

laser is tuned to ω0 − ε. The basic idea of the scheme is that four different two-photon
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paths exist connecting | ↓, ↓, n〉 and | ↑, ↑, n〉: two which “go through” a virtual level

with n+ 1 phonons and two through a virtual level with n − 1 phonons. In the Lamb-

Dicke regime, the paths which “pass through” the level |n+ 1〉 have coupling strengths

(
√
n+ 1Ωη)2/(ε−ωx) whereas those passing through the |n−1〉 have coupling strengths

(
√
nΩη)2/(ωx − ε) (notice the difference in sign). When the amplitudes corresponding

to the four paths are added up, the n-dependent terms cancel out, leading to an overall

coupling strength

Ωeff =
η2Ω2ωx

2(ω2
x − ε2)

. (6.37)

Thus, the levels | ↓, ↓, n〉 and | ↑, ↑, n〉 are coupled, with no coupling to any other levels.

In particular, levels with different n do not mix (although there is some negligible

probability that the levels used as “virtual levels” will be populated — this is similar

to the case considered in Sec. 3.3). So, as long as the ion is in the Lamb-Dicke regime,

this scheme provides a way to make the Bell states, without requiring ground-state

laser cooling. Furthermore, the technique works for an arbitrary number of ions.7 For

multiple ions, spin-flip transitions are driven between all possible pairs of spins, and this

realizes the desired time evolution [151].

In order to implement this technique experimentally, we added a second double-

pass AOM to the Red Raman beam line (see Ch. 4) so that, with the micromachined

linear trap, we could illuminate two trapped ions on their upper and lower stretch

sidebands at the same time. However, since the interaction strength was proportional

to η2, the interaction times necessary to realize Bell states were quite long. We ran into

problems with fluctuating magnetic fields and with Debye-Waller factors [73] due to

heating of the COM mode: these issues made it quite challenging to realize the coupling

of Eq. (6.37) in a coherent fashion. As we were attempting to deal with these issues, the

two-ion lifetime went down in a dramatic fashion. We hope to attempt the experiments

again in a newly constructed linear trap.
7 For an odd number of ions, an additional carrier pulse is required.
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Figure 6.12: Schematic of the two-photon interaction proposed by Sørensen and Mølmer
to produce maximally entangled states (two-ion case). The ions are equally illuminated
by two lasers, of frequencies ω0 ± ε, where ε ≈ ωx but ε 6= ωx. The two ions’ energy
levels are shown in the triplet/singlet representation, and only the triplet levels are
shown (since the singlet does not couple to the lasers). Two paths between | ↓, ↓, n〉
and | ↑, ↑, n〉 are possible: one path uses |(↑↓ + ↓↑), n + 1〉 as a virtual level, whereas
the other path uses |(↑↓ + ↓↑), n− 1〉. The n-dependencies of the two paths cancel out,
allowing creation of maximally entangled states.



Chapter 7

Quantum Logic with Trapped Ions

Quantum computation, is a relatively new and thus far mostly theoretical field.

It is the result of the marriage of computation theory with physical theory. Many of

the pioneers of classical information and computation theory (such as Shannon, Turing,

Church, and Gödel) considered information in a purely abstract manner. This led to

many insights into the nature of computational complexity [152, 153]: for example,

the role of the binary bit as a fundamental carrier of classical information, the fact

that any algorithm can be implemented in terms of fundamental two-bit logic gates,

the existence of complexity classes for algorithms, and the existence and significance of

universal computing machines (for example, the Turing machine).

However, gradually people began to realize that information is always encoded

in physical systems [37]and, therefore, that physics had an essential role in the theory

of computation. As an example, the consideration of minimum energy dissipation for

computational elements [154] led to considerations of “reversible logic gates,” and the

discovery that they were computationally equivalent to the usual, irreversible logic gates

(e.g. AND, NOR, etc.). On the other hand, it also became apparent that information

theory was a useful point of view for considering physical law. Consider, for example,

the relationship between Shannon information and the physical entropy. As another

example, the realization that it costs no information to store information, but only to
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erase it — an idea which arose in the aforementioned study of reversible logic — offered

a resolution of the paradox of “Maxwell’s Demon” [155].

The idea that “information is physical [37],” along with the realization that com-

putational elements were growing physically smaller, led Deutsch [156] to consider in-

formation elements that were inherently quantum. At the same time the realization

that classical computers could not efficiently simulate quantum systems (because of

the growth of the dimensionality of Hilbert space with system complexity) led Feyn-

man [157, 158] to propose that “quantum computers” might be able to simulate such

systems more efficiently.

The question of efficiency (from the point of view of computer scientists) is one of

how the resources required to implement some algorithm grow with the size of the input

to the algorithm. Note that, from a computational complexity point of view, “resource”

refers both to the number of time-steps required to implement the algorithm and the

amount of physical resources (e.g. logic gates) required to implement it. Although there

are different complexity classes [152], we can obtain some idea of the divisions by noting

that, for example, some algorithms scale as some polynomial of the number N of bits

in the input whereas others scale exponentially with this number. Algorithms in the

latter class are called “computationally hard.” For example, calculating the product of

two numbers scales as a polynomial in the size of the numbers, whereas it is believed

that factoring a given number into its prime factors is a “hard” problem.

This problem of factorization actually lies at the heart of much of the recent

excitement about quantum computation. The computational difficulty of factoring large

numbers lies at the heart of popular data-encryption schemes (such as the RSA [159]

protocol). So, Shor’s [39] extension of Deutsch’s discovery [38] that quantum computers

could efficiently compute algorithms that were “hard” on classical computers caused

quite a stir — Shor discovered a quantum algorithm that could efficiently factorize

large numbers!
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In general, then, quantum computation and quantum information theory deal

with information in a physical and explicitly quantum context. Although the field is

new, it has caused quite a stir in several different contexts. Of course, it is still an open

question as to whether a quantum computer could actually be built (for reasons I will

discuss below). However, quantum computation is significant for several reasons: in

general, I would make the following points.

(1) Classical information theory showed that the difficulty of algorithms was in-

dependent of the particular logic used to implement them. So, for example,

changing the hardware used to compute an algorithm, or using three-state logic

instead of binary logic does not move a problem from being “hard” : (super-

polynomial or exponential in the input size) to “easy” (polynomial in the input

size). However, there are problems which are “hard” on any classical computer

which are “easy” on a quantum computer. This is a revolution in information

theory, and the impact of the concept of quantum computation on information-

theoreticians may be independent of the technical issue of whether we can ac-

tually build a quantum computer in practice.

(2) It appears that much of the “heart” of quantum mechanics (for example, the

collapse or apparent collapse of the wave function) deals with the transfer of

information from subsystem. The new language offered by quantum information

theory may well offer new insights into these issues [42, 43]. Also, a general

quantification of entanglement in many-particle quantum systems is lacking at

present. The language of quantum computation may shed light on the subject.

Again, the significance of this language may well be independent of the question

of whether a “quantum computer code-breaker” can ever be built.

(3) As originally pointed out by Feynman [158], the exponential growth of the

Hilbert space dimensionality in quantum systems makes simulating such sys-
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tems difficult. Quantum computers, if they can be built, could efficiently sim-

ulate other quantum systems. That this may be of interest is indicated by the

recent Nobel prize awarded for advances in the (classical-computer) molecular

dynamics approach to simulating problems in quantum chemistry. Of course,

the question is often asked “why not just measure the actual system, rather

than simulate it on a quantum computer?” The answer, of course, is that

sometimes (e.g. biotechnology) it would be desirable to understand a complex

quantum system before investing in the infrastructure necessary to realize it. A

general-purpose quantum computer could enable this. In other situations (e.g.

QCD), it is not possible experimentally to investigate all regions of a theory’s

parameter space or to change, for example, coupling strengths or interaction

Hamiltonians. In such situations, quantum computers could make significant

contributions. This, of course, would depend on it being possible to construct

a quantum computer!

(4) Finally, quantum computers may enable us to implement important algorithms

which would be infeasible or impossible on any classical computer. For example,

since the best possible (known) classical factoring algorithm scales exponentially

with the size of the number to be factored, factoring a 400-digit number would

require a computer with more atoms than in the universe! On a quantum

computer, it would be possible to factor a number which one could not, even

in principle, factor on a classical computer. Of course, this, too, depends on it

being possible to actually build a quantum computer!

In general, then, I would argue that the field of quantum information theory is

here to stay, in one form or another. However, since I am an experimental physicist, I

shall focus, in this Chapter, on implementing a “trapped-ion quantum computer” along
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the lines proposed by Cirac and Zoller [40]. However, I shall first briefly describe the

basics of quantum computation.

7.1 Quantum Computation

A quantum computer [35, 43, 160], like a classical one, may be considered to

consist of a register of N information-carrying entities which, in correspondence to the

classical case, are referred to as “qubits.” Each qubit is a two level system, with basis

states |0〉 and |1〉, representing logic “0” and logic “1.” However, since the qubits are

quantum systems, they may exist not only in one or the other logic state, but also in

superpositions of the form α|0〉+β|1〉 (with |α|2 + |β|2 = 1). The real power of quantum

computation lies in this superposition property of qubits.

For, given an input register of N qubits, we may prepare the register in a super-

position of all the 2n possible inputs. Furthermore, it is possible to to produce this

superposition (of an exponential number 2N of states) in a linear number of steps. For

example, if our qubits are spins, with | ↓〉 ≡ |0〉 and | ↑〉 ≡ |1〉, and the quantum reg-

ister starts out in the state
∏N

n=0 |0〉, driving π/2-pulse on all the spins produces the

state
∏N

n=0(1/
√

2)(|0〉 + |1〉) ≡ ∑N
r=0 |r〉. In the last term, I have made the symbolic

equivalence between a binary number r and the register state in which the individual

qubits are in the appropriate state for the binary representation of r. Thus, the number

r = 0010 is represented by the four-qubit register state |0010〉. Since it is possible to

efficiently initialize the quantum register in a superposition of all its possible inputs

then, provided that our computation is made up of unitary operations, it is possible to

process in parallel and at once all the possible outputs of the computation.

Of course, any attempt to read out the state of the quantum computer (or perform

any type of non-unitary time evolution) will collapse it into one and only one of the
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possible output states.1 So, as it stands, although a quantum computer may be

massively parallel, we have no way to access and utilize this parallellism. However, we

may use another fundamental quantum property to overcome this obstacle: interference.

Interference between different “computational paths” can enable us to distill information

about global properties of computed functions (such as periodicity) [39, 161] while still

preserving superposition until the very end. And such algorithms may be exponentially

faster to execute than any known classical algorithm for solving the same problem.

To reiterate, although the exact mechanism by which a quantum computer may

be faster than a classical computer is still not fully understood [162], it appears that

this mechanism involves the interplay between “superposition” (in an exponentially

large Hilbert space) and “interference” (which maps joint, or entangled, properties onto

local ones). To obtain some idea of how this works in practice, consider one particular

algorithm which allows a quantum computer to efficiently solve a classically hard prob-

lem: “Simon’s problem” [163]. Although this is somewhat of a “toy” problem, it is an

example of the exponential speedup possible with quantum computers, and one which

illustrates the ideas of quantum computation clearly.2

In Simon’s problem, we are given an unknown function f of N bits, f : {0, 1}N →

{0, 1}N (i.e. f maps N -bit numbers to N -bit numbers). We are told that f is 2-to-1.

We are also told that f has the property that f(x) = f(y) iff y = x⊕ a, where ⊕ is the

bitwise Exclusive-OR operation (addition modulo 2). We are then asked to determine

a. Classically, the best that we can do is to evaluate f for various x, y, . . . until we find

x, y such that x⊕y = a. If, for example, we evaluate f 2N/4 times, then the probability

that x⊕y = a is 2−N for any given x, y, and the number of pairs of function evaluations
1 Here, the phrase “read out the state of the quantum computer” means an attempt to determine

the computer’s logical state: that is, it refers to a qubit-by-qubit measurement in the “logical basis,”
{|0〉, |1〉}

2 I shall follow the treatment given by Preskill [43].
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is (2N/4)2, so that the probability of success (i.e. of finding a) satisfies:

Psuc < 2−N (2N/4)2 = 2−N/2. (7.1)

Thus, the problem is classically “hard,” as the probability of finding a is exponentially

small as a function of N .

However, there exists an efficient quantum algorithm for finding a. Suppose that

we have two, N -qubit quantum registers. We assume that the two registers start out

in the state |0 . . .0〉|0 . . .0〉 (i.e. all the qubits are in the state |0〉). We then apply a

unitary transformation Ĥ called the Hadamard transform to the first N -qubit register.

I will discuss this unitary transformation shortly and, in particular, whether we can

realize it in an efficient and scalable manner. However, for now, it suffices to assume

that we can do so, and to specify it’s matrix representation with respect to the standard,

“computation” basis, {|0〉, |1〉}:

Ĥ ≡ 1√
2

 1 1

1 −1

 . (7.2)

Let Ĥ(N) represent the effect of N such Hadamard transformations acting in parallel

on the N qubits. By applying Eq. (7.2) repeatedly, we can work out that

Ĥ(N)|x〉 =
2N−1∑
y=0

(−1)x·y|y〉 (7.3)

where x ·y = x0y0 +x1y1 + . . .+xNyN (i.e. if we treat the binary numbers in the binary

expansion of x and y as components of a vector, then · is the “dot product” of x and

y). Applying Ĥ(N) to the N -qubit register leaves the quantum computer in the state:

|R〉0 =
1

2N/2

2N−1∑
x=0

|x〉
 |0 . . .0〉, (7.4)

Here, |x〉 represents the state in which each qubit is in the state (|0〉 or |1〉) corresponding

to the appropriate digit in the binary representation of the number x. For example, if

x = 5 = (101)2, then a register of three qubits representing this number would be in

the state |1〉|0〉|1〉.
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Starting in the state |R〉0, we apply the function f (which is given to us) to the

second N -qubit register. Due to the superposition property of quantum mechanics, if

we apply f in a unitary manner, the computer is left in the state:

|R〉′ =
2N−1∑
x=0

|x〉|f(x)〉. (7.5)

Here, we see that the superposition property allows us to compute the function f in a

highly parallel manner: we compute all of its possible values in one computation.

Now, consider what happens if we measure the state of the second register. We

collapse the state of this register into one of the 2N−1 possible values of f(x), say f(x0).

But, since the states of the two registers are entangled, this also collapses the state of

the first register into a superposition of the two possible states corresponding to f(x0):

namely x0 and x0 ⊕ a. That is, the registers are left in the state

|R〉′′ = 1√
2

(|x0〉+ |x0 ⊕ a〉) |f(x0)〉. (7.6)

Here, the collapse of the wave function in the second register has, through the en-

tanglement of the two registers, produced a state in the first register which expresses

information on the “periodicity” of the function f . At this point, since the second

register factors out of the problem, we may ignore it and concentrate only on the first

register.3

The problem now is to extract the information on a from the first register. Of

course, we can’t just measure the state of the register: this would give either x0 or

x0 ⊕ a, but absolutely no information about a! Instead, we may apply Ĥ(N) to the

register again. This produces the state:

Ĥ(N)
[

1√
2

(|x0〉+ |x0 ⊕ a〉)
]

=
1

2(N−1)/2

2N−1∑
y=0

[
(−1)x0·y + (−1)(x0⊕a)·y] |y〉

=
1

2(N−1)/2

∑
a·y=0

(−1)x0·y|y〉, (7.7)

3 In fact, it is possible to execute the algorithm without ever measuring the state of the second
register! However, the ideas behind the algorithm are somewhat more clear if this step is included
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In the last line of Eq. (7.7), I have collapsed the sum according to the following obser-

vation: if a · y = 1, then the two terms in the coefficient of |y〉 interfere destructively, so

that only terms for which a · y = 0 remain. Thus, we have used destructive interference

to extract information about a from the register, since when we measure the state of

the register, we obtain a y for which a · y = 0.

In order to determine a, we run the algorithm O(N ) times, until we have found

N , linearly independent values yi for which a · yi = 0. We then solve the resulting set of

linear algebraic equations to obtain a. This repetition of the algorithm O(N ) times only

adds linearly to the complexity of the solution. Thus, we may solve for a efficiently on

our quantum computer, whereas it is not possible to do so on any classical computer.

To “flesh out” this example a bit, consider the somewhat trivial case in which

N = 2. Suppose that the function f is defined by:

f(00) = 00

f(01) = 01

f(10) = 00

f(11) = 01 (7.8)

(so that a, which we are to determine, is equal to 10). In order to determine a, we start

out with a quantum computer consisting of two, two-qubit registers in the state

|R〉0 = |00〉1|00〉2 . (7.9)

The subscripts label registers 1 and 2. We initialize the computation by applying the

Hadamard transformation to register 1, to put it in a superposition of all its possible

values:

|R〉0 −→ 1
2

(
|00〉+ |01〉+ |10〉+ |11〉

)
1
|00〉2 . (7.10)
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Next, we apply f to the second register, taking the first register’s values as f ’s input.

This leaves the registers in the state

|R〉′ = 1
2

(
|00〉1|00〉2 + |01〉1|01〉2 + |10〉1|00〉2 + |11〉1|01〉2

)
, (7.11)

so that now the states of the two registers are entangled.

A measurement of register 2 collapses the state into one of the possible measure-

ment outcomes — for example, into the state:

|R〉′′ = 1√
2

(
|01〉1 + |11〉1

)
|01〉2 . (7.12)

Now, we discard the second register, and apply the Hadamard transform to register 1,

which results in

Ĥ(2) 1√
2

(
|01〉1 + |11〉1

)
=

1
2
√

2

(
|00〉1− |01〉1 + |10〉1− |11〉1

+ |00〉1− |01〉1− |10〉1 + |11〉1
)

=
1√
2

(
|00〉1 − |01〉1

)
. (7.13)

Note that the two values, x0 = 00 and x0 = 01, both satisfy x0 · 10 = 00. Finally, we

measure the state of register 1, obtaining either the result x0 = 00 or x0 = 01.

In order to determine a, we repeat the above procedure until we obtain the other

value4 of x0. Then, we solve the system of equations

00 · a = 00

01 · a = 00 (7.14)

to obtain a = 10.

In the above example, we see some of the fundamental properties of quantum

computers: the parallel computation of functions allowed through the superposition
4 x0 is either equal to 00 or to 01 in this example, as we may check by running through the example

again, this time assuming that the measurement of register 2 produces the outcome |00〉2 instead of the
state |01〉2 assumed above
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principle, the entanglement of two quantum registers which, through the collapse of the

wave function, selects out certain properties of the function, and the use of destructive

interference to “distill” this information into a form which can be effectively read out.

In essence, the challenge in finding quantum algorithms is to achieve this last point; that

is, to overcome the impediment of wave function collapse by using quantum interference

in a clever way.

As yet, there are few concrete examples of such algorithms. Two of the most

significant are those due to Shor [39] and to Grover [164] (for a pedagogical discussion

of these algorithms, see Ref. [43]). Shor’s algorithm uses quantum interference to find

the period of the function ab(modM) (where M is given and a is a randomly-chosen

number co-prime with M) and uses this information to determine the factors of M. The

resources required scale as a polynomial of the size of M, whereas all known classical

algorithms scale exponentially5 with M. As mentioned above, factoring large numbers

is of great interest to the data-encryption community.

Grover’s algorithm searches a database of qubits for a particular, marked entry.

It is faster than any classical algorithm. However, the classical algorithms themselves

scale as polynomials of the database size, and so Grover’s algorithm does not change

the “complexity class” of the problem.

I have not yet discussed whether it is possible to implement the Hadamard trans-

formation (or the function f) efficiently on a given quantum computer. However, it

may be shown that any unitary transformation on a set of qubits may be modelled to

any desired accuracy by a fundamental set of two-qubit and one- qubit gates [165, 166].

Furthermore, the number of such gates required scales as a polynomial in the desired ac-

curacy. This means that one may use any given quantum computer (with any given set

of basic gates) to simulate any other quantum computer without changing the efficiency

of the algorithms implemented on the two computers (i.e. from “easy” to “hard”).
5 Note, however, that there is as yet no proof that an efficient classical algorithm does not exist.
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Thus, one can construct a “universal quantum computer” in the sense of Turing [152].

Thus, given some set of universal quantum logic gates, we can efficiently implement

both f and the Hadamard transformation. So, as the above example (Simon’s problem)

shows, quantum computers are inherently more powerful than classical ones.

One family of universal quantum logic gates consists of one-qubit rotations and a

two-qubit logic gate: the Controlled-NOT.6 The effects of the Controlled-NOT quantum

logic gate are prescribed by the effects of the gate on the qubit basis states; the effects

of the gate in cases in which the qubits are in superposition states follows by linearity.

Thus, the Controlled-NOT gate is realized by the transformation

|ε1〉|ε2〉 → |ε1〉|ε1 ⊕ ε2〉, (7.15)

where ε1, ε2 are arbitrary elements of the two-dimensional Hilbert space and ⊕ rep-

resents addition modulo 2 (or, if you prefer, the classical Exclusive-OR Boolean logic

operation). Qubit 1 is referred to as the “control qubit” and qubit 2 is referred to

as the “target qubit.” With the Controlled-NOT gate and single-qubit operations, we

may implement any unitary transformation to the required degree of accuracy and thus

perform universal quantum logic.

7.2 Errors and Error Correction

Since quantum computation relies on superposition states, a quantum computer

is extremely sensitive to decoherence, which may be viewed as a measurement performed

by uncontrolled and inaccessible degrees of freedom of the environment [15, 167]. Thus,

decoherence collapses the superposition of qubits and so destroys the massive parallelism

which is at the heart of quantum computation’s power. If we are to build a quantum

computer, then, we must find a system where the detrimental effects of decoherence are

limited.
6 It is interesting to note that, whereas reversible classical logic requires at minimum a three-bit gate

along with single bit operations to form a complete logic family, quantum logic requires only one- and
two-qubit gates
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When the construction of quantum computers was first suggested, it was argued

that no system could be so well-isolated from the environment so as to perform the

number of computational steps required for “useful” quantum computations, without

suffering almost complete loss of coherence [167, 168, 169]. In particular, it was noted

that [169], in atomic systems (such as trapped ions), fundamental physics would prevent

performing coherent gates with a imprecision of less than 10−5 (in fact, these arguments

neglected the possibility of Raman transition, which change the limiting imprecision by

two orders of magnitude — however, a fundamental limit to the precise manipulation

remains, albeit however small). Aside from questions as to the length of “useful” com-

putations, these arguments did not account for the discovery that it is possible to correct

errors in quantum computations.

The discovery of error correction [170, 171] was a great surprise, and one of the

most significant physics insights to arise from quantum information theory thus far. It

is surprising because, in order to correct errors, we have to diagnose them, and this

requires performing a measurement upon the quantum computer. But the effects of a

measurement are to collapse quantum superpositions — which is exactly what we were

trying to avoid in the first place! Furthermore, the “quantum no-cloning theorem” [43,

172, 173] precludes us from copying the state of the quantum computer onto another

set of qubits, which could be measured with impunity. Nonetheless, quantum error

correction is possible. I will briefly describe the ideas behind it here, but the reader

is referred to the excellent recent article in Physics Today by John Preskill [174] for a

more comprehensive treatment.

In fact, the ideas behind error correction in quantum computers are very similar

to those behind classical error correction, with some caveats to respect the laws of

quantum mechanics. So first let us consider how classical error correction works. If

we have some collection of classical bits (each of which can be either in the state 0 or

1), then classical errors correspond to bit flips. In order to protect against such errors,
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we may redundantly encode each bit in several: for example, we may use extra bits to

store the original logical bit “0” as “000.” Then, we can protect against errors in which

a single physical bit flips (i.e. “000”→“010”) by looking at the three bits, performing

a majority vote, and resetting the “disagreeing” bit to the value of the other two. Of

course, this error correction scheme does not protect against errors in which two physical

bits flip, but in practice these errors are much more rare (typically, if the probability of

a single bit flip is ε, then the probability of two bits flipping is ε2).

With qubits, the situation is more complicated. First, we can’t observe the qubit

without destroying the entanglement and superposition which are necessary for quantum

computation’s power. Second, we can’t simply copy the state onto extra qubits, as we

could with the classical bits. Third, there are more types of errors with qubits than

with classical bits. For example, given a qubit in the general state α|0〉+ β|1〉, we may

certainly experience “bit flip” errors α↔ β. But we may also experience “phase” errors

such as β → −β. And, indeed, since we are dealing with a quantum system, we may

experience a continuum of either sort of error: from no error to the “full” errors listed

above. However, by being clever, we can overcome all these issues.

As an example, suppose we only want to protect against amplitude errors (i.e.

the continuum of errors from no error to a complete bit flip). We may circumvent the

“quantum no-cloning theorem” by redundantly encoding the information stored in a

qubit without actually copying it. So, for example, if we want to protect a qubit in the

state α|0〉+ β|1〉 from amplitude errors, we may (using a sequence of Controlled-NOT

gates) produce the state α|000〉 + β|111〉, which is not a “clone” of the original state

(that would be the state (α|0〉 + β|1〉)3). Now, suppose a single error occurs, and the

encoded state becomes α|000〉+ β|111〉+ ε(α|100〉+β|011〉). If we were to measure the

complete state of the encoded qubit, then we would destroy the superposition. However,

we can still extract information about the error by making a partial measurement of the

system; that is, we may measure collective properties of the three-qubit encoded state.
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So, in order to determine whether an error has occurred (and in which qubit), we

may make a measurement to determine whether qubits 1 and 2, 2 and 3, and/or 3 and

1 have the same value. Note that we do not determine the values of any of the qubits,

but only ask whether they are the same or different. Now, assume ε � 1 (this isn’t

necessary, but reflects the probable situation in a practical quantum computer). Since

the error occurred in the first qubit, we will always measure that qubits 2 and 3 are in

the same state. With probability 1 − ε2, our joint measurement of qubits 1 and 2 will

project qubit 1 back into the state where it is identical to qubit 2 (the quantum Zeno

effect [59]). On the other hand, with probability ε2, the measurement will project qubit

1 into a state where it definitely is in the opposite logical state to qubit 2. So in this

case, our joint measurement has turned a very small error into a very large one (the

largest possible amplitude error!). However, this is “not a bug, it’s a feature.” Since we

now know that qubit 1 is opposite to qubits 2 and 3 (but we still don’t know the state of

any of the three qubits), we can apply a unitary transformation to flip the logical state

of the first qubit, restoring the three-qubit system to the state α|0〉 + β|1〉 we started

out in, without ever knowing what exactly that state was.

So, the idea behind quantum error correction is to redundantly encode the logical

information of a single qubit into a system of several qubits. By making measurements

of collective properties of this system, we may make “enough” of a measurement to

determine that an error occurred, and how to correct it. However, we may be careful not

to remove so much information from the quantum system to destroy the superposition

and entanglement necessary for quantum computation. One way of looking at the

situation is to view the extra qubits as an “entropy dump” which holds the extra entropy

put into the quantum system by the measurements made.

The above example treated only amplitude errors. However, one may also simul-

taneously protect against phase errors. One way to do this [170, 174] is to further encode

each three-qubit block (which protects against amplitude errors) into three, three-qubit



159

blocks. By comparing the relative phases of |000〉 and |111〉 among the three “super-

blocks,” we can determine whether a phase error occurred, and in which block. We then

can correct the error much like before.

Thus far, I have discussed ways to correct errors in qubits caused by interac-

tions of the qubits with the environment. However, if the logic gates themselves are

imperfect, we might imagine that this would make the situation hopeless — in trying

to correct the errors, we would add more errors. So the question arises as to whether

it is possible to come up with error correction schemes which also correct for logic gate

imperfections: so-called “fault-tolerant” error correction schemes. The short answer

is “yes” [170, 175, 176, 177, 178]. By using nested blocks of qubits, it is possible to

perform completely faithful quantum computation even in the presence of environmen-

tally induced decoherence and gate errors, given some minimum fidelity of the gates.

This “opening bid” of fidelity lies somewhere between 10−4 and 10−6, depending on the

particular decoherence mechanisms which are most significant. The price to be paid

is an increase in the total number of qubits and gates required to perform quantum

computations (but this increase in resources grows only logarithmically with the num-

ber of steps in the algorithm). There is some possibility that error correction schemes

may exist which require only a fidelity of 10−2 for fault tolerant correction [179], using

“non-concatenated” error correction codes, but ways to perform quantum computation

using such codes have not yet been found.

7.3 Ion Trap Quantum Computers

With the advent of error correction, the question becomes not “can we find a

system with so little decoherence as to allow long quantum computations?” but rather

“can we find a system where the decoherence is below the threshold required for fault-

tolerant error correction?” However, said system must also allow for strong interactions

between different qubits so that logic gates may be implemented. Given the long spin-
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coherence times observed in trapped-ion systems [180] and the success which we have

had in manipulating the spin and motional degrees of freedom of trapped ions (see

Ch. 6), we believe that trapped ions offer some promise, at least as far as building a

rudimentary quantum information processor.

In particular, we are trying to implement a simple quantum computer of sev-

eral qubits, according to the scheme proposed by Cirac and Zoller [40], and examine

the technological feasibility of building even larger quantum computers along the same

lines. In the Cirac-Zoller scheme, the qubits used to store information consist of two

electronic levels of a collection of trapped ions, one qubit per ion. Quantum informa-

tion is exchanged between qubits through two vibrational levels of one mode of the ions’

quantized collective motion in the ion trap. The coupling is provided by focused laser

beams that can individually address each of the ions.

In a slightly modified version of their original proposal, we can imagine a string

of ions trapped in a linear trap. In our case, we may imagine that the motional modes

have been laser cooled to low temperature and that one (say, the stretch mode) has been

laser cooled to its ground state. In order to perform a Controlled-NOT gate between

ions j and k, we illuminate ion j with a laser beam (or laser beams, for stimulated

Raman transitions) on the stretch red sideband. If the ion is in | ↓〉 ≡ |0〉, then this has

no effect, and the stretch mode remains in the state |0〉. On the other hand, if ion j is

in the state | ↑〉 ≡ |1〉, and the interaction is left on long enough to drive a π-pulse, then

the motional mode is left in the state |1〉, while ion j is left in | ↓〉. This interaction

has mapped the spin state of ion j onto the motional state of the entire string, which

is a joint property of all the ions. In this sense, the motional mode plays the role of

a “quantum data bus,” which makes the quantum information stored in one ion’s spin

available to all the other ions.

With the information from ion j transferred to the motional “data bus,” it remains

to implement a Controlled-NOT between the data bus and ion k. In order to do this,
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we may use a third atomic level of k to put a motion- dependent phase onto the spin

state of ion k, as will be described below, in Sec. 7.4. By sandwiching this transition

between two π/2-pulses on the | ↓〉 ↔ | ↑〉 system, we can realize the desired interaction.

Finally, we can restore the spin state of the original ion j and the motional mode by

applying a final π-pulse on the red sideband.

Of course, the question arises as to whether it will be possible to reach the required

levels of accuracy for large-scale quantum computations. We have treated many of the

possible barriers (laser intensity and frequency fluctuations, magnetic field fluctuations,

background electric fields, motional heating, trap imperfections, etc.) in Refs. [73, 111];

see also Refs. [36, 181]. The reader is referred to these articles for such discussion.

In the end, however, there seems to be no fundamental barrier to ion-trap quantum

information processors — as to the technical difficulties which must be overcome, that

seems to be a question best answered by experiment.

7.4 Quantum Logic on One Ion

We have demonstrated a two-qubit “quantum Controlled-NOT” logic gate be-

tween the spin and motional degrees of freedom of a single trapped ion [41] (this is

the important step in the general quantum computation scheme described immediately

above). The qubits in our realization consisted of (i) the two-dimensional subspace of

the motional Hilbert space spanned by the basis states |n = 0〉 and |n = 1〉, and (ii) the

two-dimensional Hilbert space spanned by the basis states | ↓〉 and | ↑〉. If the motional

qubit is the control and the spin the target, then the effect of the Controlled-NOT is to

flip the spin if and only if the motion is in the state |n = 1〉.

In order to realize the Controlled-NOT, we applied the following three Raman

beam pulses:

(1) A π
2 pulse on the carrier transition. By way of example, | ↓〉 → 1√

2
(| ↓〉+ | ↑〉).
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(2) A 2π pulse on the first upper sideband transition between levels | ↑〉 and an

auxiliary level: the 2s 2S1/2|F = 2, mF = 0〉 ≡ |aux〉. This transition couples

| ↑, n〉 and |aux, n−1〉. Due to the formal equivalence between two-level systems

and spin-1/2 particles [2], this 2π rotation in the two-dimensional Hilbert space

spanned by | ↑, 1〉 and |aux, 0〉 changes the sign of the state vector component

in | ↑, 1〉. However, since there is no lower motional state to which |n = 0〉 can

couple, the pulse does not affect the component of the state vector in | ↑, n = 0〉.

Any component of the state vector in | ↓〉 is also unaffected, due to the Zeeman

shift between levels |aux〉 and | ↓〉.

(3) Another π
2 pulse is applied on the carrier, but with a 180◦ phase shift relative

to the first pulse. If there was no component of the state vector in |n = 1〉, then

this simply reverses the effects of the first π
2 pulse. However, due to the minus

sign introduced by Step 2, the transition started by the first pulse is completed

by the second for any component of the state vector which was in |n = 1〉.

The pulse sequence is illustrated schematically in Fig. 7.1(a). The overall effect is the

desired one: the spin of any component of the state vector in the motional state |n = 1〉

is flipped, while the motion is unaffected.

The effect of the Controlled-NOT gate on the computational basis states is shown

in Table 7.1, which lists the probabilities for the various basis states before and after

the gate. Note that a major limitation on the gate’s apparent fidelity was our ability to

accurately prepare the various basis states. This was primarily due to technical sources

of noise (laser beam intensity fluctuations, etc.).

The conditional dynamics which are the heart of the Controlled-NOT gate are

illustrated in Fig. 7.1(b). This figure shows a Ramsey spectrum in which the two π/2-

pulses of the Controlled-NOT gate (steps 1 and 3, above) form the Ramsey zones, and

the conditional dynamics occurs during what would normally be the “dark” period.
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Figure 7.1: (a) Schematic representation of the Controlled-NOT gate. The crucial part
of the gate is the 2π pulse between | ↑〉 and |aux〉 on the upper motional sideband of
this transition. The pulse puts a phase factor of −1 in front of only the part of the
motional wave function that is in | ↑, n = 1〉. This produces the conditional dynamics
necessary for the quantum logic gate. (b) Ramsey spectra of the Controlled-NOT (CN)
gate. The detuning of the Ramsey π/2 pulses of the gate is swept, and P↓ is measured.
The filled circles correspond to initial preparation in the | ↓, n = 0〉 state and the open
circles to preparation in the | ↓, n = 1〉 state. The resulting patterns are shifted in phase
by π radians, indicating the conditional dynamics of the gate. Similar curves result for
preparation in the other two basis states.
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Table 7.1: Effect of the Controlled-NOT three-pulse sequence
π/2(carrier),2π(aux,RSb),−π/2(carrier) on the computational basis states. The
initial state probabilities differ from 1 and 0 due to state preparation imperfections.
The further decline in state probabilities in the “Final State” column is due to imper-
fections in the gate operations. Nonetheless, with high probability, the Controlled-NOT
gate preserves the value of the control qubit (the motional state |n〉, and flips the target
qubit (the spin) if and only if n = 1.

Initial State Final State
P(n = 1) P(↑) P(n = 1) P(↑)
0.02 0.01 0.09 0.16
0.03 0.99 0.04 0.88
0.92 0.05 0.77 0.88
0.94 0.98 0.88 0.19

The solid circles show the Ramsey fringes for the case when the ion started out in | ↓〉

and in the motional state |n = 0〉: in this case, step 2 had no effect. The hollow circles

show the fringes when the ion started out in the state | ↑, n = 1〉: in this case, the

conditional dynamics were in effect, and caused the π radians phase shift with respect

to the previous case. Similar fringes resulted when the ion was prepared in the other

two computational basis states.

7.4.1 Simplified Controlled-NOT Gate

As pointed out in Ref. [182], it is not necessary to use a third atomic level to

realize a Controlled-NOT between the spin and motional degrees of freedom. Instead,

we may use the nonlinear corrections to the Rabi frequencies discussed in Sec. 3.2. To

do this, we set the Lamb-Dicke parameter η so that the n-dependent carrier frequencies

(on the 90◦ carrier) result in a 2π-pulse for one motional level when a π-pulse is driven

on the other. For example, we have from Eq. (3.12) that

Ω0,0 = Ωe−η2/2 (7.16)

but that

Ω1,1 = Ωe−η2/2(1− η2). (7.17)
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If we choose η = 0.707, then Ω0,0 = 2Ω1,1 and so the carrier flips the ion’s spin if its

motion is in the state |1〉 but only adds a trivial phase factor if the motional state is |0〉.

This realizes an effective Controlled-NOT gate (up to phase factors) without the need

for an auxiliary level. On the other hand, specific operating conditions (η) are required

for the trap. Other schemes have been proposed [183, 184] which do not require specific

values of η but which do require more laser beams and/or higher-order transitions.

7.5 Quantum Logic on Multiple Ions

As mentioned in Sec. 6.4, the next logical step in trying to reach a quantum

computer is to implement a gate between two ions. But, for the reasons discussed in

that section, we have not yet done this. However, we expect that a two-ion gate will

be demonstrated in the near future, most likely in a new version of the micromachined

linear trap.

It is worth noting that, for two ions, the techniques used to create the Bell states

(Sec. 6.4) can be used to implement a quantum logic gate [49]. To do this, we displace

the two ions in an rf trap such that one ion experiences no micromotion (J0(0) = 1 6=

0), whereas the other one satisfies ΩJ0(|δk| · xµ0,i) = 0 (see Eq. 6.34) and following

discussion). In this configuration, laser-driven transitions near the carrier are only

driven on the first ion. In order to allow transitions for the second ion, we may drive

near the first upper or lower rf sideband. In this case, the zeroth-order Bessel functions

are replaced by J1(0) = 0 and J1(|δk| · xµ0,i) 6= 0, so that now the second ion interacts

with the lasers while the first does not. However, it is not immediately clear how to

apply a similar technique to more than two ions.

One step we have taken towards implementing multi-ion logic is demonstrating the

preservation of spin coherence while moving ions back and forth in the linear trap using

electric fields. Although the insensitivity of the spin degree of freedom to ion motion

(in the absence of motional sideband interactions) is hardly surprising it is, nonetheless,
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reassuring to observe this. Some implementations of quantum logic in ion traps [73]

may require moving ions back and forth between “storage areas” and “accumulators,”

in which quantum logic operations are performed between small numbers of qubits. In

order to demonstrate the spin coherence, we performed a traditional Ramsey experiment

(Sec. 3.4) on a single, trapped ion. Between the two Ramsey zones, we changed the

voltage on the trap rods to move the ion along the z-direction some distance, and then

back to its starting point. This process did not significantly degrade the contrast of the

Ramsey fringes.

By shining a second, off-resonant laser beam into the trap at the position of the

translated ion, we were able to map out this second laser beam’s profile, by measuring

the Ramsey fringe shift due to the AC Stark effect. Fig. 7.2 shows the phase shift

as a function of the displacement of the ion into the laser beam. This “laser beam”

profiler indicates the approximately Gaussian beam profile at the trap. Note that the

measurement occurs with negligible probability that the ion actually absorbs a photon

from the second beam. The beam profile information is mapped onto the ion’s spin.
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Figure 7.2: “Interaction-free” laser beam profiler. A traditional Ramsey experiment is
performed on a single ion confined in the micromachined linear ion trap. In between the
Ramsey zones, the trap voltages are changed so as to translate the ion into a second,
nearby laser beam. By measuring the AC Stark shift phase shift of the Ramsey fringes,
we can determine the second beam’s profile. Note that there is negligible probability
that the ion absorbs a photon from the second beam.



Chapter 8

Reservoir Engineering

As we have seen, decoherence in our system is undesirable, inasmuch as it limits

our ability to perform quantum state engineering and quantum logic operations. In

order to do large-scale quantum computation, we must understand the sources of de-

coherence and be able to reduce them, at least to the levels where fault-tolerant error

correction becomes possible. However, the general phenomenon of decoherence (nebu-

lous though this title may be) is of interest in itself. The entanglement of a quantum

system with inaccessible and/or uncontrollable degrees of freedom of the environment

has attracted much attention [15] as a possible way of explaining how the microscopic

world described by quantum mechanics transforms to the macroscopic world which we

appear to inhabit. In particular, in the macroscopic world there seems to be no evi-

dence of the superposition and entanglement behaviours which lie at the very heart of

quantum mechanics.

It is therefore desirable to be able to study decoherence in a well-controlled man-

ner. Since our trapped-ion system exhibits controllable coherent behaviour of two cou-

pled basic quantum systems, it offers a “test bed” for examining various aspects of

system-reservoir interactions leading to decoherence. Recently, we have been able to

study the interaction of the ion motion with various electric-field configurations which

produce theoretically well-understood reservoir interactions. Since the harmonic oscil-

lator is often the “system of choice” for theorists (due to its simple nature), it is partic-
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ularly easy to draw the correspondence between experiment and theory in this system.

Furthermore, the control we have over the harmonic oscillator coupling to other degrees

of freedom (see Ch. 3) allows us to explore a large region of the “parameter space”

described by different theories.

In particular, we have been able to realize so-called “amplitude, “phase,” and

“zero temperature” reservoir interactions with the ion’s motion. In this chapter, I will

briefly overview some of the theoretical background on reservoir interactions and deco-

herence theory and then discuss the experiments which realized the particular reservoir

interactions listed above.

8.1 Reservoir Interactions and Decoherence

Schrödinger’s equation is the fundamental equation of quantum mechanics: it de-

scribes the time evolution of a closed quantum mechanical system. In general, however,

quantum systems are not closed: all systems which we can ever encounter in the real

world are coupled to other parts of that real world, however weakly. 1 In essence,

this coupling provides a route for (partial) information about the quantum state of the

system under consideration to “leak” into the “rest of the world.” If we perform mea-

surements on only the subsystem under consideration, this loss of information results

in a loss of coherence.

One way to model the effects of this leak of information to uncontrollable and

inaccessible degrees of freedom is through a “master equation” for the density matrix

of the quantum system of interest. We may follow the approach of Carmichael [185]

and others [124, 186] in order to derive a general master equation. Consider a quantum

system S which interacts with its environment. I will refer to the environment as R,

which stands for “reservoir:” this highlights the idea that the environment has very
1 One may, perhaps, consider the entire universe as a closed quantum system. However, no matter

how stimulating this may be, we will certainly never have experimental access to the entire universe!
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many degrees of freedom and that, though the environment may have a large effect

on the system S, the system will have very little effect on the overall state of the

environment.

The overall Hamiltonian for the two, coupled quantum systems (S and R), is

Ĥ = ĤS + ĤR + ĤSR. (8.1)

Here ĤS and ĤR are the free Hamiltonians of the system and reservoir, respectively (in

the absence of any coupling between the two). ĤSR represents the coupling between S

and R. In general, ĤSR will have the form:

ĤSR = h̄
∑

i

ŝiΓ̂i , (8.2)

where the ŝi are operators which act only in the Hilbert space of the system and the Γ̂i

are operators which act only in the Hilbert space of the reservoir (environment). The

sum is over all the different parts (modes) of the environment: typically this sum is

taken to be infinite. As a concrete example, in the case of the damping of a harmonic

oscillator system’s amplitude into a reservoir of harmonic oscillators, we will may take

ŝ1 = â,ŝ2 = â†, Γ̂1 =
∑

i κ
∗
i b̂

†
i , and Γ̂2 =

∑
i κib̂i, where b̂i, b̂

†
i are the lowering and raising

operator of the reservoir mode harmonic oscillators. We will return to this model later.

Let the complete density matrix for S ⊕R be χ̂(t), and

ρ̂(t) = trR[χ̂(t)] (8.3)

be the reduced density operator of the system alone. The goal is to determine an

equation of motion for ˆρ(t), since this is the state which we actually wish to, and are

able to, measure.2 The result of a measurement of a system operator Ô, which is given

by 〈Ô〉 = trS⊕R[Ôχ̂(t)] = trS{ÔtrR[χ̂(t)]} = trS[Ôρ̂(t)], depends only on ρ̂(t) and not

on the complete density matrix χ̂(t).
2 Even if we wished to measure the state of the environment R, we would not be able to completely

determine the complete state of the rest of the universe! Thus, we cut our losses and concentrate on
what we can measure.
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In an interaction picture defined by Û(t) = exp[i(ĤS + ĤR)/h̄], the equation of

motion for the complete (interaction- picture) density matrix is given by:

˙̂χ
′
=

1
ih̄

[Ĥ ′
SR(t), χ̂′], (8.4)

where Ĥ ′
SR is the interaction-picture coupling Hamiltonian.3 Eq. (8.4) may be pertur-

batively solved [185, 124]. First, we may formally integrate the equation and plugging

the result back into Eq. 8.4:

χ̂′(t) = χ̂′(0) +
1
ih̄

∫ t

0
[Ĥ ′

SR(t̃), χ̂′(t̃)] dt̃ (8.5)

⇒ χ̂′(t) =
1
ih̄

[Ĥ ′
SR(t), χ̂′(0)]− 1

h̄2

∫ t

0
[Ĥ ′

SR(t), [Ĥ ′
SR(t̃), χ̂′(t̃)]] dt̃. (8.6)

By tracing over this equation, we will obtain the reduced density matrix for the system

alone. Assume that, at time t = 0 (before the system-reservoir coupling is turned

on), the system and reservoir are uncorrelated: χ̂(0) = ρ̂(0)R̂0, where R̂0 is the initial

reservoir density matrix. If we assume that trR{Ĥ ′
SR(t)R̂0} = 0, then the first term in

Eq. (8.6) drops out in tracing over the reservoir. This is the case if reservoir operators

Γ̂i have expectation values of zero in the state R0: we may always make this so by

including the term trR{ĤSRR̂0} in the system Hamiltonian. Thus, the trace over the

reservoir modes (with the above assumptions about the initial conditions), yields:

˙̂ρ
′
= − 1

h̄2

∫ t

0
trR

{
[Ĥ ′

SR(t), [Ĥ ′
SR(t̃), χ̂′(t̃)]]

}
. (8.7)

This equation is still exact: we have made no approximations in arriving at it.

However, in general it exhibits an exceedingly complicated time dependence. Indeed,

although the system and reservoir are assumed to be uncorrelated initially, (i.e. the

t = 0 density matrix factorizes) the interaction ĤSR causes them to become correlated

at later times. This makes the problem very difficult to solve exactly. However, Eq. (8.7)

is in a form which makes an iterative, perturbative solution relatively straightforward.
3 As in Ch. 3, I will use a prime to denote interaction-picture operators
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If we assume that the coupling between the system and the reservoir is very

weak, then we may make a perturbative expansion of the complete density matrix in

the coupling ĤSR:

χ̂′(t) = ρ̂′(t)R̂′(t) +O(ĤSR)

= ρ̂′(t)R̂0 +O(ĤSR). (8.8)

In writing the second line in Eq. (8.8), I have replaced R̂′(t) with R̂0, the initial reservoir

density matrix. The reasoning behind this is that R is so large that the coupling to S

should have negligible effect on R. Another way of stating this is that the back-action

on R of the coupling is negligible.

Now we may make a simplifying assumption: the “Born approximation” [2, 124].

This involves dropping the higher order terms in the expansion of χ̂′(t) and substituting

this approximation into Eq. (8.7). This gives us that

˙̂ρ
′
= − 1

h̄2

∫ t

0
trR

{
[Ĥ ′

SR(t), [Ĥ ′
SR(t̃), ρ̂′(t̃)R̂0]]dt̃

}
. (8.9)

The Born approximation simplifies the equation of motion for the system density

matrix somewhat, but Eq. (8.9) is still a complicated equation. In particular, the

integral involves the value of the density matrix at all times from 0 to t. Thus, the

time evolution of ρ̂′ exhibits “memory” of its state at all previous times, which makes

solving for the evolution very difficult. However, for many systems, it is possible to

make a second approximation, the “Markoff approximation,” and replace ρ̂′(t̃) by ρ̂′(t)

under the integral sign. This is possible because the integrand also contains terms with

Ĥ ′
SR evaluated both at t and at t̃. Depending on the properties of the reservoir, the

integrand may then be negligible except when t̃ = t.

To be more specific, let us plug in the explicit form for Ĥ ′
SR(t) from Eq. (8.2)

(transformed into the interaction picture). Then, Eq. (8.9) becomes:

˙̂ρ
′

= −
∑
{i,j}

∫ t

0
trR

{
[ŝ′i(t)Γ̂

′
i(t), [ŝ

′
j(t̃)Γ̂

′
j(t̃), ρ̂

′(t̃)R̂0]]
}
dt̃
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= −
∑
{i,j}

∫ t

0

{
[ŝ′i(t)ŝ

′
j(t̃)ρ̂

′(t̃)− ŝ′j(t̃)ρ̂′(t̃)ŝ′i(t)]〈Γ̂′
i(t)Γ̂

′
j(t̃)〉R

+ [ρ̂′(t̃)ŝ′j(t̃)ŝ
′
i(t)− ŝ′i(t)ρ̂′(t̃)ŝ′j(t̃)]〈Γ̂′

j(t̃)Γ̂
′
i(t)〉R

}
dt̃ . (8.10)

In this equation, I have written:

〈Γ̂′
i(t)Γ̂

′
j(t̃)〉R = trR{R0Γ̂′

i(t)Γ̂j(t̃)}

〈Γ̂′
j(t̃)Γ̂

′
i(t)〉R = trR{R0Γ̂j(t̃)Γ̂′

i(t)}, (8.11)

which are the correlation functions of the reservoir, and used the fact that the trace

operation is invariant under cyclic permutations of its argument. For many reservoir

systems, the high density of reservoir states causes these correlation functions decay

very rapidly. If this happens on a time scale short compared to the time evolution

of ρ̂′, then we may replace the (non-zero) correlation functions in Eq. (8.11) by delta

functions:

〈Γ̂′
i(t)Γ̂

′
j(t̃)〉R → cijδ(t− t̃)

〈Γ̂′
j(t̃)Γ̂

′
i(t)〉R → cjiδ(t− t̃) (8.12)

(where the cij’s are constants of proportionality). Then Eq. (8.10) becomes:

˙̂ρ
′

=
∑
{i,j}

{
cij[ŝ′i(t)ŝ

′
j(t)ρ̂

′(t)− ŝ′j(t)ρ̂′(t)ŝ′i(t)]

+ cji[ρ̂′(t)ŝ′j(t)ŝ
′
i(t)− ŝ′i(t)ρ̂′(t)ŝ′j(t)]

}
. (8.13)

This is the general master equation in the Born-Markoff approximation. Particular

cases are obtained by choosing particular ŝi’s and Γ̂i’s.

I shall go on, in the next few sections, to discuss particular realizations of the

master equation in our experiment. However, first, a few general comments on the

above derivation are in order. This first comment is that this derivation was general:

it dealt with the system and the reservoir modes in an explicitly quantum mechanical

and somewhat abstract manner. The coupling Hamiltonian ĤSR was written down
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in a general (though linear) form in Eq. (8.2) without specifying the particular system

operators ŝi or the reservoir operators Γ̂i, and this general form was propagated through

the entire derivation leading up to Eq. (8.13). However, careful examination of the steps

leading to this equation shows that the quantum properties of the reservoir operators

were never actually used in achieving the final result! The only place where the quantum

nature of the reservoir becomes apparent is in writing down the C-number correlation

functions in Eq. (8.11), which are specifically ordered pairs of the Γ̂i’s. In this case, the

constants of proportionality, ci,j, in Eq. (8.12) may depend on the particular reservoir

operators which are coupled to the system. However, since Eq. (8.12) evaluates to a

constant C-number, this information only feeds into the master equation in a parametric

sense.

In this sense, the master equation describes quantum and “classical” reservoirs

equally well! In essence, this comes about because of the approximations made in de-

riving the master equation: in particular, tracing over the reservoir states and making

the Born and Markoff approximations. In making the Born approximation, we essen-

tially ignore higher-order correlations in the reservoir, and in taking the trace over the

reservoir state, we are reducing any functional dependence of the system reduced den-

sity matrix on the reservoir to a c-number. The Markoff approximation reduces the

C-number’s functional form to a constant value. Because of these assumptions, the

functional form of the master equation always remains the same: the most that a “non-

classical” reservoir (e.g. a squeezed reservoir [124]) can “do” is to force the solutions of

the equation into a region of parameter space that could never be explored by a system

coupled to a classical reservoir.

8.1.1 Beyond the Master Equation

The idea of considering our quantum system as coupled to uncontrollable and

inaccessible degrees of freedom of the “rest of the universe” marked the beginning of the



175

path which led to the master equation (in the Born-Markoff approximation). However,

this idea has more general applications than just as a derivation of the master equation.

Since these applications seem to be of some current interest, I will briefly touch on two

of them.

Again, the idea is that the complete time evolution of the system plus reservoir

is unitary, and governed by Schrödinger’s equation. However, since we do not have in-

formation about the reservoir, we must (according to the usual prescription of quantum

mechanics) trace over this part of the composite system, which leads to (apparently)

non-unitary time evolution of the system considered by itself. Thus, an initial density

matrix ρ̂(t = 0) with trS{ρ̂2} = 1 evolves into a density matrix with trS{ρ̂2} < 1. How-

ever, we may still describe the system by a density matrix. Thus, although the time

evolution is not described by a unitary operator, it is still described by a linear mapping,

which maps linear operators to linear operators [43]. Such a linear mapping is referred

to as a “superoperator.” In particular [43, 187], we may express a superoperatorM as

M(ρ̂) =
∑

k M̂kρ̂M̂
†
k , where the operators M̂k satisfy

∑
k M̂

†
kM̂k = 11s.

In general, the evolution produced by this superoperator does not admit a de-

scription in terms of a differential equation. Such a description is only possible if the

time evolution is local in time: i.e. Markovian. In this case, the reservoir (environment)

does not retain a memory of the correlations between itself and the system, and so

this information cannot “leak” back into the system. In this case, the dynamics of the

system alone can be described by the master equation which we derived above.

In keeping with the operator/superoperator point of view, one often introduces a

linear operator called the “Lindbladian.” Given the Schrödinger equation,

˙̂ρ = −i/h̄ [Ĥ, ρ̂], (8.14)

we may formally solve to obtain

ρ̂(t) = e−iĤt/h̄ρ̂(0)eiĤt/h̄. (8.15)
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We say that the Hamiltonian operator Ĥ generates the time evolution. In the same way,

for the non-unitary time evolution of a system in contact with a reservoir, one writes:

˙̂ρ = L[ρ̂] (8.16)

ρ̂(t) = eLt[ρ̂] (8.17)

and says that the linear operator L, called the “Lindbladian,” generates the superop-

erator exp(Lt) which produces the time evolution. One then re-expresses the master

equation, Eq. (8.13), as:

˙̂ρ
′

= L[ρ̂′]

= −
∑
{i,j}

{
cij[ŝ′i(t)ŝ

′
j(t)ρ̂

′(t)− ŝ′j(t)ρ̂′(t)ŝ′i(t)]

+ cji[ρ̂′(t)ŝ′j(t)ŝ
′
i(t)− ŝ′i(t)ρ̂′(t)ŝ′j(t)]

}
. (8.18)

In this context, the operators ŝ′i are often referred to as “Lindblad operators.”

This more general context allows for treatment of arbitrary system-environment

interactions. Indeed, in all cases, the time evolution is described by a “master equation”

(non-local in time!) similar in form to Eq. (8.10) [188]. Analysis of this equation shows

that, in general, system-reservoir interactions are characterized by “pointer bases” of the

system’s Hilbert space. A pointer basis state is invariant under the effects of the system-

reservoir coupling Hamiltonian [15, 188, 189]. (We shall see some examples of pointer

bases in the next few sections). Besides providing a convenient basis for analyzing the

system dynamics, the general existence of a pointer basis regardless of the particular

details of the system-environment interaction may help to resolve the apparent conflict

between a quantum description of the world and our everyday, macroscopic experiences.

This conflict is illustrated by the example of “Schrödinger’s cat” (see Sec. 6.2.1).

Although quantum mechanics generically allows for the existence of superpositions, we

never see evidence for them on the macroscopic level. However, a general analysis of

system-reservoir interactions [15, 188, 189, 190, 191, 192] indicates that the pointer
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basis, which is often determined by the system operators appearing in the coupling

Hamiltonian [188], forms a “preferred basis.” When the density matrix is expressed in

this basis, one finds (as we shall, below) that the off-diagonal terms of the density matrix

vanish as an exponential in the square of the “size” of the superposition (e.g. the square

of |m− n|, where the density matrix elements are ρm,n). Since these off-diagonal terms

are responsible for the interference effects which are the hallmark of superpositions [8],

we never see macroscopic evidence of superpositions. Very often, the pointer states are

position eigenstates, which may explain why position is a “good” classical observable.

However, in some cases, energy eigenstates form the pointer basis [188]. This approach

to the microscopic/macroscopic boundary is one of many, and many of its details are

still being worked out. Nonetheless, it does seem to offer an attractive solution to the

lack of interference effects on the macroscopic level.

In any event, the master equation, Eq. (8.13), allows us to make quantitative

predictions for the behaviour of the density matrix elements for various forms of system-

reservoir coupling. I will now examine some of these cases.

8.2 Phase Reservoir

A relatively simple example of the master equation occurs for the case of a har-

monic oscillator of frequency ωz (system) coupled to an infinite number of other har-

monic oscillators (environment/reservoir) with a “phase damping” coupling [193]4 :

ĤSR =
∑
k

h̄(κ∗kb̂
†
k + κk b̂k)â†â

= h̄(Γ† + Γ)â†â, (8.19)

Here, the b̂k, b̂
†
k are the lowering and raising operators for the kth reservoir mode and Γ̂

is defined implicitly in the apparent manner. Making the connection with the derivation

in Sec. 8.1.1, we identify ŝ1 = ŝ2 = â†â, Γ̂1 = Γ† =
∑

k κ
∗
kΓ̂†, and Γ̂2 = Γ =

∑
k κkΓ̂.

4 Other authors (such as Ref. [185]) use a different system-reservoir coupling: ĤSR =
∑

k
h̄κk b̂

†
k b̂lâ

†â.
This leads to the same master equation.
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The reservoir is usually assumed to be in a thermal distribution at temperature T , so

that

R̂0 =
∏
k

(
1− e−h̄ωk/kBT

)
e−h̄ωk b̂†

k
b̂/kBT . (8.20)

This leads to the reservoir correlation functions:

〈 Γ̂† ′ (t) Γ̂† ′ (t̃)〉R = 0 (8.21)

〈 Γ̂† ′ (t)Γ̂′(t̃)〉R =
∑
k

|κk|2N (ωk, T )eiωk(t−t̃) (8.22)

〈Γ̂′(t) Γ̂† ′ (t̃)〉R =
∑
k

|κk|2
[
N (ωk, T ) + 1

]
eiωk(t−t̃) (8.23)

〈Γ̂′(t)Γ̂′(t̃)〉R = 0 , (8.24)

where

N =
e−h̄ωz/kBT

1− e−h̄ωz/kBT
(8.25)

is the average occupation number of the reservoir mode k.

If we plug in from Eqs. (8.25) for the reservoir correlation functions and replace

the sum over the reservoir modes by an integral, with density of states g(ω), then

Eq. (8.10) becomes:

˙̂ρ
′

= −
∫ ∞

ω=0

∫ t

τ=0{
2[n̂2ρ̂′(t̃− τ)− 2n̂ρ̂′(t̃− τ)n̂+ ρ̂′( ˜t− τ)n̂2] g(ω)|κ(ω)|2N (ω, T )eiωτ

[n̂2ρ̂′(t̃− τ)− 2n̂ρ̂′(t̃− τ)n̂ + ρ̂′(t̃− τ)n̂2] g(ω)|κ(ω)|2eiωτ
}
dt̃ dω . (8.26)

In Eq. (8.26), τ .= t − t̃. However, the time scales of interest to us are much longer

than the time scales over which the time integrand has appreciable values. To see this,

assume that κ(ω) and g(ω) are constant in Eq. (8.26). Then the integrals are just the

Fourier transform of the function N(ω, T ); at room temperature, the relevant reservoir

time scales are on the order of 10−14 s, much faster than the microsecond time scales of

interest in our experiments. With this in mind, we can replace t−τ with t in Eq. (8.26)

(the Markoff approximation). This is sometimes referred to as “coarse graining.”
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When we make this replacement, we obtain the master equation for the density

matrix:

˙̂ρ
′
(t) = −A[n̂2ρ̂′(t)− 2n̂ρ̂′(t)n̂+ ρ̂′(t)n̂2]

+ −2B[n̂2ρ̂′(t)− 2n̂ρ̂′(t)n̂+ ρ̂′(t)n̂2] , (8.27)

where

A =
∫ ∞

ω=0

∫ t

τ=0
g(ω)|κ(ω)|2eiωτ dt̃ dω (8.28)

B =
∫ ∞

ω=0

∫ t

τ=0
g(ω)|κ(ω)|2eiωτN(ω, T ) dt̃ dω (8.29)

(8.30)

Again recognizing the separation of time scales between the reservoir correlation times

(significant values of τ) and the system evolution (significant values of t), we can extend

the time integral to +∞ in Eqs. (8.30). When we do this, the integrals can be expressed

as Dirac delta-functions in frequency. We also end up with terms containing the Cauchy

principal values of the integrands, but these correspond to small shifts of the harmonic

oscillator frequency [185] (analogous to the Lamb shift), and can be absorbed into this

frequency. Tying all this together, we finally obtain the master equation for a harmonic

oscillator coupled to a reservoir with a phase-damping coupling:

˙̂ρ
′
= κ

(
â†âρ̂′â†â− 1

2
(â†â)2ρ̂′ − 1

2
ρ̂′(â†â)2

)
, (8.31)

where κ = 6πg(0)|κ(0)|2 is the effective coupling strength.

This master equation is straightforward to solve, if we express the density matrix

in the Fock state basis: ρ̂′ =
∑

n,m ρ′nm|n〉〈m|. In this case, using the properties of the

number operator n̂ = â†â, we have that

ρ̇′nm = κ

(
nm − 1

2
n2 − 1

2
m2
)
ρ′nm

= −1
2
κ(n−m)2ρ′nm. (8.32)
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Thus, the density matrix is given by:

ρ′nm(t) = ρnm(0)e−
1
2
κ(n−m)2t. (8.33)

So, for example, if we make states such as |ψp〉 = (|n〉+ |m〉)/√2, then the coherences

should decay like e−κ(n−m)2t/2. Note that the diagonal elements suffer no decay at all.

For this reservoir coupling, then, the Fock states play the role of a pointer basis5 .

When the density matrix is expressed in this basis, the diagonal elements do not decay,

but the off-diagonal elements do. Furthermore, superpositions of widely different Fock

states (i.e. “mesoscopic” superpositions) suffer extremely rapid decay of the coherences.

Thus, “mesoscopic” superposition states quickly decay to mixtures.

In order to observe the effects of the coupling to the reservoir, we prepared “cat-

like” states of the form |s〉(|n〉+ |m〉)/√2 (where |s〉 ∈ {↓, ↑}) as discussed in Sec. 6.1.2.

For example, the state | ↓〉(|0〉+ |2〉)/√2 was prepared by first performing a π/2-pulse

on the blue sideband, then performing a π-pulse on the red sideband. After allowing

the state to interact with a phase reservoir (see below), we then reversed the state

preparation. Thus the experiment consisted of preparing a superposition state, allowing

the state to interact with the environment for some period of time and then reversing

the superposition. In this respect, it resembled a Ramsey experiment (see Sec. 3.4).

Indeed, by sweeping the frequency of the π/2- pulses, we could sweep out Ramsey

fringes. Decoherence which occurred in between the two “Ramsey zones” (superposition

creation and reversal) reduced the contrast of the Ramsey fringes.

At each frequency, we repeated the experiment ≈ 100 times and measured the

average cycling-transition photon counts, to build up a Ramsey curve. Since the Ramsey

experiment connected the motional states |n〉 and |m〉, it was sensitive to the off-diagonal

5 In general, the “ideal” pointer states are eigenstates of system operators ÔS , where [ĤSR, ÔS] = 0.
In this case, the pointer basis is exactly the Fock state basis. For the case of amplitude coupling, which
we shall treat below, the coherent states are an approximate, but not exact, pointer basis.
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motional density matrix elements ρnm. From the treatment above, we would then expect

the contrast of the Ramsey fringes to scale as exp[−κ(n−m)2tres/2].

The effect of a phase reservoir is to cause a random change in the ion’s motional

phase without affecting the ion’s eigenstate distribution. One way to realize such an

interaction is to change the trap frequency in a random fashion: this causes the time

evolution operator Û(t) = ein̂ωzt → ein̂(ωz+δω)t/h̄. If the trap frequency is changed for a

time tres, then the resultant phase shift in the ion’s wave function is given by:

δφ =
∫ tres

0
δω dt. (8.34)

We changed the trap frequency by applying a noisy voltage to one of the middle

segments of the linear trap’s electrode structure, for a time tres = 20 µs in between the

Ramsey zones. This produced a field gradient at the ion which, according to Eq. (2.54),

altered the trap frequency. We ensured that the trap frequency change was adiabatic

by filtering the noise: the noise source was a 10 MHz white noise source, which was

then filtered to produce a spectrum which was flat from ≈ 1− 100 kHz, then rolled off

at 18 dB/octave 6 . This filtering was necessary to reduce the frequency components at

ωz, which would have excited the ion’s motion (see Sec. 6.1.3). From studying the axial

trap frequency as a function of static voltage applied to the trap electrodes, we knew

that the shift in the trap frequency was 90 kHz/V, so that the expected phase shift for

an applied voltage shift δV was:

δφ = (90 kHz/V)
∫ 20 µs

0
δV dt. (8.35)

Although one may use the master equation approach to deal with this situation,

it is also possible to use a semi-classical model to predict the behaviour of the ion’s

motion in this situation. Since the trap change was adiabatic, we may view the trap

strength as essentially constant in each shot of the experiment, but random from shot
6 Additional filtering was provided by the filter network on the trap electrode structure (see

Sec. 2.4.2).
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to shot. The phase shift due to the differing trap strength resulted in an additional

phase eiδφn on the Fock state |n〉. Thus, the effect of the changed trap strength was to

produce a phase shift eiδφ(n−m) in the cat-like state |s〉(|n〉+ |m〉)/√2, which varied in

a random fashion from shot to shot of the experiment. This phase mapped onto the

Ramsey fringes, which, when averaged over the random voltage change, caused a loss of

Ramsey fringe contrast. Applying this averaging procedure, one finds that the Ramsey

fringe contrast should degrade exponentially in (n−m)2.

The exponential in the square of the Fock state difference is the same as predicted

by the master equation approach. In this case, the behaviour of the reservoir is classical,

and so there is a semi-classical treatment of the interaction which exactly mimics the

behaviour of the master equation (and vice-versa!). This is an example of the generality

of the master equation approach, as discussed following Eq. (8.13). One might object

that each individual experiment was describable by a state vector (i.e. unitary time

evolution) and, therefore, that the situation is not one described by the master equation.

However, the experiments as a whole represented an ensemble of identically prepared

quantum systems, which correspond to a density matrix. In fact, any (non pure-state)

density matrix admits any number of interpretations as an ensemble preparation [43,

187]. The behaviour of the ensemble as a whole is irrespective of the particular details of

how the ensemble was realized. So the master equation is also an appropriate description

of the experiment.

Of course, in principle, we could have measured the (classical) electric field gra-

dient in each shot of the experiment, and applied a calculated phase shift to that data

point, to reconstruct the Ramsey fringes with 100% contrast even in the presence of the

noisy electric field. But, in fact, we did not do this and, as pointed out by Preskill [43]

(for example), the situation where we have a quantum system considered by itself and

one where we also have information about how that system has interacted with other
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systems are fundamentally different, and have a different mathematical description.

(This is illustrated by so-called “quantum eraser” experiments [194, 195, 196]).

We repeated the experiment while varying the rms voltage noise V , measuring

the contrast of the Ramsey fringes at each point. Fig. 8.1 shows the Ramsey fringe

contrast in our experiment as a function of the applied mean squared voltage, scaled by

(n −m)2. The data are also rescaled to give unity contrast at V = 0, correcting for a

small loss of contrast due to sources of technical noise and due to the background source

of motional heating (see Secs. 5.5, 8.3.1). All the data points fall on the universal curve

predicted by theory (master equation or ensemble average).

8.3 Amplitude Reservoir

Another particular form of the master equation comes about by considering a

harmonic oscillator of frequency ωz (system) coupled to an infinite number of other

harmonic oscillators (environment/reservoir) in the so-called “amplitude reservoir” case.

In this case, the coupling is given by

ĤSR =
∑
k

h̄κk(âb̂
†
k + â†b̂k)

= h̄(âΓ̂† + â†Γ̂), (8.36)

where, again, the b̂k, b̂
†
k are the lowering and raising operators for the kth reservoir

mode and Γ̂, Γ̂† are the sums of these operators over the reservoir modes. Making the

connection with the derivation in Sec. 8.1.1, we identify ŝ1 = â, ŝ2 = â†, Γ̂1 =
∑

k κ
∗
kb̂

†,

and Γ̂2 =
∑

k κkb̂.

The derivation of the master equation is very similar to the derivation for the

phase-damping case (Sec. 8.2). The resulting master equation is:

˙̂ρ
′
= κ(2âρ̂′â† − â†âρ̂′ − ρ̂′â†â) + 2κN(âρ̂′â† + â†ρ̂′â− â†âρ̂′ − ρ̂′ââ†). (8.37)

The analysis of the dynamics induced by this master equation is tedious [191]. There

are two significant results. One is that the approximate pointer states for this coupling
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Figure 8.1: “Ramsey” fringe contrast as a function of coupling strength to phase reser-
voir. The x-axis is in terms of the square of the rms voltage V applied to the middle
electrode of the trap, scaled by the square of the “size” ∆n of the superposition state,
and the fringe contrast is normalized to unity at V = 0. The solid line is a one-parameter
(slope) fit to an exponential, constrained to be unity at V = 0.

are the coherent states |α〉 (see Sec. 6.1.3). The second is that, again, the off-diagonal

density matrix elements decay much faster than elements on the diagonal.

In order to observe the effects of the coupling to the reservoir, we prepared

“Schrödinger cat” states of the form (| ↓, α↓〉+ | ↑, α↑〉)/
√

2, as discussed in Sec. 6.2.1.

Again, the cat preparation and reversal procedure can be viewed as a Ramsey-type ex-

periment — and again, decoherence which occurred in between the two Ramsey zones

reduced the contrast of the Ramsey fringes.
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In our case, we obtained Ramsey fringes by sweeping the frequency of the π/2-

pulses on the carrier transition (the first and the last pulses of the preparation/reversal

pulse sequence). At each frequency, we repeated the experiment ≈ 100 times and

measured the average intensity, to build up a Ramsey curve. A treatment following

the work of Collett [191] shows that, in the high-temperature limit, we would expect

Ramsey fringes of the form:

P↓(tres) =
1
2

(
1− e−2|∆α|2(1+Nκtres) cos(δ)

)
. (8.38)

In Eq. (8.38), δ is the detuning of the carrier π/2- pulses from resonance and |∆α|2 is

the square of the separation between the two coherent states constituting the cat state.

The form of the coupling, Eq. (8.36), which contains a sum of the system oper-

ators â and â†, suggest that the effects of the reservoir may be realized by applying

displacement operators to the ion. That is, indeed, the case: the reservoir may be real-

ized by applying noisy electric fields to the ion, with a noise spectrum centred around

the trap frequency ωz. As long as the bandwidth of the noise is large enough7 , this

will be a realization of the amplitude reservoir. In the experiment, we applied the noisy

field to the trap electrodes for 3 µs in between the cat creation and reversal steps. We

repeated the experiment while varying the rms voltage noise V and the separation ∆α

between the cat wave packets, measuring the contrast of the Ramsey fringes at each

point.

As with the phase reservoir case, the experiment may be analyzed either using

the master equation or a semi-classical average over the shot-to-shot variations in the

electric field strength (or noise voltage, V). In this latter point of view, we may view

the electric field as producing a displacement D̂(β) which varied from shot to shot of

the experiment. Since the electric field affected both | ↓〉 and | ↑〉 the same, both

components of the cat state suffered the same displacement D̂(β). Thus, the state
7 In practice, if the bandwidth of the noise is large compared with tres, then the bandwidth is

effectively infinite
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reversal still succeeded in undoing the cat creation with 100% fidelity! However, the

additional displacement resulted in an additional phase between | ↓〉 and | ↑〉, so that

the state after the reversal was [50]:

|ψ〉′ = 1√
2

(
| ↓〉+ e2iIm(β)∆α∗| ↑〉

)
. (8.39)

Thus, there was a random phase in the Ramsey fringes which was random from shot

to shot of the experiment. When averaged over the random variable β, this caused

a loss of Ramsey fringe contrast, which should have had the form e−κ∆α2V2
(where κ

is a coupling constant between the applied voltage and the ion motion), as with the

master-equation analysis.

Figure 8.2 shows the Ramsey fringe contrast in our experiment as a function of

the applied mean squared voltage, scaled by |∆α|2. As with the phase noise data, the

data are scaled to give unity contrast at V = 0. All the data points fall on the universal

curve predicted by theory (master equation or ensemble average).

8.3.1 Natural Amplitude Reservoir

As discussed in Sec. 5.5, an ambient heating source exists in the trap, whose exact

nature is as-yet poorly understood. This source represents an ambient T 6= 0 reservoir,

and should produce the same behaviour in cat states as the applied amplitude reservoir.

Indeed, preliminary evidence of this was reported in Ref. [47]. In order to quantify this

decoherence, we varied the time between creating the cat states and reversing them,

while varying the size ∆α of the cats. The Ramsey fringe visibility as a function of

∆α2tres is shown in Fig. 8.3. Again, the fringe visibility is exponential in ∆α2: the

visibility decays as e−γ∆α2tres. The decay constant, obtained by fitting a straight line

to the scaled data, is γ = 6.7× 10−3/µs, which is consistent with the heating rates in

the linear trap (see Sec. 5.5 or Ref. [45]).



187

0 0.2 0.4 0.6 0.8 1

10
−1

10
0

F
rin

ge
 C

on
tr

as
t

∆α = 1.0
∆α = 2.1
∆α = 2.6
∆α = 3.1
∆α = 4.1
∆α = 5.2

∆n2V2 [Volts2]

Figure 8.2: “Ramsey” fringe contrast as a function of coupling strength to an amplitude
reservoir. The x-axis is in terms of the square of the rms voltage V applied to the trap
electrodes, scaled by |∆α|2 (the square of the “size” of the superposition state), and
the fringe contrast is normalized to unity at V = 0. The solid line is a one-parameter
(slope) fit to an exponential, constrained to be unity at V = 0.

8.4 Engineered T=0 Reservoir

The T = 0 limit of the thermal reservoir (amplitude coupling) is not straight-

forward to realize with noisy, classical electric fields (which may always be expressed

as an equivalent Johnson noise in a resistor at finite temperature T [114]). However,

we do have ready access to a T = 0 reservoir in the form of laser cooling (see Ch. 5).

This connection was first pointed out by Poyatos, Cirac, and Zoller [197]. In this case,

the coupling is between the laser beams (representing a T = 0 reservoir) and the ion
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Figure 8.3: “Ramsey” fringe contrast as a function of interaction time with the “natural”
amplitude reservoir due to the background heating rate in the trap. The x-axis is
in terms of the interaction time t, scaled by |∆α|2 (the square of the “size” of the
superposition state, and the fringe contrast is normalized to unity at t = 0. The solid
line is a one-parameter (slope) fit to an exponential, constrained to be unity at t = 0.

motion [197]. The dissipation is due to the inherently random nature of the sponta-

neous emission during the recycling process. In interacting with the zero-temperature

reservoir, the ion relaxes into a “dark state:” the state |n = 0〉, which is unaffected

by the reservoir coupling. The complete reservoir interaction consists of a coherent

part, which transfers the spin population from | ↓〉 to | ↑〉 while coherently reducing the

phonon number, and an incoherent repumping from | ↑〉 to | ↓〉 (in this case, through

the 2p 2P1/2 level 8 ).

8 These experiments were performed with the the repumper laser resonant with transitions to the
2p 2P1/2 level, as discussed in Sec. 4.1.3.
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The decoherence of cat states into an ambient, T ≈ 0 reservoir has been observed

before, in a Cavity-QED system [198]. However, in our case, we had the ability to

“engineer” the characteristics of the reservoir interaction. By changing the relative

intensities of the red sideband Raman beams and the repumping beam (the red doppler),

we could change the ratio of the coherent to the incoherent pump rates. This was

possible because (in contrast to the original proposal) our system actually consisted

of three electronic levels: | ↓〉, | ↑〉, and the 2p 2P1/2. The decay rate γ from the

2p 2P1/2 level was much larger (≈ 20 MHz) than the Rabi frequency of the | ↑〉 →

2p 2P1/2 transition (� 1 MHz) so that the decay from this level could be considered

instantaneous. The “bottleneck” in the population transfer was thus the Rabi frequency

of the repumping beam and, by varying this beam’s intensity, the ratio of coherent to

incoherent pump rates could be varied. To wit, the effective decay rate of | ↑〉 was given

by [199] Γ = Ω2
p/γ, where Ωp was the Red Doppler (single-photon) Rabi frequency.9

In order to monitor the effects of the T = 0 reservoir on the motional populations,

we created the state |ψ〉 = | ↓, 2〉), then applied the T = 0 reservoir for a varying amount

of time. Fig. 8.4 shows the motional level populations for n = 0, 1, 2 (as extracted from

blue sideband flopping curves) after application of the T = 0 reservoir for various times

tres. As expected, the population in |n = 2〉 falls monotonically to zero. The population

in |n = 1〉 initially grows from 0 as the |n = 2〉 population trickles down into it, but

then it, too, is cleared out. Eventually, all the population ends up in |n = 0〉.

To determine the effects of the T = 0 reservoir upon the motional coherences, we

produced the state |ψ〉i = | ↓〉(|0〉+ |2〉)/√2 in the manner described above (Sec. 8.2),

then applied the T = 0 reservoir for a varying amount of time. We monitored the

coherence (off- diagonal density matrix element) ρ20 ≡ ρ{↓,2}{↓,0}. In order to determined

the expected behaviour of this density matrix element, we may treat the simpler, two-

level system originally proposed by Poyatos, Cirac, and Zoller [197]. However, in light
9 This formula holds when Ωp � γ.
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Figure 8.4: Populations of the motional levels |0〉, |1〉, and |2〉 as a function of the
reservoir interaction time, for an initial | ↓, 2〉 state. The solid lines are fits to data of
the master equation solutions.

of the above discussion, the incoherent pump rate, Γ = Ω2
p/γ, should be considered as

a controllable parameter. The level scheme is sketched out in Fig. 8.5.

The correspondence between this level scheme and the T = 0 motional reservoir is

worked out in Ref. [197]. However, in order to predict the results of the experiment, we

may consider the master equation appropriate to the situation illustrated in Fig. 8.5(b).

This master equation is:

˙̂ρ = i[ρ̂, ĤS] +
Γ
2

(2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂−σ̂+), (8.40)

where the red sideband coherent coupling Hamiltonian is given by

ĤS = g(â†σ̂− + âσ̂+), (8.41)
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Figure 8.5: (a) Level scheme for realizing an engineered T = 0 amplitude reservoir.
| ↓, n〉 and | ↑, n − 1〉 are coupled on the red sideband, with Rabi frequency Ωrsb.
Repumping to | ↓〉 is accomplished by coupling | ↑〉 to the 2p 2P1/2 level through a
single-photon transition (Rabi frequency Ωp) (driven by the “repumping” Red Doppler
laser), from where it decays back to | ↓〉 at rate γ. The effective incoherent pump rate
(for Ωp � γ) is Γ = Ω2

p/γ. This scheme is essentially Raman cooling. (b) Effective
two-level system equivalent to the scheme in (a). The coherent transfer rate is Ω = Ωrsb

and the effective incoherent pump rate is Γ = Ω2
p/γ.
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where, from Eq. (3.7), g = iηh̄Ωeiφ. It is not hard to use Eq. 8.40 to find:

ρ̇{↓2}{↓0} = −i√2gρ{↑1}{↓0} (8.42)

ρ̇{↑1}{↓0} = −i
√

2gρ{↓2}{↓0}−
Γ
2
ρ{↑1}{↓0}. (8.43)

The solution to this set of differential equations (given the initial state |ψ〉i) is

ρ{↑1}{↓0} =
−i√2g

2(λ+ − λ−)

[
eλ+t − eλ−t

]
(8.44)

ρ{↓2}{↓0} =
1

2(λ+ − λ−)

[
(λ+ +

Γ
2

)eλ+t − (λ− +
Γ
2

)eλ−t
]
, (8.45)

with

λ± = −Γ
4
± 1

2

√
Γ2

4
− 8g2. (8.46)

Again, in the experiment, we monitor ρ{↓2}{↓0} ≡ ρ20.

Consider two limiting cases. In the first, g � Γ, so that the λ± have an imaginary

part. Here we expect an exponentially decaying cosine, which is precisely what we get:

ρ20 → e−Γ/4t

2
cos

(√
2gt
)
. (8.47)

In the limit Γ→ 0, the time dependence of ρ20 is sinusoidal. This reflects the fact that

the red sideband drives Rabi oscillations between | ↓, 2〉 and | ↑, 1〉 which causes the

density matrix element ρ20 to oscillate as the population in | ↓, 2〉 is driven out of that

level.

In the second case g � Γ, so that λ± is strictly real. In this case, it is easy to

show that:

ρ20 → 1
2
, (8.48)

which is its initial value: the coherence never decays. This is an example of the quantum

Zeno effect [59]. Before this regime is reached, the coherence exhibits exponential decay

of the contrast with an extremely slow decay rate.

Figure 8.6 shows ρ20 (the Ramsey fringe contrast) as a function of tres, for two

different values of Ωp. For small Ωp, the Rabi flopping behaviour discussed above is
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evident whereas, for larger incoherent pump rates (large Ωp), the behaviour becomes

more exponential in character. An interesting effect is that, for Γ = Ω2
p/γ > Ωrsb, the

decay actually slows down with respect to the Γ < Ωrsb case: this is an example of the

quantum Zeno effect [59]. The initial slope of this curve is close to zero: this is an effect

of non-exponential decay [200]. Another way to look at these effects is that, by changing

the effective incoherent pump rate Γ, we were actually changing the effective bandwidth

of the reservoir. In this sense, we were able to engineer the reservoir characteristics as

desired.

8.5 Squeezed Reservoir

The Raman beams, in combination with an incoherent repumper, may also be

used [197] to simulate a so-called “squeezed reservoir” interaction [124]:

˙̂ρ
′

= κ
[
2(µâ+ νâ†)ρ̂′(µâ+ νâ†)†

−(µâ+ νâ†)†(µâ+ νâ†)ρ̂′ − ρ̂′(µâ + νâ†)†(µâ+ νâ†)
]
, (8.49)

where µ2 − ν2 = 1. In order to realize such an interaction, the Raman beams must

simultaneously be resonant with both the red and blue sidebands [197]. In this case,

the ratio of the Rabi frequencies on the red and blue sidebands is given by µ/ν.

This interaction is actually quite analogous to the T = 0 reservoir: the only

difference is that, in this case, the dark state of the interaction is a squeezed state,

rather than the |n = 0〉 Fock/coherent state. In both cases, the entropy of the ion’s

motional state is reduced, and changes from that of a mixed state to that of a pure

state. The only difference is the particular pure state to which the ion relaxes (i.e. the

dark state of the interaction).

We illuminated the ion simultaneously with the red and blue sidebands by re-

placing the usual Red Raman switch AOM by two AOMs (one whose drive rf was at

frequency 80 MHz−ωz and the other’s at 80 MHz+ωz), then combining the two beams
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Figure 8.6: Evolution of the coherence ρ02 for an initial | ↓〉(|0〉+ |2〉)/21/2 state, as a
function of the interaction time tres with an engineered T = 0 reservoir. Two cases are
shown, indicating the two regimes of behaviour: one where the incoherent pump rate
is greater than the coherent rate, and one where the opposite is true. Notice that, for
the case Γ > Ωrsb, the decay is actually slower. This is consistent with the predicted
dynamics (Eq. (8.45)), and represents a Zeno effect. The low slope near tres = 0
indicates non-exponential decay.

on a beamsplitter before the input lens to the trap. However, since the underlying pro-

cess behind the squeezed reservoir interaction is a squeezing process, the interaction is

of order η2, and thus slow. At the time we tried the experiments, the heating rate in the

trap overwhelmed the “cooling” rate of the squeezed reservoir interaction, preventing

us from observing the effects of the reservoir.



Chapter 9

SU(1,1) Berry’s Phase with Trapped Ions

The time evolution of a quantum system is, of course, completely described by

the Schrödinger equation. However, often it is desirable to obtain some sort of intuitive

feel for how a given quantum system will evolve under a specified Hamiltonian without

having to completely solve the Schrödinger equation. At other times, we may wish

to determine how changes in some parameter of the Hamiltonian will effect the time

evolution. In such cases, an intuitive understanding of the time evolution is often

necessary.

It came as somewhat of a surprise therefore when, in 1984, Berry discovered a

rather counter-intuitive phase factor [201, 202] in a rather simple system: one undergoing

adiabatic time evolution. This phase factor, and its generalizations, became known as

“Berry’s phase.” It was first observed in 1986 [203], in the rotation of polarization of a

(classical) light field in a twisted fibre. In this chapter, I will discuss a particular example

of a so-called “quantum Berry’s phase” [204, 205, 206, 207] which should be observable in

the motion of a trapped ion subject to squeezing operations (see Sec. 6.1.4). I will start

out by describing Berry’s original observation and the subsequent generalizations of his

work. Then, I will use a more modern approach to describe a Berry’s phase in a simple

system: a spin-1/2 particle in a magnetic field. Finally, I will use the language which

has been developed in the early part of the chapter to describe the Berry’s phase due

to squeezings, and a possible future experimental implementation of the measurement.
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9.1 Berry’s Phase

In order to understand the historical context in which Berry’s phase arose, let us

consider, as he did, a quantum system in an eigenstate of its Hamiltonian: Ĥ |φn〉 =

En|φn〉. If Ĥ is slowly changed 1 then, according to the adiabatic theorem [208], the

system remains in the nth eigenstate of the slowly-changing Hamiltonian Ĥ(t). If we

change the Hamiltonian so that at time τ it returns to its initial form, Ĥ(τ) = Ĥ(t = 0),

it follows that the system must return to the state described by |φn〉: that is, the system

must return to its initial state. However, state vectors are arbitrary up to a phase factor

of modulus unity. So in general, under the course of the system’s evolution, we must

write |φn〉 → eiθ|φn〉, where θ is some phase. Indeed, we may express the state of the

system at time τ as:

|ψn(τ)〉 = e−
i
h̄

∫ τ

0
En(t′) dt′ eiγn(τ )|φn〉 . (9.1)

The first exponential is simply the usual dynamical phase induced in the eigenstate

through the time evolution operator: the time integral merely reflects the fact that

the nth eigenstate’s energy may be (and probably is) time dependent as we vary the

Hamiltonian. This is the phase factor which we would first think to write down in

describing the dynamics of the system. The second phase factor, γn(τ), accounts for

any “unexpected” phases which may crop up in the situation described: as we shall see

(and as Berry first pointed out), this term is generally nonzero.

At any point in the system’s evolution, we may write an equation similar to

Eq. (9.1):

|ψn(t)〉 = e−
i
h̄

∫ t

0
En(t′) dt′eiγn(t)|φn(t)〉 . (9.2)

where |φn(t)〉 is the nth eigenstate of Ĥ(t). From the Schrödinger equation, we have

that

ih̄
∂|ψn(t)〉
∂t

= En(t)|ψn(t)〉. (9.3)

1 For example, in a magnetic system, we might slowly change the direction of the magnetic field.
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Thus, writing ξn(t) = −(1/h̄)
∫ t
0 En(t′) dt′, differentiating Eq. (9.2), and plugging into

the Schrödinger equation, we obtain:

ih̄

[
− i
h̄
En(t)eiξn(t)eiγn(t)|ψn(t)〉+ ieiξn(t)eiγn(t)dγn(t)

dt
|ψn(t)〉

+ eiξn(t)eiγn(t) ∂

∂t
|ψn(t)〉

]
= eiξn(t)eiγn(t)En|ψn(t)〉, (9.4)

or,
∂

∂t
|ψn(t)〉+ i

dγn(t)
dt
|ψn(t)〉 = 0. (9.5)

Multiplying on the left by 〈ψn(t)|, we finally have:

dγn(t)
dt

= i〈ψn(t)| ∂
∂t
|ψn(t)〉. (9.6)

so that, in changing the Hamiltonian adiabatically from its initial configuration and

then returning it to that initial configuration (for which γn(0) = 0, by definition), we

have:

γn(τ) = i

∫ τ

0
〈ψn(t)| ∂

∂t
|ψn(t)〉 dt. (9.7)

Now suppose that the time dependence of the Hamiltonian arises because we are chang-

ing some parameter or parametersR with time. In this case, we may re-express Eq. (9.7)

as:

γn(τ) = i

∫ τ

0
〈ψn| ∂

∂t
|ψn〉 dt

= i

∫ Rf

R0

〈ψn(R)|∇Rψn(R)〉 dR, (9.8)

which was Berry’s result. By applying Stokes’ theorem to the integral of the divergence,

Berry pointed out that the phase factor γn could be interpreted as a surface integral over

the closed loop in parameter space traced out by the Hamiltonian in the course of its

evolution. From these considerations, it becomes apparent that the phase depends only

on the path taken in the configuration space of the parameters R. 2 So this phase does
2 This implies that if the Hamiltonian depends only on one parameter, then the Berry’s phase

vanishes, since the integral always vanishes in the one-dimensional case: the curve subtends no area.
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not depend, for example, on the amount of time taken to return these parameters to

their original values. This is in stark contrast to the dynamical phase, which is explicitly

time-dependent. In this sense, the Berry’s phase is “surprising” [201].

It is interesting to note that the Aharonov-Bohm effect [209] may be interpreted

as a Berry’s phase [201]. Also, the properties of a spin in a slowly-varying magnetic

field may be interpreted in a similar way [201]. In particular, evaluating Berry’s phase

for the case in which the spin-1/2 particle adiabatically follows a magnetic field which

is rotated in its direction by 2π shows that the state vector for the spin-1/2 particle

picks up a phase factor of -1 during this effective 2π-rotation of the particle: this is an

example of the well-known behaviour of fermions under rotations.

As might be expected from the above remarks, Berry’s treatment may be gen-

eralized, and treated in a purely geometric manner. Some of the first steps in this

generalization were made by Aharanov, Anandan, and Stodolsky [210, 211, 212]. They

removed the requirement of adiabaticity in the change of the Hamiltonian, and showed

that even in this case, the phase factor could be interpreted purely in terms of the

inherent geometry underlying the changes in the Hamiltonian. As interest in Berry’s

phase (now also frequently called the “geometric phase”) grew, a clearer picture of the

situation arose, and a more concise language for describing the physics was developed.

An overview of the geometric phase, and a “grammar” of the language, is given by Jor-

dan [213]. In the next section, I will use this modern formulation to describe a canonical

example of a geometric phase: the behaviour of a spin-1/2 particle in a magnetic field.

Hopefully, this example will clarify the situation, and set the stage for discussing the

geometric phase induced by squeezing operations.

It is worth noting that, after Berry’s paper came out and the geometric interpre-

tation of his result became apparent, it was pointed out that similar results existed in

classical systems: in particular, the connection was drawn [214] with Panchatnaram’s

phase in classical polarization optics [215] and with the Hannay angle of classical me-
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chanics [216, 217]. In general, such phase angles arise whenever a system’s dynamics

are constrained in a non-trivial, “geometric” fashion. Such angles are examples of an-

holonomies [218]. A simple example may help to define the word. Consider a set of

Cartesian coordinate axes constrained to move on the surface of a sphere, such that

the z-axis is initially pointing in the direction of the north pole. Now, suppose that

we translate the axes are along the sphere in a parallel-transport fashion (such that

we never explicitly rotate the coordinate axes about the z-direction). If we eventually

bring the coordinate frame back to the north pole then, although we have never rotated

the frame about the normal axis to the sphere, we will find that the coordinate system

has undergone a net rotation about this axis! (One may try this out, using an imag-

inary sphere and one’s fingers as the coordinate frame — provided one is careful not

to injure one’s self!) The reason for this rotation is that the coordinate frame is con-

strained to move on an inherently curved surface: the surface of a sphere. The rotation

of a coordinate frame upon completion of a closed circuit on a curved surface is called

“anholonomy.”

Of course, as the example indicates, anholonomy effects exist in classical physics.

The difference with quantum systems is that quantum systems may exhibit superposi-

tion and interference effects. Such effects are phase-sensitive. So, in a single-particle

quantum system, the Berry’s phase may have physical effects.

9.2 An Example: a Spin-1/2 Particle in a Magnetic Field

In order to introduce the terminology which I will later use to discuss the geo-

metric phase induced by squeeze operators, let us consider a situation which may be

somewhat more familiar to atomic physicists: the case of a spin-1/2 particle in a mag-

netic field. Of course, the time evolution in such a system may be described by the

Schrödinger equation or the Bloch equations: such solutions are well known. However,

here I will introduce another point of view which distinguishes the “geometric” phase
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from “dynamical” phases. This will highlight the different types of evolution inherent

in the dynamics. Furthermore, the language I will use is applicable to other, more

complicated quantum systems.

Let the magnetic field B(t) initially lie along the z-direction: B(t = 0) = Bez.

Thus, the initial Hamiltonian is given by

Ĥ(t = 0) = −µBB(0) · Ŝ = −µBBŜ3, (9.9)

where (as in Ch. 3), Ŝ3 = 1
2 h̄σ̂3 is the spin angular momentum operator in for the 3 ≡ z

direction.3 Assume that the particle initially starts out in an eigenstate of Ŝz. The

question is then to determine what happens to the particle if the direction of the B-field

is then rotated in some matter such that, at time t = τ , the field again lines up with

the z-axis.

It is somewhat easier conceptually to consider the problem in the Heisenberg

picture. In particular, as we shall see, this picture admits a geometric interpretation

not only of the phase, but also of the various physical observables of the system and

their inter-relationship with the geometric phase. In the Heisenberg picture, the state

vector remains constant while the operators evolve in time, according to:

˙̂O = − i
h̄

[Ĥ, Ô], (9.10)

which is the Heisenberg equation of motion. So in order to track the changes in physical

observables of an initial eigenstate of Ŝ3 as the magnetic field is rotated, it suffices to

see what happens to the operator Ŝ3.

The idea, then, is that we start out with the operator Ŝ(t = 0) = Ŝ(0) = Ŝ3 ∝

Ĥ(t = 0), and apply unitary transformations Û(t) to this operator. The unitary trans-

3 Note that I am continuing to use the notation Ŝ1, Ŝ2, Ŝ3 as I did in Ch. 3. This is an attempt to
avoid confusion with the standard use in the rest of this thesis of x, y, and z as principal directions in
the trap. Of course, here there is a physical correspondence between the Pauli operators and physical
directions: 1 ↔ x, 2 ↔ y, and 3 ↔ z.
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formations are generated by operators which I will label Ĝ(t), so that:

i
d

dt
Û(t) = Ĝ(t)Û(t). (9.11)

The change in the original operator Ŝ(0) = Ŝ3 is then given by:

Ŝ(0) −→ Ŝ(t) = Û(t)Ŝ(0)Û †(t). (9.12)

In our case, we will consider rotations of the magnetic field B away from the z-direction.

These rotations are described by unitary operators Û(t), and the generators of the

unitary operators are just the angular momentum operators Ŝ1, Ŝ2, and Ŝ3
4 , satisfying

the usual commutation relations:

[Ŝi, Ŝj] = iεijkŜk. (9.13)

So, in our situation, the operators Ĝ(t) are the spin-1/2 angular momentum operators

(and combinations of them). The unitary rotation operator, Û(t), then generically will

be of the form:

Û(t) = ein(t)·S = en1(t)S1+n2(t)S2+n3(t)S3, (9.14)

which is just the general expression for a rotation operator operating in the angular

momentum 1/2 manifold [219].

Now, the rotation operators form a group: the rotation group. The defining

property of this group is that it preserves the dot product, and hence the norm. So, for

example, if rotation operators act upon a vector v = v1e1 +v2e2 +v3e3, then the length

of the vector does not change: |v|2 = (v1)2 + (v2)2 + (v3)2 = const. The generators

(the Ŝi) of the rotation group form a Lie algebra: in our case, the Lie algebra SU(2)

of the Pauli matrices. But there is a very intimate relationship between Lie algebras

and (non-Euclidean) geometry. This should not be too surprising: the Lie algebra gives

the mathematical properties of infinitesimal changes under the action of some group
4 which also happens to be our Â(0)
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when acting upon vectors, and so should give the “allowable” changes in the vectors

with that group — in other words, a geometry. In any event, this implicit geometry

will give us a picture of the various changes in phase under the action of the changing

spin Hamiltonian. In this case, the picture is just another way of obtaining the Bloch

sphere.

The rotation group causes rotations of vectors in any vector space, of any dimen-

sion, upon which it operates (for example, in quantum mechanics, one has the various

manifolds for different values of the angular momentum). But there is one special vector

space associated with the rotation group. This “special” vector space is that spanned

by the three generators of the rotation group: the generators form an algebra, and an

algebra is a particular example of a vector space [220]. So, although there are many

different representations of the rotation group [221], the one obtained by considering a

vector space whose dimension is equal to the number of group generators is special: this

representation gives us the geometry associated with that group. I will now sketch out

how this occurs.

Consider the operators Ŝi as vectors in a three-dimensional vector space. These

three vectors form a basis for that vector space: that is, any general vector may be

expressed as:

Ŝ = s1Ŝ1 + s2Ŝ2 + s3Ŝ3. (9.15)

We may construct a geometry in this vector space by examining the commutation re-

lations, Eq. (9.13). In the language of Lie algebras, the εijk are known as the structure

constants of the Lie algebra [222], and these structure constants carry with them ge-

ometrical information. For example, let Ŝa =
∑

(sa)jŜj and Ŝb =
∑

(sb)jŜj be two

vectors in our vector space. Then it is easy to verify that

[Ŝa, Ŝb] = s1Ŝ1 + s2Ŝ2 + s3Ŝ3, (9.16)
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where

sk = (sa)i(sb)j εijk (9.17)

(using the Einstein summation convention). This expression is identical to the usual

component expansion of the vector cross product! So there is an equivalence between

the commutator and a vector cross product in the vector space:

[Ŝa, Ŝb]←→ Ŝa × Ŝb, (9.18)

The “cross product” is induced by the structure constants of the Lie algebra (in this

case, the usual Levi-Civita symbol, εijk.

Thus, the structure constants, the Levi-Civita symbol, induce a vector product

(or, more generally, an “exterior product”) upon the vector space. The geometric im-

plications of the Levi-Civita symbol goes further. A Lie algebra result [222] shows that

this set of structure constants also induces a dot product (or “inner product”) upon the

vector space, according to:

Ŝa · Ŝb = (Sa)i(Sb)j δij (9.19)

δij = −1
2
εikl εjlk. (9.20)

For the rotation group, δij is just the usual Kronecker delta which is associated with

the usual dot product.

From this, we see that the geometry induced by the group of rigid rotations upon

the vector space of the Lie algebra of the group generators is just the usual Euclidean

geometry which we associate with real, three-dimensional space. This is not terribly

surprising: rotations are one part of the “Galilean” group of symmetries of regular,

three-dimensional Euclidean space. In general, however, if we try to apply a similar

“geometry-finding” procedure to other groups and their generators, the geometry which

we’ll find will not be Euclidean. In particular, as we shall see, the group of squeezings

will be generated by the Lie algebra SU(1,1), and the geometry will be that of Minkowski

spaces.
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Meanwhile, let us return to our spin-1/2 particle in a magnetic field. We start

out in an eigenstate of Ŝ3, and apply a series of rotations. In the Heisenberg picture,

we start out with the operator

Ŝ(0) = Ŝ3 = 0Ŝ1 + 0Ŝ2 + 1Ŝ3. (9.21)

Because rotations preserve the norm of vectors, as the direction of the magnetic field is

changed, the spin operator will undergo rotations: however, the norm

|Ŝ(t)|2 = (s1)2 + (s2)2 + (s3)2 = 1 (9.22)

will be preserved (see Fig. 9.1). The vector representing the spin thus moves on the

surface of a sphere: the Bloch sphere [124]. So by applying some abstract group theory

and Lie algebra results, we have obtained something very familiar to atomic physicists!

However, as I have pointed out before, this effort will not be for naught: the language

described above will enable us to form a very clear correspondence between the Bloch

sphere and the geometric phase. Furthermore, the above language is generalizable, and

will enable us to construct “pictures” similar to the Bloch sphere picture for more general

groups of unitary transformations. These “pictures” will be useful for the same reason

that the Bloch sphere is useful: they enable us to develop an intuitive understanding of

complicated system dynamics.

Now, the system Hamiltonian for our spin-1/2 particle is proportional to Ŝ3 and

the initial state is an eigenstate of this operator. For this reason, the initial Hamiltonian

does not cause any movement of the vector on the Bloch sphere but, rather, causes a

trivial rotation about the axis of the vector itself. Of course, we can’t see the effect of

this rotation on the vector. For this reason, it is useful to construct an orthonormal

frame on the surface of the Bloch sphere, with the 3-axis normal to the surface, and (for

example) the other two axes initially parallel to the 1- and 2-axes (x- and y-axes). The

effect of the initial Hamiltonian (∝ Ŝ3) is then to rotate this coordinate frame about its

3-axis.
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Figure 9.1: Rotations of a spin-1/2 particle in a magnetic field. The group of rotations
moves Ŝ3 on the surface of a sphere: it preserves the “length” of the vector in the
three-dimensional vector space spanned by Ŝ1, Ŝ2, and Ŝ3. The sphere is just the Bloch
sphere.

By looking at the rotation of the coordinate axes tangent to the sphere’s surface

(the 1- and 2-axes), we can keep track of the phases: for example, the “dynamical” phase

due to Û(t) = e−iĤt/h̄. More generally, we shall allow the vector representing the state

to move about the Bloch sphere, by changing the direction of the magnetic field. At

each instant, the magnetic field will cause a rotation about its direction. However, this

rotation is of the state is, in some sense, trivial: it does not actually move the vector on

the sphere. In general, we shall identify as a “dynamical” phase any contribution due to
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an explicit rotation about the normal axis to the sphere: i.e. due to any transformation

generated by an operator proportional to the vector which is representing the state. The

interesting, “geometrical” phase is caused by the inherent curvature of the Bloch sphere.

As in the classical, physical example of Sec. 9.1, even if we move the state-representing

vector so as to eliminate any dynamical phase contribution (i.e. parallel transport it on

the surface of the sphere), there will still be a net rotation of the coordinate frame, and

hence a phase, due to this inherent curvature.

Thus, the distinction between dynamical and geometric phases is that the dynam-

ical phase causes a rotation about the instantaneous direction of the vector representing

the state (i.e. it is due to the instantaneous Hamiltonian). The geometric phase is the

additional phase due to the rotation of coordinate frames as they are parallel-transported

around the sphere, caused by the underlying geometry of the group producing the dy-

namics. This distinction is pointed out, in group theoretical notation and without the

“picture” derived above, by Jordan [213]. So, even if the unitary rotations induce purely

parallel transport of the vector around the sphere and back to the 3-axis, there can still

be a net, geometrical phase, due to the inherent curvature: that is, the “anholonomy.”

To highlight the effects of the geometric phase in the system’s evolution, let us

consider the case where the dynamical phase is zero: that is, in the geometric picture,

we demand that

Ĝ(t) · Ŝ(t) = 0 . (9.23)

From Eqs. (9.11) and (9.12), we have that

i
d

dt
Ŝ(t) = [Ĝ(t), Ŝ(t)] (9.24)

which, in the vector picture, can be expressed as:

d

dt
Ŝ(t) = Ĝ(t)× Ŝ(t). (9.25)

This is just the Bloch equation. In order to calculate the geometrical phase, we need

to calculate the net phase in transporting the vector in a closed loop from the north



207

pole of the sphere back to the north pole. The way to do this is to consider a frame of

coordinate axes on the surface of the sphere which moves with the state-representing

vector, and to measure how much the x- and y-axes rotate in moving this frame around

the closed loop. This angle will be the geometric phase.

Calculation of the rotation angle (the anholonomy) is a problem in differential

geometry, but the calculation is relatively straightforward. A point on the unit sphere

may be described by the triad (sin θ cosφ, sin θ sinφ, cos θ), and we may prescribe a path

on the sphere by appropriately specifying the parameters θ and φ. We may construct a

coordinate frame at each point on the sphere by differentiating the x- and y-coordinates

to obtain two vectors in the tangent plane, then taking the cross product of these two

vectors to obtain a normal. Performing this procedure, we obtain:

f1 = (sin θ cosφ, sin θ sinφ, cos θ) (normal vector)

f2 = (cos θ cosφ, cos θ sinφ,− sin θ) (direction of increasing θ)

f3 = (− sinφ, cosφ, 0) (direction of increasing φ) .

(9.26)

So the quantity which we wish to measure is the angle ω3,2 which, for example, f3 moves

towards f2 as we go around the closed loop. From Eqs. (9.26), we have:

df3 = (− cosφ dφ,− sinφ dφ, 0) (9.27)

so that the desired change is

ω3,2 = df3 · f2 = − cos θ dφ. (9.28)

The total rotation of the coordinate system is then given by the integral of ω3,2 around

the curve, or:

γ =
∫

α
ω3,2, (9.29)

where α is a parametrization of the closed curve. (Note that ω3,2 already contains a

differential.) In the language of modern differential geometry ω3,2 is a so-called “con-

nection one-form” [218], and it is a general result of differential geometry that, if Θ is
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a one-form, then ∮
α

Θ = ◦
∫∫
S
dΘ (9.30)

where S is the area on the surface enclosed by the closed path α and dΘ is the differential

of the one-form Θ. This is just the generalization of Stokes’ theorem. Another result

from differential geometry is that dω3,2 = K Θ3∧Θ2 where K is the Gaussian curvature

and Θi are the unit one-forms (unit differentials) in the ith frame direction5 . For a

sphere, K is equal to the curvature 1/r2 of the sphere. In our case, since we are dealing

with the unit sphere, K = 1. Finally, we can put all this together to obtain:

γ = ◦
∫∫
S

sin θ dθdφ , (9.31)

which is just the solid angle subtended by the circuit, as seen from the sphere’s origin.

In summary, then, the Berry’s phase or geometric phase due to circumscribing

some path on the sphere which begins and ends on the 3-axis (north pole) of the sphere

is just equal to the area on the surface of the sphere. That is, the geometric angle is

equal to the solid angle subtended by the path as seen from the origin.

If, as will generally be the case, Eq. (9.23) does not hold — that is, Ĝ(t) · Ŝ(t) 6= 0

— then the state will also pick up a dynamical phase. This phase is just given by the

integral of the component of the generator at each point along the path which is parallel

to the state-representing vector at that point. That is, it is given by the integral:

ξ =
∮

α
Ĝ · Ŝ . (9.32)

9.3 SU(1,1) Berry’s Phase with Squeeze Operators

Recall from Sec. 6.1.4 that the squeeze operator Ŝ(ε) = exp[ 12(ε∗â2 − ε(â†)2)]

(where ε = Re2iφ) squeezes the uncertainty in one rotated quadrature of the ion’s

motion and amplifies the uncertainty in the other. A sequence of squeezes can produce

an observable geometric phase in a trapped ion’s motional state, which I will now
5 ∧ is the exterior product (generalized cross product)
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discuss. This geometric phase arising from squeezings was first discussed by Chiao and

Jordan [206]. However, in order to discuss the geometric phase, it is more convenient

to express the squeeze operator using a slightly different notation. Thus, we write:

Ŝ(r, θ) = eir(K̂1 cos θ+K̂2 sin θ), (9.33)

where

K̂1 = − i
4
(ââ− â†â†) (9.34)

K̂2 =
1
4
(ââ+ â†â†). (9.35)

Some algebra allows us to make the connection with the previous notation:

r = 2R (9.36)

θ = −2φ. (9.37)

Thus, we can see that K̂1 generates squeezes along the z-axis of the z-p plane, and K̂2

generates squeezes at 45◦ to the z and p axes. K̂1 and K̂2 are, in fact, orthogonal to

each other in their effect. (It is apparent that squeezes along z and p are not orthogonal

to each other, since a squeeze along z is just an “anti-squeeze” along p.)

Along with

Ĵ3 =
1
4
(ââ† + â†â) =

1
2

(
n̂ +

1
2

)
, (9.38)

K̂1 and K̂2 form a Lie algebra, the algebra SU(1,1). The commutation relations which

characterize this algebra are:

[K̂1, K̂2] = −iĴ3, [K̂2, Ĵ3] = iK̂1, [Ĵ3, K̂1] = iK̂2, (9.39)

which may be written succinctly as

[K̂i, K̂j] = iε̃ijkK̂k (9.40)

with

ε̃
.= (−1)δk,3εijk. (9.41)
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In this last equation, I have written K̂3 ≡ Ĵ3. This notation is somewhat ambiguous,

but the use of Ĵ3 is in keeping with the literature. These commutation relations are

the same as for the generators of the Minkowski transformations in (2+1) dimensions

(special relativity deals with Minkowski transformations in (3+1) dimensions). Thus,

the group of transformations generated by these three operators, when acting on a vector

v = v1e1 + v2e2 + v3e3, preserve the “Minkowski dot product:”

−(v1)2 − (v2)2 + (v3)2 = const. (9.42)

As with the SU(2) example in the last section, the group generated by the SU(1,1)

operators induces a geometry on the Lie algebra, when this algebra is considered as a

vector space. Again, the structure constants ε̃ijk provide the means to discover this

geometry. So, writing general members of the Lie algebra/vector space as

K̂a = (ka)1K̂1 + (ka)2K̂2 + (ka)3K̂3

K̂b = (kb)1K̂1 + (kb)2K̂2 + (kb)3K̂3

etc . . . (9.43)

we have:

K̂a×̃K̂b = K̂c,

(kc)m = (ka)l(kb)l ε̃lmn. (9.44)

and

K̂a ·̃K̂b = (Ka)l(Kb)m δ̃lm

δ̃lm = −1
2
ε̃lst ε̃mts

= −δl,m(−1)δl,3. (9.45)

In this language, the unitary transformations generated by SU(1,1) preserve the norm

K̂ ·̃K̂. This is just another way of expressing Eq. (9.42).
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Now consider that we have a harmonic oscillator, and we initially start out in an

eigenstate |n〉 of that harmonic oscillator. This is also an eigenstate of K̂(0) = Ĵ3 = 1
2Ĥ.

If we apply a sequence of unitary transformations generated by K̂1, K̂2, and Ĵ3, then,

starting with Ĵ3:

K̂(0) −→ K̂(t) = k1(t)K̂1 + k2(t)K̂2 + k3(t)Ĵ3. (9.46)

That is, the unitary transformations take the vector Ĵ3 into a linear combination of

the basis vectors K̂1, K̂2, and Ĵ3 of the vector space. Since the unitary operators are

generated by the SU(1,1) algebra, we have that, in the course of this evolution:

K̂(t)̃·K̂(t) = −k1(t)2 − k2(t)2 + k3(t)2 = 1, (9.47)

since we initially have −k1(0)2− k2(0)2 + k3(0)2 = −02 − 02 + 12 = 1. So, in the course

of the system’s evolution, the vector which starts out as Ĵ3 (i.e. along the k3 or Ĵ3 axis)

moves along the surface of the unit hyperboloid, as shown in Fig. 9.2.

As before, we may describe the time evolution of Û(t) and hence of K̂(t), given

some sequence of generators Ĝ(t) = g1(t)K̂1 + g2(t)K̂2 + g3(t)Ĵ3. We have that

K̂(t) = Û(t)K̂(0)Û †(t) = Û(t)Ĵ3Û
†(t), (9.48)

i
d

dt
Û(t) = Ĝ(t)Û(t), (9.49)

and hence:

i
d

dt
K̂(t) = [Ĝ(t), K̂(t)]. (9.50)

In the vectorial picture, Eq. (9.50) becomes

d

dt
K̂(t) = Ĝ(t)×̃K̂(t), (9.51)

which is the equivalent of the Bloch equation.

If we apply a sequence of such transformations such that, at time t = τ , we end

up with K̂(τ) again along the positive Ĵ3 axis (at the nadir of the hyperboloid), then,
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Figure 9.2: Unit hyperboloid in the vector space spanned by Ĵ3 = 1
4 (ââ† + â†â), K̂1 =

− i
4 (ââ − â†â†), and K̂2 = 1

4(ââ + â†â†). An initial state Ĵ3 moves on the surface
of this hyperboloid under the (squeezing and rotation) operations generated by these
three operators. This hyperboloid is a useful tool for visualizing the effects of these
transformations upon an eigenstate of Ĵ3 (i.e. of n̂), just as the Bloch sphere is useful
in visualizing spin rotations. The path indicated on the surface of the hyperboloid is
that traced out in the experiment discussed in the text.
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in the course of that evolution,

Ĵ3 −→ eiφĴ3 Ĵ3 (9.52)

and, just as in the spin/magnetic field case, we pick up a phase factor:

|ψ〉0 = |n〉 −→ |ψ〉τ = eiφĴ3 |n〉 = ei(n+ 1
2
)φ/2|n〉. (9.53)

We may calculate the dynamical and geometric contributions to the phase φ = ξ + γ

as in the last section, if we merely replace the dot and cross products there by their

Minkowski space equivalents. Thus,

ξ =
∫ τ

0
Ĝ(t′)̃·K̂(t′) dt′ . (9.54)

In order to calculate the geometric phase, we need to calculate the surface area

on the hyperboloid enclosed by the path traced out by K̂(t), in the Minkowski metric.

Using k1, k2, and k3 as our coordinates, and applying the constraint that −(k1)2 −

(k2)2 + (k3)2 = 1, we have that the element of surface area on the unit hyperboloid is

given by

dS =
dk1 dk2

k3
=

dk1 dk2√
1 + k2

1 + k2
2

(9.55)

and so

γ = ◦
∫∫
S

dk1 dk2√
1 + k2

1 + k2
2

, (9.56)

where S is the surface enclosed by the path traced out by K̂(t).

The geometric phase induced by SU(1,1) dynamics has been measured before.

Kitano and Yabuzaki [223] measured the net rotation in the polarization of light passed

through a network of linear polarizers. This net rotation can be expressed in terms of

the geometric phase6 . Svensmark and Dimon [224] measured a phase shift in a series

of connected, nonlinear oscillators. However, in both these cases, the measurements

were performed on classical electric fields. It is, therefore, of some interest to measure
6 if one ignores the losses in the polarizers, which induce non-unitary, rather than unitary, evolution.



214

the geometric phase in the wave function of a material oscillator. Furthermore, in our

system, we have the unique ability to prepare Fock states and thus to measure the

(n+ 1
2 )/2 Fock state dependence of the geometry phase.7

The basic idea for measuring the geometric phase in our system is to perform

a Ramsey experiment on the spin, and perform a sequence of squeeze operations in

between the Ramsey zones. The Ramsey experiment maps any relative motional phase

between | ↑〉 and | ↓〉 onto the spin phase, which manifests itself as a shift in the

Ramsey fringes. So, for example, if we do not squeeze or otherwise affect | ↓〉, but apply

a sequence of operations on the motional state in | ↑〉 corresponding to a closed path on

the unit hyperboloid, we could measure Berry’s phase as the phase shift between | ↑〉

and | ↓〉. In the rotating frame, any contribution to the phase shift from the “natural”

motional time evolution drops out, and the only contribution comes from the effects of

the operators applied between the Ramsey zones.

There are, of course, many possible closed paths on the unit hyperboloid. For

instance, we might imagine applying a squeeze generated by K̂1, rotating the vector by

π/2 radians by applying eiπĴ3/2, then undoing the squeeze by applying a squeeze gen-

erated by K̂2 [225]. However, we do not (in the rotating frame) have an experimental

implementation of a pure “phase space rotation” (Ĵ3) operator. The most straightfor-

ward procedure8 is to apply a sequence of four squeezes [206]:

eirK̂2eisK̂1e−isK̂2e−irK̂1. (9.57)

Of course, in order to circumscribe a closed area on the unit hyperboloid, r and s must

satisfy some relationship between each other. One might expect that we require r = s,

but this is not the case. The reason for this is that the effects of a squeeze operator

7 Since exp(−iγĴ3)â exp(iγĴ3) = exp(iγ/2)â, all coherent states pick up the same phase exp(iγ/2).
8 Actually, one may trace out a closed path on the unit hyperboloid with a sequence of three pure

squeezes: for example exp(irK̂1) exp[i(aK̂1 + bK̂2)] exp(−isK̂2). However, the algebraic relations be-
tween r, s, a, and b are somewhat complex (though numerically soluble). In fact, as we shall see, there
are reasons for performing a sequence of four squeezes: simplicity and the ability to “split the job up”
between | ↑〉 and | ↓〉.
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depend on where on the hyperboloid it is applied. An analogous effect happens with

a vector whose tip is constrained to move on the surface of a sphere: near the north

pole, a rotation of π/2 radians about the 3-axis moves the vector’s tip only a small arc

length. Further from the north pole, however, a rotation by the same angle moves the

tip of the vector by a much greater arc length. In our case, on the unit hyperboloid,

the condition for the four squeezes listed above to move the vector in a closed path is

that [206]

sinh s = tanh r. (9.58)

Under the above evolution, the dynamical phase is given by:

ξ =
∫ τ

0
K̂(t′)̃·Ĝ(t′) dt′ = 2 arcsinh[tanh r] sinh r. (9.59)

The geometric phase is given by:

γ = −
∫ sinhr

k1=0

∫ sinh r

k2=0

dk1 dk2

k3
= −2 arcsinh[tanh r] sinhr + arcsin[tanh2 r] (9.60)

(some details of the integration, which involves some obscure integrals, are given in

Appendix C). The dynamical phase cancels out some of the geometric phase, and the

net phase shift induced by the sequence of four squeezes is:

φ = 2 arcsin[tanh2 r]. (9.61)

The dynamic, geometric, and net phase shift are shown in Fig. 9.3. Note that the net

phase shift reaches its maximum value for r ≈ 3, corresponding to R ≈ 1.5.

9.4 Experimental Issues

Ideally, then, we would perform an experiment in which we prepared an equal

superposition of | ↑〉 and | ↓〉, performed the sequence (9.57) of four squeezings on the

| ↑〉 part of the motional state only, and then compare the phase of the |n = 0〉 state

in | ↓〉 with the |n = 0〉 result of squeezing | ↑〉, by recombining the | ↑〉 and | ↓〉 wave
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Figure 9.3: (a) Predicted phase shift for an initial |n = 0〉 state subject to a sequence of
four squeezings constituting a closed path on the unit hyperboloid. γ is the geometric
contribution to the phase, due to the inherent curvature of the hyperboloid upon which
moves the vector which represents the state. ξ is the dynamical phase. The net phase
is φ.

packets. The net phase shift φ resulting from the residual geometric phase (Eq. (9.61))

would then result in a net phase shift of the Ramsey fringes with respect to the usual

Ramsey experiment in which the four squeeze pulses were absent. This experiment is

attractive, since we may “peak up” the four squeeze operators by applying them to the

state | ↑〉 and confirming that we return to the motional state |n = 0〉.

However, the squeeze operators which are produced by the “walking standing

wave” interaction with the laser beams (Sec. 6.1.4) are of second order in the Lamb-

Dicke parameter η and so, the squeezing operations are relatively slow. We attempted to

measure the SU(1,1) Berry’s phase in the micromachined linear ion trap. Unfortunately,

the background heating rate precluded performing four sequential squeeze operations:

the decoherence washed out any signal. This did not present an insurmountable barrier,

however. As pointed out by Chiao and Jordan [206] in a different context, it suffices to

perform two squeezes on one part of the spin wave packet and the other two on the other

part. Thus, an equivalent experiment consists of a π/2 carrier pulse, simultaneously
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performing the operations:

| ↓, 0〉 −→ e−isK̂2e−irK̂1| ↓, 0〉 (9.62)

| ↑, 0〉 −→ e−isK̂1e−irK̂2| ↑, 0〉 . (9.63)

Then the Ramsey experiment measures the overlap

〈0|eirK̂2eisK̂1e−isK̂2e−irK̂1|0〉, (9.64)

just as in the original experiment. The trick, however, is to arrange that a squeeze eirK̂1

on | ↓〉 should be a squeeze eirK̂2 on | ↑〉. It is possible to do this, by appropriately

setting the polarization of the Raman beams, as described below.

9.4.1 Differential Squeezing Using Polarization

Recall from Sec. 6.1.4 that the squeeze parameter for “walking standing wave”

production of squeezed states is given by ε = Re2iφ = r
2e

iθ = iη2ΩteiφL (where I have

now explicitly written the laser phase). But, as discussed in Sec. 6.2.1, the effective

Rabi frequencies for | ↑〉 and | ↓〉 for the “walking standing wave” interaction depend on

the polarizations of the two Raman beams creating the interaction. As discussed there,

Rco must have the polarization 1√
2
(σ+ + σ−), but the we may alter the polarization of

the RR⊥ beam. Recall Eqs. (6.19) and (6.20):

Ω↓ =
g2

∆R + ω0

2Υ
3

+
g2

∆R + δFS + ω0

(
Λ +

Υ
3

)
Ω↑ =

g2

∆R

(
Λ
2

+
Υ
6

)
+

g2

∆R + δFS

(
Λ
2

+
5Υ
6

)
,

where the RR⊥ beam has polarization Λσ− + Υσ+. In Sec. 6.2.1, we ignored the

hyperfine splitting when deriving Eq. (6.21) for the ratio of Ω↓ to Ω↑. Now, if we take

this into account, we obtain:

Ω↓
Ω↑

=
∆R (δFS + ∆R)

(
4Υ

ω0+∆R
+ 2(3Λ+Υ)

δFS+ω0+∆R

)
3Λ + δFSΥ + 6(Λ + Υ)∆R

. (9.65)
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By placing a λ
4 followed by a λ

2 plate in the RR⊥ beam line immediately before the input

lens to the trap envelope, we can choose any value for Λ and Υ. We want to realize the

operator Ŝ(r, θ = 0) = eirK̂1 in one spin state, and the operator Ŝ(r, θ = π/2) = eirK̂2

in the other. It follows from Eq. (6.17), therefore, that we want to have

Ω↓
Ω↑

= ±i. (9.66)

The values of Λ and Υ are somewhat complicated functions of the angles of the λ
4 and λ

2

plate angles, and the dependence of the Rabi frequency ratio, through Eq. (9.65), even

more complicated. Nonetheless, the resulting equation can be solved numerically (for

a given Raman beam detuning ∆R) to obtain the angles. For example, at a detuning

of ∆R = 12.33 GHz, the the slow axis of the quarter-wave plate should be at −6.1◦

from the vertical and the slow axis of the half-wave plate at −31.9◦ from the vertical

(assuming a vertically polarized input beam).

Figure 9.4(a), (b), and (c) show the dependence of the absolute value and ar-

gument of the ratio Ω↓
Ω↑

as a function of ∆R, the 1
4-wave plate angle, and the 1

2 -wave

plate angle, the other parameters being held fixed at their nominal values. These fig-

ures indicate that, although care must be taken in setting the wave plate angles, the

requirements for appropriate squeezing of | ↑〉 and | ↓〉 are not impracticable.

Unfortunately, birefringence in the vacuum envelope windows added a random

change in the polarization of the RR⊥ beam after the polarization optics. This birefrin-

gence also varied from spot to spot on the windows. Since the “peaking up” procedure

involved comparing squeezed state flopping curves for initial | ↑, n = 0〉 and | ↓, n = 0〉

curves,9 a time-consuming procedure, it was not practical to perform the experiment,

given the unknown birefringence of the windows. Unfortunately, since there was one

window between the polarization optics and the ion, but two windows before the beam
9 Other meters of the relative squeezing in | ↑〉 and | ↓〉 exist — for example, variants of the Ramsey

experiment. Several such techniques were tried: however, the heating-induced decoherence made them
essentially useless with the ion heating at the rate it did when the experiments were tried.
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Figure 9.4: Sensitivity of Ω↓/Ω↑ to errors in experimental parameters. Nominal values
for Ω↓/Ω↑ = i are ∆R = 12.333 GHz, λ

4 plate at −6.1◦ from the vertical, and λ
2 plate at

−31.9◦ from the vertical. (a) Dependence of Ω↓/Ω↑ on the detuning ∆R of the Raman
beams from the 2p 2P1/2 virtual level, with the quarter- and half-wave plate angles held
at their nominal values. The detuning affects the relative importance of transitions
driven through the 2P1/2 and 2P3/2 (virtual) levels. (b) Dependence of Ω↓/Ω↑ on the
angle of the quarter-wave plate, with ∆R = 12.333 GHz and the half-wave plate held at
its nominal value. (c) Dependence of Ω↓/Ω↑ on the angle of the half-wave plate, with
∆R = 12.333 GHz and the quarter-wave plate held at its nominal value. In (a), (b),
and (c), the dashed lines show the argument of the complex Rabi frequency ratio, while
the solid lines show its magnitude.

passed out the other side of the vacuum envelope, it was not possible to determine the

polarization state at the ion.

Were the heating rate lower, all four squeezes could be performed on only one

of the spin states. In this case (neglecting the fine-structure contributions, which is

a small perturbation for small ∆R), as with the original Schrödinger cat experiment,

pure σ− light in the RR⊥ beam line would affect only | ↓〉. Despite the birefringence

in the windows, there are rapid diagnostics which could allow us to determine when

the light at the ion is pure σ−: for example, the cycling transition (see Appendix A).

Thus, if the heating rate were low enough to allow four sequential squeeze operations,

the experiment would be possible.
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9.4.2 The Effect of Small Errors on Berry’s Phase

It is worthwhile to examine the effects of small errors in the squeeze operations

on the measured residual geometric phases. For example, the magnitude of the Rabi

frequencies in | ↑〉 and | ↓〉 might not be equal, or the argument between the two might

not be exactly π/2 radians. Alternatively, in a four-squeeze implementation, there might

be slight errors in the magnitudes of the squeezes. In general, since the geometry of

the unit hyperboloid (see above) is smooth, we would not expect a small imperfection

in the path of the vector representing the state to translate into very large changes in

the observed phase. Of course, if the path on the hyperboloid is not closed, it is not

possible to talk of the solid angle enclosed by that path. However, different approaches

to the issue are possible.

One approach which facilitates the determination of the effects of small errors uses

yet another description of the phase shifts which occur in applying sequential squeezings.

This approach arises from considering the action of two sequential squeezing operations,

as was considered in Refs. [226, 227]. Before writing down the result, it is worthwhile

to reiterate the effects of the group elements generated by the SU(1,1) algebra. The

operator

R̂(ζ) = eiζĴ3 = eiζ(ââ†+â†â)/4 (9.67)

produces “rotations” in phase space. (In our case, since there is only one “dimension”

in which rotations may occur, rotation operators commute.) The operator

Ŝ(r, ϑ) = eir(K̂1 cosϑ+K̂2 sinϑ) (9.68)

generates a squeeze along the direction ϑ/2. In general, we may re-express Eq. (9.68)

as:

Ŝ(r, ϑ) = R̂†(ϑ)Ŝ(r, 0)R̂(ϑ). (9.69)
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The result of two squeezes is then a squeeze plus a rotation. Specifically [226, 227],

Ŝ(p, ζ)Ŝ(q, 0) = R̂(Φ)Ŝ(r, ϑ′), (9.70)

where

r = arccosh [cosh p cosh q + cos ζ sinh p sinh q] , (9.71)

ϑ′ = arctan
{

sin ζ sinh p
sinh q cosh p+ cos ζ sinh p cosh q

}
, (9.72)

Φ = 2 arctan
{ − sin ζ sinh(p/2) sinh(q/2)

cosh(p/2) cosh(q/2) + cos ζ sinh(p/2) sinh(q/2)

}
. (9.73)

Note that this result also holds true when considering the special relativity (in 2+1 di-

mensions) interpretation of the transformations generated by SU(1,1). In this language,

rotations are rotations, squeezes are boosts, and the product of two boosts is a net boost

plus a rotation. This is the origin of the Thomas precession (see Ref. [89]§11.8).

Recall from Eq. (9.57) that the experiment consists of the four operations

eirK̂2eisK̂1e−isK̂2e−irK̂1 ≡ Ŝ(r,
π

2
)Ŝ(s, 0)Ŝ(s, 3π

2
)Ŝ(r, π). (9.74)

Using Eq. (9.70) to combine the left two and right two squeeze operators, we may

re-express this as:

Ŝ(r,
π

2
)Ŝ(s, 0)Ŝ(s, 3π

2
)Ŝ(r, π) = R̂(Φ1)Ŝ(R1, ϑ1)R̂(Φ2)Ŝ(R2, ϑ2), (9.75)

where R1, R2, ϑ1, ϑ2, φ1, and φ2 are obtained from Eq. (9.73). In fact, it is straight-

forward to show that R1 = R2
.= R and Φ1 = Φ2

.= Φ for the prescribed sequence of

squeezes, although ϑ1 6= ϑ2. Thus,

Ŝ(r,
π

2
)Ŝ(s, 0)Ŝ(s, 3π

2
)Ŝ(r, π) = R̂(Φ)Ŝ(R, ϑ1)R̂(Φ)Ŝ(R, ϑ2)

= R̂(Φ)Ŝ(R, ϑ1)R̂(Φ− ϑ2)Ŝ(R, 0)R̂(ϑ2)

= R̂(2Φ− ϑ2)Ŝ(R, ϑ1 + Φ− ϑ2)Ŝ(R, 0)R̂(ϑ2).

(9.76)
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Now, if ϑ1 − ϑ2 + Φ = π, the two squeezes on the last line cancel, and the net effect is

a rotation operator

R̂(2Φ− ϑ2)R̂(ϑ2) = R̂(2Φ). (9.77)

This occurs if tanh r = sinh s, which is the same as Condition (9.58).10 So another way

of looking at the experiment is that, if we choose the squeeze parameters correctly, the

resultant squeeze of the first two squeeze operators cancels with that of the second two,

and we are left only with the net rotation (the equivalent of the Thomas precession).

Of course, with this approach, we cannot distinguish between dynamical and geometric

contributions to the resultant phase, which is the advantage of the approach taken in

Sec. 9.3.

If we now assume that there are small errors in the experimental pulses, then the

two squeeze operators will not exactly cancel. For example, suppose that the angles

(0, π/2, π, and 3π/2) of the various operations are correct, but that there are errors in

the magnitude of the various squeezes. This is a reasonable model of the errors, since

the phase between the squeezes will either be set by an rf phase or a polarizer setting

— either of which may be well controlled. The squeeze amplitudes, however, may be

harder to calibrate and keep constant. We may model this situation by assuming s, and

letting r→ r + ε (where still tanh r = sinh s). In this case, Eq. (9.76) becomes

Ŝ(r + ε,
π

2
)Ŝ(s, 0)Ŝ(s, 3π

2
)Ŝ(r + ε, π) = R̂(2Φ′ − ϑ′2)Ŝ(R′, ϑ′1 + Φ′ − ϑ′2)Ŝ(R′, 0)R̂(ϑ′2).

(9.78)

Note that combining the leftmost and rightmost pairs of squeeze operators still results

in the same squeeze amplitude and rotation angle, as was the case before. Explicitly:

R′ = arccosh [cosh(r + ε) cosh s] .= R+ α (9.79)

Φ′ = −2arctan{tanh[(r+ ε)/2] tanh[s/2]} .= Φ + β. (9.80)
10 It is extremely challenging to prove this algebraically. On the other hand, we can plug the result

from Eq. (9.58) into the combined expressions for ϑ1 − ϑ2 + Φ from Eq. (9.73) and verify the truth of
the statement.
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ϑ′1 and ϑ′2 also differ from their values above. Explicitly:

ϑ′1 = arctan
[
tanh(r+ ε)

sinh s

]
.= ϑ1 + δ (9.81)

ϑ′2 = arctan
[

tanh s
sinh(r+ ε)

]
.= ϑ2 + κ. (9.82)

One result is that ϑ′1−ϑ′2 +Φ′ 6= π. Thus, the two squeeze operators resulting from the

combination of the left pair and right pairs of squeezes no longer cancel. The result,

according to Eq. (9.70), is an additional squeeze and an additional rotation over the ideal

case. The phase shift which we measure then differs from the theoretical prediction,

Eq. (9.61), for two reasons. First, the arguments of the outermost rotation operators

in Eq. (9.78) no longer have the correct values. Second, the fact the the two squeeze

operators in the middle of Eq. (9.78) no longer cancel introduces an additional rotation

operator and, hence, an additional phase shift error. As well, the squeeze operator

causes a reduction in the Ramsey fringe contrast.

The experiment measures, for example, 〈0|Û |0〉 which, in the presence of the error

is given by:

〈0|R̂(2Φ′ − ϑ′2)Ŝ(R′, ϑ′1 + Φ′ − ϑ′2)Ŝ(R′, 0)R̂′(ϑ′2)|0〉

= eiΦ
′/2〈0|R̂(Λ)Ŝ(v, ν)|0〉

= eiΦ
′/2 eiΛ/4 1√

cosh v

= eiΦ/2 ei(Λ+α)/4 1√
cosh v

. (9.83)

Here, v and ν (which doesn’t enter into the final result) are the parameters of the

squeeze resulting from Ŝ(R′, ϑ′1 + Φ′ − ϑ′2)Ŝ(R′, 0) and Λ is the rotation angle.

Now, in the ideal case, we have Φ + ϑ1 − ϑ2 = π. Thus, from Eqs. (9.80), (9.81),

and (9.82), we have

Φ′ + ϑ′1 − ϑ′2 = π + α+ δ − κ (9.84)

so that

sin(Φ′ + ϑ′1 − ϑ′2) = − sin(β + δ − κ)
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cos(Φ′ + ϑ′1 − ϑ′2) = − cos(β + δ − κ). (9.85)

Using the above information in Eq. (9.70), we obtain:

v = arccosh
[
cosh2(R+ α)− cos(β + δ − κ) sinh2(R+ α)

]
Λ = 2 arctan

{
sin(β + δ − κ) sinh2[(R+ β)/2]

cosh2(R+ α)/2− cos(β + δ − κ) sinh2[(R+ α)/2]

}
(9.86)

which we can plug back into Eq. (9.83) to determine the effect on the measured signals.

Of course, if we do this, we only express the error in terms of α, β, δ, and κ: the

errors in the parameters R, Φ, ϑ1, and ϑ2 of the combined squeezes. In order to express

the error in terms of ε (the error in the squeeze parameter r), we need to use the

full expressions in Eqs. (9.80), (9.81), and (9.82). This is straightforward. However,

the algebra is complicated enough that performing this final step adds little to the

information content of this description. I shall, therefore, merely quote the result.

Figure 9.5 plots the net phase for the ideal Berry’s phase experiment and with

ε = 0.05r — that is to say, r → 1.05 arctanh[sinh s]. For small squeeze parameters,

small errors in the squeeze operations should result in small errors in the measured

phase shift.
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Figure 9.5: Effect of small imperfections of the squeezing pulses on the measured geo-
metric phase shift. The curve shows the absolute error, assuming a five percent error
in r, the amplitude of the first squeeze. The ordinate axis shows r, but in the various
formulae for the phase shift, r→ 1.05 r. However, the amplitude s of the second squeeze
satisfies tanh r = sinh s, where r is read off the ordinate axis of the graph.



Appendix A

Photon Statistics and “Peaking Up” the Experiment”

In this appendix, I will discuss some of the details of the cycling transition (| ↓〉 →

|2p 2P3/2〉). The statistics of the photons from this transition provide a sensitive guide

to various aspects of the experiment. So, I will try to provide a recipe for “peaking up”

the experiment, as well as discuss some of the limits to the cycling transition.

Basically, the peaking up based on the photon statistics falls into two categories:

those methods based on the average number of photons detected per experiment (i.e. the

mean count rate) and those based on the histogram of photon numbers per experiment.

I shall deal with these in order. First, I will catalogue the various peak-up procedures

based on average photon number, and then I will discuss what information can be

gleaned from the histograms, as well as discussing the limit of the cycling transition’s

quantum efficiency for discriminating | ↓〉 from | ↑〉 (due to off-resonant transitions from

| ↑〉 into the cycling transition).

A.1 Peaking Up the Experiment With the Mean Photon Number

To recap, the typical experiment lasts anywhere from 0.5− 1ms. At the end of

each experiment, we turn on the Blue Doppler beam for typically 200 µs, and measure

the number of photons collected by the photodetection system (which has an overall

quantum efficiency of ≈ 10−3 due to detector efficiency and solid angle). Typically,

we detect photons with the imager tube while loading the trap, then switch to the
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photomultiplier tube for peaking up the experiment and for taking data. The pulses

output by these detectors are sent to a scalar (Ortec Model #9349), which produces a

current proportional to the count rate (# of photons detected per second). This current

is then used to drive galvanometers. Although using needle dials to indicate the average

count rate may strike some as old-fashioned, this is, in fact, a very useful tool, as it seems

to be the easiest way for people to assimilate the information. In particular, it is much

easier to determine the maximum count rate while peaking up using the needle dials

than using a digital count rate indicator. The time constant of the scalar is adjustable.

We typically use a time constant of 0.3 s.

All the following peak-ups should be performed with the Blue and Red Doppler

beams on continuously, and with the Raman and Repumper beams off (i.e. blocked!).

Note that, if the Repumper beam is going into the trap, it will be impossible to peak

up the Doppler beam lines, as the count rate becomes very “jumpy.”

After loading an ion and centering it in the imager tube, the first task is to

maximize the count rate by adjusting the Doppler beam input lens. To do this, block the

Repumper beam line and the Red Doppler , and maximize the count rate. Next, set the

Blue Doppler polarization. With the Red Doppler still blocked (or, if the ion is flakey

without the Red Doppler, attenuated to well below the saturation intensity), iterate

between adjusting the angle and orientation of the quarter-wave plate, and adjusting

the currents in the B field shim coils. This procedure aligns the wave vector of the

Doppler beam with the magnetic field.

Once the Blue Doppler beam is adjusted, let the Red Doppler in again (or, if

it had only been attenuated, remove the attenuation). Unplug one of the shim coil

current supplies. The count rate should drop, since the polarization has been effectively

degraded. Then adjust the Red Doppler input beamsplitter to maximize the count rate.

In order to peak up the Repumper, it is usually best to turn Raman cooling on,

then disable the Raman probe. The count rate should be considerably lower (20-30%)
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lower than before Raman cooling was turned on. Next, allow the Repumper beam into

the trap, and maximize the count rate. It is often useful to observe the photon number

histogram (see below) to ensure that one has the Repumper beam position optimized.

A.2 Photon-Number Histograms

The histogram of the distribution of detected fluorescence photons is produced

on the PC. A variable number of experiments are binned together (typically, 1000),

and the resulting histogram is displayed on-screen. In addition, the mean number and

the variance are calculated for the binned experiments and displayed. The variance

should be exactly 1.00 for a Poisson distribution (which is the expected distribution).

In practice, the number varies between 0.97 and 1.08 when 1000 experiments are binned

together. If the variance creeps up much beyond 1.10, then something is wrong (usually,

it’s a problem with intensity or frequency fluctuations on the Doppler laser).

It is also useful to set a discriminator between | ↑〉 and | ↓〉 in terms of the

number of photons received per experiment. The program calculates the percentage

of experiments in which a number of photons corresponding to | ↑〉 was received, and

displays this information as well. In practice, due to background light, scatter off the

trap electrodes, and the limitation of the cycling transition in 9Be+, the discriminator is

usually set such that experiments in which two or less photons are received are binned

as | ↑〉, and those in which more photons are received are binned as | ↓〉. The “limit”

mentioned above is due to off-resonant pumping of population in | ↑〉 into the cycling

transition, and will be further explained below.

In practice, a canonical | ↓〉 state is that which results from optical pumping at

the beginning of the experiment. A canonical | ↑〉 state is produced by starting out

in | ↓〉 and applying a π-pulse on the co- propagating carrier. With the discriminator

set to two photons, | ↑〉 produces counts in the “| ↓〉” channel 2-4% of the time. A

| ↓〉 state typically produces no counts in the “| ↑〉” channel. Typical histograms for



229

| ↓〉 and | ↑〉 are reproduced in Fig. A.1(a). Fig. A.1(b) shows a typical carrier Rabi

flopping curve with photon number histograms shown for several interesting parts of

the curve. In particular, note that the photon distribution for 1√
2
(| ↓〉 + | ↑〉) is the

appropriately weighted sum of the | ↓〉 and | ↑〉 (Poissonian) histograms, rather than

being a Poissonian at the average of the | ↓〉 and | ↑〉 average photon numbers.

A.2.1 Discrimination Limits: Off-Resonant Pumping

The 2-4% “leak” of | ↑〉 into | ↓〉 bins is due to the finite hyperfine splitting of

9Be+: the linewidth of the 2p2P3/2 level is 19.4 MHz while the hyperfine splitting is

only 1.25 GHz. Thus the state | ↑〉 occasionally scatters photons, rather than being

truly dark — indeed, once | ↑〉 scatters a photon, it is likely that it will end up in | ↓〉,

and hence participate in the cycling transition.

If the ion is in | ↓〉, then the photon number distribution is truly Poissonian, with

m = m0 = ζβ2tDG, where β2 is the scatter rate in | ↓〉, tDG is the length of the detection

time gate, and ζ is the detection efficiency (ζ ≈ 8× 10−3). The challenge is to calculate

the photon number distribution if the ion is in | ↑〉 at the beginning of tDG. In this

case, the photon distribution is a spike at m = 0 for some time tp (related to the scatter

rate β2 due to off-resonant transitions) until the ion enters the cycling transition, at

which point the photon distribution becomes a Poissonian with m = m0(1− tp
tDG

). The

complication occurs because tp, being related to the excited state lifetime, is a random

variable.

To be more quantitative, let

β1 =
I
IS

1
2τ

1 + I
IS

+ 4
(

ω0+δ
γ

)2 ≈
I
IS

1
2τ

1 + I
IS

+ 4
(

ω0
γ

)2 (A.1)



230

10

8

6

4

2

0

C
o

u
nt

s 
p

e
r 

E
xp

e
ri

m
e

n
t

543210

time (µs)

2 0 0

1 0 0

0

3 0
2 0

1 0
0

1 0 0 0

0

3 0
2 0

1 0
0

1 0 0 0

5 0 0

0

3 0
2 0

1 0
0

2 0 0

1 0 0

0

3 0
2 0

1 0
0

1 0 0 0

0

3 0
2 0

1 0
0# photons

# 
in

st
an

ce
s

200

100

0

#
 in

st
a

n
ce

s

3020100
# photons

1000

0
3020100

(a)

(b)

|↓〉 |↑〉

Figure A.1: (a) Photon number histograms for | ↓〉 and | ↑〉. 1000 experiments were
binned together for each histogram, and Detection Gate was 200 µs. The counts in the
nonzero | ↑〉 bins are due to background and to off-resonant pumping of | ↑〉 popula-
tion into the cycling transition. (b) Carrier flopping curve with photon number his-
tograms at select points. Note that halfway down the flopping curve, when the ion is in
1/
√

2(| ↓〉+ | ↑〉), the photon distribution is the sum of the | ↓〉 and | ↑〉 distributions,
and not a Poissonian centred at the average of the | ↓〉 and | ↑〉 average count rates.
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be the base off-resonant scatter rate of photons when the atom is in | ↑〉 (neglecting the

laser polarization and atomic matrix elements, for the moment) and

β2 =
I
IS

1
2τ

1 + I
IS

+ 4
(

δ
γ

)2 (A.2)

be the scatter rate of photons when the atom is in | ↓〉 (i.e. the cycling transition

scatter rate). In these equations, τ is the 2p 2P3/2 lifetime and γ its linewidth, I is the

laser intensity, IS is the saturation intensity, and δ is the detuning from resonance. (In

practice, δ will be negative to allow laser cooling with the Doppler beams.)

Now, the atomic levels of interest, along with the appropriate transition strengths,

are shown in Fig. A.2(a). Eliminating the excited state levels, we get the simplified level

structure of Fig. A.2(b), which guides us in writing down the following rate equation

for the population in | ↑〉:

Ṗ↑ = −
[
1
6
β1 +

5
24
β1

1
18β2

1
18β2 + 5

24β2

]
P↑

=
4
19
β1P↑. (A.3)

Thus, P↑(t) = P↑(0)[1 − exp(− 4
19β1t)]. Of course, this equation reflects the average

dynamics of | ↑〉: in a single experiment, the atom follows a probability distribution of

decay times. Guided by Eq. (A.3), we write:

p(tp) =
1
τp
e
− tp

τp , (A.4)

where τp = 19
4β1

.

To reiterate, we see no photons until the atom off-resonantly pumps into the

cycling transition at (random) time tp. Then, we see a Poissonian distribution with

m = m0(1− tp
tDG

). Thus, the probability distribution for the number of photons observed

in an experiment may be written as the conditional probability distribution:

P (m|m) =
e−mmm

m!
. (A.5)
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Figure A.2: (a) Relevant energy levels in 9Be+ for discussing off-resonant pumping of | ↑〉
population into the cycling transition. The numbers are the relative transition strengths.
See Appendix B for a complete diagram of transition strengths. (b) Simplified effective
level diagram, showing the various rates of population transfer.

It follows that the probability of observing m photons in an experiment is given by:

P (m) =
∫
P (m|m)ρ(m)dm, (A.6)

where ρ(m) is the probability distribution for m (due to the random nature of tp).

In order to calculate ρ(m), we can write down the cumulative distribution of m:

FM(m) = Prob.(M ≤ m) =
∫
{tp:M (tp)<m}

p(tp)dtp, (A.7)

where M is the number of photons detected. From the expression m = m0(1 − tp
tDG

),

we may rewrite the domain of integration as tp > (1 − m
m0

)tDG. Putting this into the
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above integral, and plugging in for p(tp) from Eq. (A.4), we may evaluate the integral:

FM (m) =
∫ ∞

(1− m
m0

)tDG

1
τp
e
− tp

τp dtp

= e
− tp

τp
(1− m

m0
)
. (A.8)

Then, we may calculate the probability distribution for m:

ρ(m) =
∂FM (m)
∂m

=
tp

m0τp
e
− tp

τp
(1− m

m0
) + e

− tp
τp δ(m). (A.9)

The δ-function is due to the discontinuity of the integral at tp = 0.

Finally, plugging back into Eq. (A.6), we have that the probability of observing

m photons in a given experiment, given that we start out in | ↑〉, is:

P (m) = e
− tDG

τp δm,0 +
tDGe

− tDG
τp

τpm0m!

∫ m0

0+ε
e
(

tDG
τpm0

−1)m
mmdm. (A.10)

With some minor tweaking, the integral can be put into the form of an incomplete

Gamma function ([72]§6.5), and we finally have:

P (m) = e−αm0

[
δm,0 +

α

(1− α)m+1
P (n + 1, (1− α)m0)

]
, (A.11)

where α = tDG
τpm0

and P (m+1, (1−α)m0) is the incomplete Gamma function. Note that

this function is the cumulative distribution for the Chi-square distribution.

The important fact to draw from Eq. (A.11) is that P (0), which should ideally

be equal to 1, is given by P (0) = exp(− tDG
τp
m0) = e−αm0, where α ≈ 4

19ζ ( γ
2ω0

)2. For

9Be+, we have that α ≈ 1.35×10−5

ζ . This is the fundamental limit to the accuracy of

discriminating | ↑〉 from | ↓〉. Thus, with ζ ≈ 8 × 10−3, we have P (0) ≈ 0.98 under

typical operating conditions, rather than P (0) = 1. Fig. A.3 shows photon number

histograms for optimum conditions and for the case in which the Blue Doppler intensity

is high enough that power broadening exacerbates the leak out of | ↑〉.

In terms of the cycling transition, 9Be+ is actually one of the worst alkali-like

ions, due primarily to its small hyperfine splitting. For example, α = 3.7×10−7

ζ for Cd+
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Figure A.3: Photon number histograms versus power broadening. (a) Photon number
histograms for optimum Blue Doppler intensity. In particular, note that the number of
photons in “| ↓〉” channels for the | ↑〉 state is only 6% of the total. (b) Photon number
histograms when the Blue Doppler intensity is large enough that power broadening
pumps population from | ↑〉 into the cycling transition. 59% of the counts for the state
| ↑〉 are in “| ↓〉” channels. The dots are a fit to Eq. (A.11). The fit gives 3188 as
the total number of instances (the actual number is 5000 — this reflects the excess
experimental counts in Channels 1 and 2, due to background), α = 0.017, and m = 43
(compare with the average photon number in the | ↓〉 histogram).

on the S1/2 ↔ P3/2 cycling transition, and α = 5.3×10−7

ζ for 199Hg+ on the S1/2 ↔ P1/2

cycling transition. For these ions, the cycling transition thus allows almost perfect

discrimination between the bright and dark states, for the photon detection efficiency

available in our experiment.
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A.2.2 Fine-Tuning the Resonant Beam Intensities

The histograms can be used to fine-tune the Blue Doppler, Red Doppler and

the Repumper intensities, and are also useful in setting the Repumper beam position.

To set the Blue Doppler intensity, vary the attenuation (rf and optical) in the Blue

Doppler line to get as many counts as possible per experiment without exacerbating

the off-resonant pumping of | ↑〉 into the cycling transition. In practice, with our solid

angle, a 200 µs Detection Gate, and the Blue Doppler beam detuned roughly halfway

down the resonance curve (i.e. 10 MHz detuned), this corresponds to m ≈ 10 for | ↓〉.

This gives less than 2% discrimination error between | ↑〉 and | ↓〉.

The Red Doppler intensity may be set in much the same way. If the intensity

is too low, then optical pumping is not efficient, and state preparation suffers. So, for

example, if we drive a co-propagating carrier π-pulse to prepare the state | ↑〉 then any

population which was left in | ↑〉 after optical pumping gets transferred to | ↓〉. Rather

than producing a dark state, we produce a mixture of photon counts corresponding to

| ↑〉 and | ↓〉. On the other hand, if Red Doppler is too intense, then the efficiency

of optical pumping becomes much more sensitive to imperfections in the Red Doppler

polarization due to off-resonant pumping out of | ↓〉.

Finally, the histograms may be used to line up the Repumper beam on the ion.

This beam is typically wider than the Blue and Red Doppler beams before the input

lens. Thus it is more tightly focussed at the ion, and so is harder to align. Also, this

beam is less intense than the Doppler beams. However, once Raman cooling is turned

on, the multiple recyclings from | ↑〉 to | ↓〉 produce a large probability that the ion

will fall into the 2s 2S1/2F = 2, mF = −1 state. If we try to make the state | ↓〉 with

Raman cooling on and the Repumper off then we get a pile-up of counts in the first

few bins of the photon number histogram. Fig. A.4(a) illustrates this (compare with

Fig. A.4(b), where the Repumper beam is aligned on the ion). Note that, with the
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Figure A.4: (a) Photon number histogram with the ion nominally in | ↓〉, but Raman
cooling on and no Repumper. 23% of the counts fall in bins which correspond to | ↑〉.
(b) Photon number histogram for the same conditions as in (a), but with the Repumper
aligned on the ion. Now, only 5% of the counts fall in channels corresponding to | ↑〉.

Repumper blocked, 23% of the counts for a nominal | ↓〉 state fall into the first three

channels.

In order to peak up the Repumper, sit off-resonance with the Probe oscillator

(or turn the Probe off), and maximize the count rate (looking at the needle gauge)

by playing with the input optics for the Repumper beam line. Once the Repumper is

optimized, there shouldn’t be more than 4-8% of the counts in the first three bins of

the photon number histogram.



Appendix B

Matrix Elements
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Figure B.1: Relative transition strengths for transitions between | ↓〉 and the 2p 2P1/2

level. The states are labelled in the |mJ , mI〉 basis in the ground and excited states. In
addition, for the ground state 2s 2S1/2, the quantum numbers F and mF are indicated.
Transitions which are driven by σ+-polarized light are shown in solid gray, those driven
by π-polarized light in solid black, and those driven by σ−-polarized light in dashed
black. (a) Matrix elements between the ground state, F = 2 hyperfine and 2p 2P1/2

levels. Note that|F = 2, mF = −2〉 ≡↓. (b) Matrix elements between the ground state,
F = 1 hyperfine and 2p 2P1/2 levels. |F = 2, mF = −1〉 ≡↑.
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Figure B.2: Relative transition strengths for transitions between | ↓〉 and the 2p 2P3/2

level. The states are labelled in the |mJ , mI〉 basis in the ground and excited states. In
addition, for the ground state 2s 2S1/2, the quantum numbers F and mF are indicated.
For the sake of clarity, the transition strengths are only indicated for the ground states
with mI ≥ 0. The transition strengths are the same for the states |mJ , mI = −|mI |〉.
Transitions which are driven by σ+-polarized light are shown in solid gray, those driven
by π-polarized light in solid black, and those driven by σ−-polarized light in dashed
black. (a) Matrix elements between the ground state, F = 2 hyperfine and 2p 2P3/2

levels. Note that|F = 2, mF = −2〉 ≡↓. (b) Matrix elements between the ground state,
F = 1 hyperfine and 2p 2P3/2 levels. |F = 2, mF = −1〉 ≡↑.
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Mathematical Miscellany for SU(1,1) Berry’s Phase

C.1 Calculation of SU(1,1) Berry’s Phase Integral

We wish to calculate the integral

−γ =
∫ sinh r

k1=0

∫ sinh r

k2=0

dk1 dk2√
1 + k2

1 + k2
2

, (C.1)

which gives the geometric (anholonomic) contribution to the phase produced by a

sequence of four squeezings constituting a closed loop on the unit hyperboloid (see

Sec. 9.3). The first integral is straightforward, and so we immediately obtain:

−γ =
∫ sinh r

k2=0
arcsinh

 sinh r√
1 + k2

2

 dk2 . (C.2)

With the substitution k2 = sinhx, this becomes

−γ =
∫ r

0
arcsinh[sinh r sechx] coshx dx . (C.3)

Identifying dv = coshx dx and u = arcsinh[sinh r sech x] and integrating by parts, this

becomes:

−γ = arcsinh[tanh r] sinhr −
∫ r

0

sinh r sinh2 x

coshx
√

sinh2 r + cosh2 x
dx

= arcsinh[tanh r] sinhr − I . (C.4)

In order to integrate I, let y = coshx. In this case, the integral becomes:

I = sinh r
∫ cosh r

1

1
y

√
1− y2

sinh2 r + y2
dy. (C.5)
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This integral is somewhat obscure. However, rewriting it as

I = i sinh r
∫ cosh r

1

1
y

√
1− y2

y2 − (i sinhr)2
dy (C.6)

puts it in a form found on pg. 362 of Ref. [228]. Thus,

I = − sinh r arctanh

[
sinh r√

cosh2 r + sinh2 r

]
− i arctanh

[
i sinh2 r√

cosh2 r + sinh2 r

]
. (C.7)

Using the identities arctan(ix) = iarctanh(x), arctanh(x) = arcsinh
(

x√
1−x2

)
, and

iarcsinh(x) = arcsin(ix), this may finally be put in the form:

I = −arcsinh[tanh r] sinhr + arcsin[tanh2 r], (C.8)

which gives

−γ = 2 arcsinh[tanh r] sinh r + arcsin[tanh2 r], (C.9)

which is Eq. (9.60).



Appendix D

Glossary of Symbols

A prime (′) generally denotes interaction-picture operators.

V0 rf voltage amplitude

ΩT rf drive frequency

d0 characteristic trap dimension

Q ion charge

m ion mass

ztot ion position, including secular motion and micromotion

z secular motion

zµ micromotion

xµ0,j micromotion amplitude of jth ion in x-direction (2-ion entanglement)

ωm secular frequency of mode m

ωz z secular frequency ≈ 2
√

2QV0

md2
0ΩT

ωr radial secular frequency (spherical quadrupole trap) ωr = ωz/2

Dz pseudopotential well depth (z-direction) ≈ QV 2
0

md2
0Ω

2
T

U0 static quadrupole voltage on trap electrodes

q Mathieu q-parameter

a Mathieu a-parameter
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β 2ωm
ΩT
≈
√
a+ q2

2

also displacement parameter due to noisy electric fields

also qubit coefficient

â harmonic oscillator lowering operator =
√

mωz
2h̄ (ẑ + i

mωz
p̂)

â† harmonic oscillator raising operator =
√

mωz
2h̄ (ẑ − i

mωz
p̂)

n̂ harmonic oscillator number operator = â†â

H.C. Hermitian conjugate

z0 ground state wave packet spread =
√

h̄
2mωz

Q resonator quality factor

Z0 resonator characteristic impedance

α atomic polarizability of neutral background gas atoms

also coherent state amplitude

also qubit coefficient

µred reduced mass for ion/neutral collisions

ν relative velocity in ion/neutral collisions

b impact parameter for ion/neutral collisions

bcrit critical impact parameter for spiralling

ion/neutral collisions

kLangevin Langevin rate constant

γLangevin reaction rate due to background neutral gas particles/spiralling

collisions

γel background gas reaction rate based on total elastic cross sectioin

ρ background gas density

ρ̂, ρn,m density matrix, matrix elements

σel total elastic collision cross section

ex, ey, ez unit vectors in the x-, y-, and z- directions
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e electron charge

| ↓〉 9Be+, 2s 2S1/2, |F = 2, mF = −2〉 state

(sometimes |F = 2, mF = 2〉)

| ↑〉 9Be+, 2s 2S1/2, |F = 1, mF = −1〉 state

(sometimes |F = 1, mF = 1〉)

|v〉 “virtual level” for Raman transitions: 9Be+, 2s 2S1/2 level

γ excited state (2p) linewidth ≈ 19.4 MHz for 9Be+

also Berry’s (geometrical) phase

δFS
9Be+ fine-structure splitting ≈ 197 GHz

τ excited state lifetime (= 1/2πγ)

σ̂1, σ̂2, σ̂3 Pauli matrices (one also sees the notation σ̂x, σ̂y, σ̂z)

Ŝ1, Ŝ2, Ŝ3 atomic spin operators = 1
2 h̄σ̂j

Ŝ+, Ŝ− Ŝ± = 1
2 (Ŝ1 ± Ŝ2)

µ̂ electric dipole moment of the atom = er̂el

k, k laser wave vector, magnitude

∆k laser wave vector difference (Raman transitions)

ωL laser frequency

∆ωL laser frequency difference

φ laser phase

also general phase

ω0 carrier resonance frequency

(9Be+ hyperfine splitting plus Zeeman shift difference)

δ laser detuning from resonance

∆R Raman laser detunings from virtual level v
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Ω carrier Rabi frequency

Ωn,m sideband Rabi frequency

Ωd effective displacement amplitude for applied electric fields

ĝi single-photon coupling operators (Raman transitions)

= Eie e
−iφiεi · x̂/2h̄

g1 single-photon coupling strength (Raman transitions)

= 〈↓ |ĝ1|v〉

g2 single-photon coupling strength (Raman transitions)

= 〈↑ |ĝ2|v〉

g general Rabi frequency (e.g. if g1 = g2 = g)

also red sideband coupling strength for engineered

T = 0 reservoir = iηh̄Ωeiφ

η Lamb-Dicke parameter (= kz0, 1D)

n average phonon number

ζ overall detection efficiency

also dimensionless time in Mathieu equation

tDG length of Detection Gate

tpr length of probe pulse

TR length of free evolution time in Ramsey experiment

I laser intensity

IS saturation intensity (≈85 mW/m2 for 9Be+)

m avg. number of photons detected

D̂(α) displacement operatore = e(αâ†−α∗â)

Lm
n associated Laguerre polynomial

P↓ probability that the ion is in | ↓〉
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Cn, C↓,n, C↑,n motional state probability amplitude

C
(k)
i (t) kth-order perturbative expansion of Ci(t)

Pn prob. that the ion is in motional Fock state |n〉

r ratio of red to blue sideband sizes

also squeeze amplitude in K̂1, K̂2 formalism

pr recoil momentum = h̄k

Er recoil energy = p2
r

2m

B background counts

SE(ω) electric field noise spectral density (V/m2)

Γ0 rate at which ion is heated out of ground state

of motion

kB Boltzmann’s constant ≈ 1.38× 10−23 J/K

g(t) time-dependent laser coupling strength (“walking standing

wave” generation of coherent states)

= 〈↓ |ex · rel
eE
2h̄ cos[ 12(∆kz − δt+ δφ)]|v〉

Ŝ(ε) squeeze operator = exp[ 12(ε∗â2 − ε(â†)2]

ε squeeze parameter ε = Re2iφ

also energy

ε̂ laser polarization vector

Ω↓ Rabi frequency for | ↓〉 (including laser

polarization/matrix elements)

Ω↑ Rabi frequency for | ↑〉 (including laser

polarization/matrix elements)

W (α) ≡W (z, ip) motional Wigner function

Qn(α) ≡ |Cn(α)|2 Fock state probabilities for displaced motional state (density

matrix reconstruction) = 〈n|D̂†(α)ρ̂D̂(α)|n〉
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|ψ±
B〉 Bell states = 1√

2
(| ↓, ↑〉 ± | ↑, ↓〉

|ψe(φ)〉 approximate Bell state =
(

3
5 | ↓, ↑〉− eiφ 4

5 | ↑, ↓〉
)
|n = 0〉

Ωi Rabi frequency of ion i (Bell state production)

ε detuning in “Sørensen and Mølmer” entangled-state

production scheme

also small error in Berry’s phase squeeze operators

also error

⊕ Exclusive-OR operator (addition modulo 2)

also Hilbert space direct sum

|R〉 state of qubit register

R parameters upon which Berry’s phase depends

also reservoir

Ĥ, Ĥ(N) Hadamard transform

|aux〉 auxilliary level for Controlled-NOT logic gate

= |2s 2S1/2, F = 2, mF = 0〉

ŝi system operator (reservoir interactions)

Γ̂i reservoir operator of mode i (reservoir interactions)

χ̂ complete density matrix of system + reservoir

R̂0 initial reservoir density matrix

M superoperator

11 identity operator

b̂k, b̂
†
k lowering and raising operators for reservoir

(harmonic oscillator) mode k

N average reservoir occupation number (for given mode or

frequency)

κ coupling strength (to reservoir mode)
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V rms voltage noise

Γ effective decay rate (T = 0 reservoir engineering)

Ωp Rabi frequency of Red Doppler beam (T = 0 reservoir engineering)

ξ dynamical phase

Û(t) (Ch. 9) unitary operator which changes quantum state

to produce Berry’s phase

Ĝ(t) (Ch. 9) operatory which generates Û(t)

Ŝ(t) spin operator for spin-1
2 Berry’s phase

fi ith frame field unit vector

ωi,j differential “one form” which measures rotation of frame field

K̂1 generator of squeezes along z

= − i
4 [â2 − (â†)2]

K̂2 generator of squeezes along z + ip

= 1
4 [â2 + (â†)2]

Ĵ3 ≡ K̂3 generator of rotations in (z, ip)-plane = −1
2 (n̂+ 1

2 )

K̂(t) state operator for SU(1,1) Berry’s phase

×̃ Minkowski cross product (see Eq. (9.44) )

·̃ Minkowski dot product (see Eq. (9.45) )

ε̃ijk
.= (−1)δk,3εijk
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