

Multi-Scale Structures of Starch as Revealed by Scattering Techniques: From Unit Cell to Nanostructure

Amy Musser, University of Maryland NCNR SURF 2022 Mentors: Yimin Mao and Susana Teixeira

Overview

What is starch?

Scanning electron microscopy of corn starch granules. Scale bar $20 \,\mu$ m

DOI 10.1002/star.201000013

Starch granule growth rings (left) semi-crystalline and amorphous layers (center), branching of amylopectin (right)

3

Experimental Objective

Question: How does addition of water within hydrated starches affect the structure of type A and type B starches?

Objective: Use small angle scattering (SAS) and contrast variation techniques to determine the effect of water on structure in hydrated starch samples in both type A and type B crystals

Starch granule growth rings (left), semi-crystalline and amorphous layers (right). Scale bar 1 μ m

Type A and B Crystals

		Amylose Percent	Crystalline Type
1	Waxy Maize (WM)	0	A
2	Normal Maize (NM)	26	A
3	High Amylose Maize (HAM)	70	В
4	Pea	30-40	С

Y. Mao, Surf Project Introduction: Starch and Pickering Emulsions, UMD/NIST (2022)

Small and Wide Angle Scattering

Y. Mao, Scattering 101: A Heuristic Treatment for the Impatient, UMD/NIST (2022)

Wide Angle Scattering

- Bruker D8 Diffractometer
 - UMD X-ray Crystallography Center
- X-rays from copper
 - Wavelength: 1.54 Å
- Software for data processing: Topaz

Sample	Exposure Time
Dry	20 minutes per sample
Wet	5 minute increments for 20 minutes, 2x, no significant difference between rounds

Bruker D8 WAXS Diffractometer, zoomed view (top), full view (right)

Small Angle Scattering

- Xeuss SAXS/WAXS System
 - UMD X-ray Crystallography Center
- X-rays from copper
 - Wavelength: 1.54 Å
- Software for data processing: Igor Pro 8

Xeuss system (top), sample chamber (left)

SAXS Data Processing Parameters

- Detector: Pilatus 300k
- Sample holder thickness (mm): 0.8
- CCD pixel size (mm): 0.172
- Beam size (mm): 0.8
- Calibration standard: AgBe
- Background: Kapton
- Plotting: Q-dot, 300 points and circular average
- Data from two sample to detector distances (SDD) stitched together

SDD (mm)	Exposure Time
2500	20 minutes, 2x for starches; 10 minutes, 1x for kapton
590	15 minutes, 2x for starches; 15 minutes 1x for kapton

Sample Preparation

		Crystalline Type	Dry Moisture (%)	WAXS Wet Moisture (%)	SAXS Wet Moisture (%)
1	Waxy Maize (WM)	A	13	49.9	50.0
2	Normal Maize (NM)	A	13	50.0	50.0
3	High Amylose Maize (HAM)	В	12	49.7	50.0
4	Pea	С	13.58	50.0	50.0

SAXS of dry starches. Data at SDD 2500 and 590 mm stitched. Log scale

SAXS of wet starches (50% hydration). Data at $_{\rm 11}$ SDD 2500 and 590 mm stitched. Log scale.

SAXS Results

Crystalline and Amorphous Interlamellar Distance (d)

Starch	Crystal Type	Amylose (%)	d (dry) (nm)	d (wet) (nm)
Waxy Maize	A	0	6.90	9.58
Normal Maize	A	26	8.64	9.67
High Amylose Maize	В	70		9.27
Pea	С	30-40	9.24	9.98

2 χ π

q

d =

Peak Width

Water increases degree of organization

- Waxy Maize (most sharp)
 - Most ordered
- High Amylose Maize (least sharp)
 - Least ordered

WAXS Results

Type A

Parameters

Crystal	Туре А	Туре В
Symmetry Space Group	B112	P61
Cell Length A (Å)	20.83	18.52
Cell Length B (Å)	11.45	18.52
Cell Length C (Å)	10.58	10.57
Gamma (degrees)	122.0	120.0

Hydrated samples show narrow, exaggerated peaks

Future Work: Analysis of wet normal maize and pea starch

WAXS of dry starches (top) and wet (50% hydration) starches (bottom). Data fitted using TOPAZ and crystal unit cell parameters.

Conclusions

Hydrated Starch

- Swells crystalline and amorphous inter-lamellar distance (nm scale)
- Increases organization of crystalline and amorphous lamella (nm scale)
 - Type A starch more so than Type B starch
- Increases crystallinity of unit cells (µm scale)
 - Type B starch more so than Type A starch

Y. Mao, Surf Project Introduction: Starch and Pickering Emulsions, UMD/NIST (2022) ¹⁴

Future Work

Question: How does addition of water within hydrated starches affect the structure of type A and type B starches?

Objective: Use SAS and contrast variation techniques to determine the primary location water in hydrated starch samples in both type A and type B crystals

Purpose: Knowledge of starch structure can inform measurement techniques and choices in composition and corresponding applications in the food and nonfood industry (e.g. paper making, clothing, etc)

Acknowledgements

CENTER FOR NEUTRON RESEARCH

NIST

UNIVERSITY OF MARYLAND

- Yimin Mao
- Susana Teixeira
- Robert Briber
- Joe Dura

- Paul Butler
 - Susan Krueger
- Brandi Tolivar
- Mary Ann Fitzgerald
- Natalie Schwab

SUMMER UNDERGRADUATE RESEARCH FELLOWSHP SURF