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1 Introduction 
NIST has issued a call for feedback intended to inform a draft for an Artificial Intelligence Risk 

Management Framework (AI RMF). The guidance provided by this framework will help 

technology developers, users, and evaluators improve the robustness and trustworthiness of 

the AI systems they work with. MIT Lincoln Laboratory (MIT LL) is responding to your request to 

provide input and feedback.   

To set the stage for our response, we reiterate the importance of risk management for AI 

systems and summarize high-level concerns. Several unique aspects of artificial intelligence 

technologies necessitate the development of an AI-tailored risk management framework. As 

new techniques are developed, and systems are built and deployed, the emergent properties of 

these systems can result in unintended consequences – particularly in unforeseen 

circumstances. Often, the models and algorithms used in these systems can be “black boxes”, 

yielding little insight into how and why particular decisions were made, and with little ability to 

understand what the system has learned or will learn over time. Furthermore, the nature of 

human interaction with AI systems is a field of active research, and new guidelines and best 

practices are still being explored. High profile public failures of AI systems with negative 

consequences for human safety and lack of ethical considerations have eroded trust in AI 

utilization.  

Risk management in general-purpose systems engineering is already complex, and is only 

compounded by the additional complexity of AI systems development. Further investigation is 

needed into how systems engineering techniques can be applied to reduce risk for AI. Some 

specific approaches for investigation could include those for distributed systems (chaos 

engineering), software engineering (fuzz testing, CI/CD), and cybersecurity (layered defense 

approach, penetration testing).  



We have organized our response to the NIST RFI into five major categories that we believe 

capture the major components of a risk framework definition and implementation. MIT LL 

develops techniques, tools, and metrics for assessing AI robustness, resilience, explainability, 

and ethics. Through organization of workshops, we actively support a growing community of 

stakeholders exploring AI system robustness. These responses are based on lessons learned 

across our studies, research programs, and community activities. 

1. Managing risk relative to the AI lifecycle 

Risk management requires consideration of the full lifecycle - from conception through 

design, development, testing and evaluation, deployment, and operational monitoring.  

 

2. Metrics in support of the RMF 

Measuring risk quantitatively should be a key aspect of the RMF, so that goals can be 

clearly defined and progress assessed.  

 

3. Tools for evaluation and assessment of risk, as well as for mitigation through the AI 

lifecycle 

The proposed framework should include tools, techniques, and both development and 

test harnesses that enable application of the risk principles to real-world AI capabilities. 

 

4. Human Computer Interface (HCI) aspects of AI risk  

An effective way to manage risk from AI systems is to consider the context that a 

human-machine team provides. Throughout the AI lifecycle, there are opportunities to 

leverage HCI insights to assess and manage risk. 

 

5. Various organizational roles within the RMF ecosystem in support of the AI RMF 

A variety of organizational types will be required to realize the RMF. While leading edge 

capabilities will largely come from industry and academia before they are leveraged by 

mission users, such as the government, FFRDCs can help assess, mature and manage the 

risk of those technologies prior to transition. 

We believe the proposed RMF should not stand alone, but should be included within a general 

framework for AI engineering that includes not only AI design principles and best practices, but 

also guidelines for robust, fair, and ethical use and performance.  In this way, risk consideration 

can more closely follow the AI lifecycle throughout rather than being an afterthought. 

2 Managing Risk throughout the AI Lifecycle 
Risk management requires consideration of the full lifecycle - from conception through design, 

development, testing and evaluation, deployment, and operational monitoring. 



2.1 Pre-design Considerations 
Some high-level questions should be addressed during the earliest planning stages of a 

potential AI-based solution, before design even begins in order to determine if AI is appropriate 

for the use case at hand and to uncover potential unintended consequences. These issues 

include: 

 Legal:  

o Are there any data/privacy regulations that would affect access to necessary and 

sufficient training data, or that would apply to a deployed system’s inputs or 

outputs (direct or inferable)?  

o Could the system exhibit bias or discrimination against protected classes?  

o Could the developer or operator of the system be held liable for consequential 

mistakes? 

 Societal and Ethical: 

o Who might be adversely affected by the system, and what is the potential for 

societal harm? As described in A Framework for Understanding Sources of Harm 

throughout the Machine Learning Life Cycle, decisions made in many phases 

could contribute to this harm. (Suresh & Guttag, 2019) 

o Could there be significant public concern or opposition that might be difficult to 

manage, jeopardize operation, or damage the developer’s or operator’s 

reputation (including the government’s)? 

o Is it possible or necessary to inform or educate the public in a way that could 

address foreseen concerns? 

 Consequences and Tolerances: 

o What are the potential consequences of system errors (i.e., misclassifications, 

incorrect outputs), whether benign or due to adversarial attack?  

o What are the ramifications of “CIA” attacks or failures? 

 Confidentiality: exposure of confidential information 

 Integrity: manipulated data or outcomes 

 Availability: system inaccessible due to attack or other failure 

o What are the ramifications of inappropriate trust in the system – either 

overconfidence or lack of confidence? 

o How will consequence severity be quantified (e.g. severity levels) to enable 

evaluation and comparison? The European Commission’s regulatory framework 

proposal on AI, for instance, defines four levels of risk, from minimal to 

unacceptable. (European Commission, 2021)  

 Requirements: 

o What requirements must the system meet in order to avoid, or mitigate to an 

acceptable level, the risks that come out of these assessments? 

o How should these requirements change as a system progresses through various 

technology readiness levels (TRLs)? 



2.2 Design and Development 
Designers and developers of AI-based systems face many challenges in achieving and balancing 

accuracy, robustness, privacy, and fairness, all in the face of rapidly evolving research. In order 

to minimize design and development based risks, the following should be considered: 

o Training: Require “responsible AI” training for AI system designers/developers, 

similar to training required for human subjects research. Illustrate such training 

with real-world failure examples, such as the Microsoft Tay chat bot or Google’s 

racially biased face recognition. 

o Documentation: Require minimum standards of documentation (across all 

phases) to facilitate reproducibility, testing, auditing, and generally more reliable 

engineering. Datasheets for datasets (Gebru, et al., 2018) and model cards for 

model reporting (MItchell, et al., 2019) are two examples of proposed, 

standardized documentation. 

o Best Practices: Require consideration of and adherence to best known practices, 

consulting a checklist or guide (across all phases). For instance, the NeurIPS 

conference provides a checklist of guidelines for authors who should answer 

each question with yes/no/NA and provide justification of the answer. (NeurIPS, 

2021)  

During design and development, it is important for best practice guidelines to help developers 

identify potential vulnerabilities or areas of concern, and appropriate mitigations. A non-

exhaustive list of such concerns includes: 

 Data: 

o Input sensor reliability 

o External data dependencies, data provenance, and data poisoning 

o Data selection with respect to representativeness, comprehensiveness, bias, 

filtering, and sampling 

o Data labeling and metadata 

o Data fusion 

o Data normalization, encoding, and featurization 

o Data partitioning 

 Learning algorithm: 

o Suitability for task 

o Randomness and reproducibility 

o Noise 

o Hyperparameters 

o Overfitting 

o Catastrophic forgetting 

o Confidentiality (algorithmic leakage) 



Insider threat should be considered in all phases, including access to the data and learning 

algorithms. 

2.3 Testing and Evaluation 
Testing and evaluating AI-based systems is equally challenging, and there is a dire need for 

establishing scientifically rigorous best practices in this area. The testing reported in many 

academic papers is ad hoc and results are difficult to compare between approaches. Large 

datasets that are difficult to vet fully, and often-opaque system operation complicate the 

testing, evaluation, and debugging of AI systems. 

While AI-specific testing and metrics are needed, existing methods and metrics from other 

disciplines (such as traditional software testing and safety engineering) could be adapted and 

applied in machine learning. Potential test and evaluation approaches could include:  

 Verification of properties of an AI system, to ensure it behaves as intended (Katz, 
Barrett, Dill, Julian, & Kochenderfer, 2017) 

 Metamorphic testing, a type of property-based testing used for scientific software (like 
AI) where exact input/output correspondence may be unknown, but certain properties 
about the relationship should hold (e.g. small perturbations to the input should not 
cause large swings in output) 

 Targeted stress testing, to ensure resilience to possible or likely perturbations for a 
given deployment/use case 

 Broad stress testing, to ensure scalability and resilience to a wide variety of general or 
common perturbations (such as data dropout and noise) 

 Adaptive stress testing, searching for any possible failure modes 

In addition to evaluating system performance for speed, resources, scalability, and accuracy, we 

should also subject AI systems to robustness testing (adversarial and otherwise), which implies 

having previously set robustness requirements. The development of this discipline could draw 

heavily upon examples from cybersecurity. 

One challenge with a cybersecurity analog is evaluating the performance of a system 

unwittingly trained on poisoned data, resulting in misleading results during testing and 

evaluation. This is similar to the challenge of anomaly detection in cybersecurity (e.g. in 

network traffic), when the “norm” against which the system was developed unwittingly 

included adversarial activity. 

Finally, dynamic systems that include online or active learning pose a particular challenge for 

testing and evaluation, since it is unknown how the system will evolve over time. 

2.4 Deployment 
Additional risks to consider during the deployment phase concern the system inputs and 

outputs in addition to the model itself.  



Adversaries may manipulate the contents and timing of an input stream, or specific input 

samples, in order to degrade system performance or availability, or cause random 

misclassifications to erode user trust. Alternatively, the goal may be a targeted misclassification 

to achieve a specific outcome. Adversarial inputs can also be targeted at explainable AI, 

potentially achieving a targeted and misleading explanation, which could be another way to 

erode user trust. 

A non-exhaustive list of deployed model and output concerns includes: 

 Improper re-use of a model trained for another purpose 

 Unwitting transfer of a poisoned or “Trojan” model 

 Technical debt related to model provenance (i.e., open-source models) 

 Generalizability vs specificity 

 Model inversion (the ability to recover the training dataset) 

 Model extraction (the ability to extract information and parameters necessary to 

reproduce the model) 

 Membership inference (the ability to determine if a given sample was included in the 

training data) 

 Proper tuning of hyperparameters and thresholds 

 Confidence scores and explanations 

 Opaqueness of model operation and outputs 

 Mistakes, whether benign or adversarial 

 Output feeding back into input (particularly in online learning systems) 

Again, insider threat is a risk in many phases, including deployment where parameters, 

thresholds, and outputs could be manipulated, and human-machine teaming affected.  

2.5 Operational Monitoring 
Drawing upon lessons from cybersecurity, we must continue to evaluate risk even after 

deployment, actively monitoring an operational system in order to detect, respond to, and 

recover from failures, whether benign or adversarial in nature. 

 Detect: Examples of detection activities include 

o Monitoring inputs to detect suspicious behavior (e.g. systematic query patterns 

designed to extract information, anomalies and outliers, or intentional 

manipulation) 

o Monitoring for data distribution shift (e.g., new cameras/sensors generating 

inputs) 

o Monitoring system to detect model or concept drift (e.g., identify model 

performance drop due to learned pattern changing) 

o Monitoring system performance (e.g., timing, resources) to detect degradation 

or unusual behavior 



o Human auditing of AI decisions, depending on particular application and 

consequences of mistakes (e.g. random audits, low-confidence decision audits, 

or even auditing all high-stakes decisions) 

 

 Respond: A response plan should be developed prior to deployment so that if undesired 

system behavior or adversarial attack is detected, the plan can be put into action as 

soon as possible. A response might include taking the system offline, bringing a backup 

system online, reverting to alternative procedures, or continuing to operate but with 

additional caveats or restrictions. The appropriate response is highly dependent upon 

the application and the consequences of the undesired behavior. Incident reporting may 

be advised or required. 

 Recover: Following an immediate response to a detected failure or breach, there is a 

need to eventually return to normal operation. The exact path to recovery will depend 

on the nature of the failure or attack, the application at hand, and the consequences of 

the errant behavior. If some type of poisoning was discovered, it may be necessary to 

retrain the model on cleansed data before being brought back online.  If there was an 

adversarial evasion attack, recovery may involve performing additional adversarial 

training to make the model more robust. Again, a recovery plan should be developed 

prior to deployment to enable speedy execution when needed. 

3 Metrics 
Measuring risk quantitatively should be a key aspect of the RMF, so that goals can be clearly 

defined and progress assessed. No single, universal metric will suffice; rather, we require a suite 

of metrics across the entire AI system lifecycle.  

Additionally, we will need to understand how various goals and metrics interact with each 

other, and which should be prioritized at the expense of others when they are in conflict. For 

instance, if improving a model’s robustness decreases its fairness or privacy, how do we make 

that tradeoff? Quantitative metrics will be important to such decision making and cost/benefit 

analyses. As such, it is equally important to ensure that metrics and their implications can be 

presented to non-ML experts, which often include key decision makers, clearly and accessibly. 

Some specific areas where metrics are applicable and needed include the following, some of 

which can be borrowed and adapted from prior work: 

 Quantifying potential societal harm (e.g. economic) 

 Quantifying cost of mistakes (e.g. in dollars, lives, opportunities), including false 

positives and false negatives 

 Setting acceptable thresholds or levels of acceptable risk 

 Quantifying costs of attacks/breaches (e.g. data exposure, system downtime) 

 Quantifying severity of attack consequences 



 Assessing fairness and bias (Mitchell, Potash, Barocas, D'Amour, & Lum, 2018) (Glymour 

& Herington, 2019) 

 Assessing quality of development practices  

o Tracking adherence to best practice guidelines 

o Quality and sufficiency of documentation 

o Quality of data and dataset assembly 

o Well-considered and appropriately applied learning algorithm 

 Assessing quality of test and evaluation procedures themselves 

o Appropriateness and rigor of methods and metrics used 

o Sufficient coverage of components and functionality 

o Adequacy of robustness assessment 

 Assessing model performance and robustness 

o Model tuning and accuracy 

o Calibrating uncertainty or confidence estimates 

o Amount of information that can be inverted, extracted, or inferred 

o Efficacy of explanations provided with outputs 

 Assessing operational monitoring 

o Efficacy of detection methods for identifying anomalous or suspicious behavior 

o Efficacy of audit procedures 

o Number and characteristics of failures/breaches 

o Efficacy and timeliness of responses to failures/breaches 

o Efficacy and timeliness of recoveries from failures/breaches 

o Effectiveness at enhancing human task or mission performance 

4 Tools 
Specialized tools are required to effectively design, develop, test, evaluate, and analyze AI 

systems. These tools may interact with the algorithms, models, or underlying data of an AI 

system to effectively evaluate the metrics and validate the defined parameters of the RMF. This 

comprehensive suite of tools should be interoperable, expandable, and flexible enough for the 

wide variety of available AI.  

Specific tool categories and considerations include: 

 A suite of tools should cover a broad spectrum of testing, monitoring, and metrics 
approaches, including those outlined in Sections 2.3 (Testing and Evaluation), 2.5 
(Operational Monitoring), and 3 (Metrics). 

 Similar to existing systems like static code analysis in software engineering, tools should 
be standardized and automated to provide analysis to a wide variety of AI systems with 
minimal ad hoc customization. 

 The community should develop an enumeration of potential exploits and threats to AI 

systems. This federated system cataloging threats and exploits to AI systems is 

envisioned as the AI equivalent of the Common Vulnerability and Exposures (CVE), 



Common Weakness Enumeration (CWE), and Common Attack Pattern Enumeration and 

Classification (CAPEC) (The MITRE Corporation, 2020). CVEs for AI systems may be 

particularly challenging, since vulnerabilities may be dependent on specific training data 

and training processes, which shape the final model. A related existing effort is MITRE 

ATLAS, which aims to produce an adversarial ML threat matrix similar to the ATT&CK 

matrix for cybersecurity (The MITRE Corporation, n.d.).  

 Borrowing from the cyber ranges used to measure the risk of cyber systems, tools to 
evaluate AI in the presence of adversarial input and attacks should be created. AI 
testbeds will enable us to more accurately assess risk and compute established metrics 
on the proposed AI-based solution. To facilitate this type of evaluation, we need: 

o A common introspection API to enable automated testing and analysis of AI 

systems. This API should expose system and data status for the purposes of 

making systems compatible with test and evaluation as well as benchmarking 

tools. 

o A suite or toolbox of common adversarial attacks to be used for robustness 
testing and benchmarking, rather than individual, ad hoc approaches. Some 
existing efforts in this area include: 

 Armory (Two Six Labs, 2021) and the related Adversarial Robustness 

Toolbox (LF AI, 2021) from the DARPA GARD program (DARPA, n.d.) 

 AutoAttack, an ensemble of attacks to estimate adversarial robustness 

which often performs more reliable assessment of adversarial robustness 

techniques than researchers themselves (Croce & Hein, 2020) 

 CleverHans,  a library to benchmark machine learning systems' 

vulnerability to adversarial examples (CleverHans Lab, 2021) 

o Benchmarking suites and metrics enable comparisons to baselines and between 

tools, enabling evaluations of multiple AI implementations. These benchmarking 

tools should have the capability to measure progress on a given risk-related task, 

and should be easy to integrate with and run against real-world systems and 

datasets to help organizations assess their own risks. A scoring system should be 

developed along with the metrics for use throughout the RMF. 

 Tools and practices for reverse engineering AI systems are necessary for evaluating 

models due to proprietary protections or the “black box” nature of AI models. Such 

tools could assist red teams in performing AI system assessments, and may be useful for 

finding undeclared or hidden AI components in the supply chain. 

 A vetted and centralized artifacts repository, such as the DoD’s Iron Bank, could provide 

access to hardened and verified open source and COTS tools, training data, and pre-

trained models to facilitate safer development and deployment of AI solutions. 

 

 



5 Human Computer Interaction 
The combination of advanced and effective AI development, tightly coupled to mission success 

through human-machine teaming, presents an opportunity to create a disruptive advantage for 

many of the nation’s and DoD’s hardest problems. However, the close coupling of humans and 

systems has the potential to introduce an additional element of risk relative to human adoption 

and system acceptability, or from an increased attack surface due to uniquely human 

vulnerabilities.   

To ensure effectiveness, additional investments in human-centered, AI-integrated risk 

management processes are required. Potential mitigations include defining and developing:  

• Sustainable, repeatable AI capability development and deployment processes to ensure 

that we understand appropriate uses for AI (as well as identify cases where AI should not be 

applied), and to ensure that AI capabilities are a good fit for mission needs. The application 

of human-centered AI system development techniques should also ensure explainability, 

interpretability, appropriate uncertainty and error bounding, and usability of AI systems by 

both AI experts, domain experts, and novices to both. Ideally, these processes should be 

derived from the considerable existing body of knowledge – covering research 

methodologies and human-in-the-loop evaluation techniques -- from the user-centered 

design and human-computer interaction community. Lessons learned from operational 

deployments should inform the development of standards, best practices, and design 

guidelines for how human-machine teaming technologies are integrated into existing 

government platforms and tools.  

• Experimentation, modeling/simulation, and instrumentation for assessing humans, systems, 

and environments can provide the means to conduct experimentation to predict how AI 

system and human-machine teams will perform under a variety of circumstances. These 

experiments and simulations will provide the means to predict the expected impact of AI at 

all levels of system maturity, understand the potential for emergent properties, and reduce 

the risk of unintended consequences.   

• Quantitative and qualitative metrics and measures of effectiveness, performance, and risks 

for hybrid human-AI systems in a mission context are needed.  

• Little attention has been paid to the security of AI and human-machine teams in red/blue or 

adversarial contexts. Integration of humans into the system can create new opportunities 

for system exploitation by the introduction of new kinds of attacks via adversarial design 

patterns, cyber deception techniques, cognitive or behavioral attacks or social engineering. 

Further research is needed to characterize the risk of hybrid human-AI systems. 

6 Organization Roles 
A variety of organizational types will be required to realize the RMF. While leading edge 

capabilities will largely come from industry and academia before they are leveraged by mission 



users, such as the government, FFRDCs can help assess, mature, and manage the risk of those 

technologies prior to transition. 

The DoD research enterprise is a powerful and unique set of organizational resources.  If 

properly employed, it can make significant contributions to DoD and national AI strategies. As 

trusted USG advisers, government labs and FFRDCs can provide, for example, testbeds for 

evaluating and prototyping new AI computing architectures, advanced AI hardware prototypes, 

sensor and tool development for data collection and simulation, applied AI algorithm research 

and development activities, support for AI standards development, and very strong public 

(commercial and academic) engagement.  

FFRDCs can also play key roles in helping to accelerate the adoption of AI and human-centered 

technologies to operations, providing a roadmap for emerging human-centered research and 

technology development, seeding and running academic research challenges, partnering with 

academia on mission-specific challenges (e.g., accelerators and incubators), bridging operations 

and research (including integration with and among commercial and private entities), and 

facilitating operational adoption of AI technologies. Being at the juncture between academia 

and the DoD, FFRDCs are also able to engage both communities in mediated discussions 

centered on the ethical and safe use of AI technologies. 

7 Conclusion 
MIT Lincoln Laboratory was pleased to have had the opportunity to contribute a response to 

the NIST RFI on an Artificial Intelligence Risk Management Framework. We hope you will find 

our input useful and welcome further interaction as you continue with this nationally important 

task. 

For further discussions or questions on our submission, our point of contact is Kendra 

Kratkiewicz (kendra@ll.mit.edu) 
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