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Introduction 

• Performance of a verification system is	 summarized
using Receiver Operating Characteristic (ROC)	 curve 

• Performance of a closed-set identification system is	
summarizedusingCumulativeMatch Characteristic
(CMC)	 curve 

• Can the CMC	 curve be derived	 from the ROC curve 
and	 vice-versa? 
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ROC  Curve 

• Biometrics samples are compared against each other 
• Genuine and	 impostor scores	 are generated 

• False Match Rate (FMR)	 and False Non-match Rate 
(FNMR)	 are computedat multiple thresholds 

• ROC Curve: True Match Rate versus False Match Rate 
• ROC Curve: Aggregate	Statistics 

© Ross 2016 



 

	 	 	

ROC  Curve 

Match Score Distributions ROC Curve 

© Ross 2016 



 

	 	 	 	 	 	 	 	
	

	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	
	 	

CMC Curve 
• Each probe biometric sample is compared against all 
gallery samples 

• The resulting scores are sorted and	 ranked 

• Determine the rank at which a true match occurs 
• True Positive Identification Rate (TPIR): Probability of 
observing the correct identity within the top K ranks 

• CMC	 Curve: Plots	 TPIR against ranks 
• CMC	 Curve: Rank-basedmetric 
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CMC Curve 
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CMC versus  ROC 
• It is reasonable to expect a good ROC curve to be 
associated	 with a	 good CMC curve and	 vice-versa 
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Predicting  CMC  from  ROC  
• The CMC can be predicted from the ROC data 

• Bolle et. al. (2005), Hube (2006) 

• R. Bolle, J. Connell, S. Pankanti, N. Ratha, and A. Senior. TheRelation Between theROCCurveandtheCMC. AutoID 2005 
• J. Hube. UsingBiometric Verification to EstimateIdentificationPerformance. BSYM 2005 
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Predicting  CMC  from  ROC  
• But neithermodel perfectly predicts the empirical 
CMC	 curve 
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	 	 	GOOD ROC POOR	 CMC 
CURVE CURVE 

ROC  versus  CMC 
• DeCann and Ross (2012) showed that it is possible for 
a	 good ROC curve to be associatedwith a poor CMC 
curve and vice-versa 

B. 	Decann and 	A.	Ross, 	"Can	a	P oor	Verification 	System 	be 	a	G ood 	Identification 	System?	A	Preliminary 	Study,”	 WIFS 	2012 © Ross 2016 
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Why  did  CMC  prediction  models  fail? 

• Each identity contributes uniquely to
the system performance, i.e., 
aggregate	 statistics	 do not 
necessarily predict ranked statistics 
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One  ROC  Curve:  Multiple  CMC  Curves 
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Virtual  Identities 

• Input:	 Set of genuine and impostor match scores 
• Output:	 Virtual identities with different rank-based 
statistics 

• Method:	 “Reassign” match scores to	 virtual identities
according to the	 “Doddington’s Zoo” concept 

• Sheep:	 Low FMR and FNMR 
• Goats:	 High FNMR 
• Lambs:	 High FMR 
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Reassigning  Match  Scores 

• Set of genuine and impostor match scores 
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Sampling  Match  Scores 

• Depending upon “Sheep”, “Goat”, “Lamb” labels 
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Sampling  Rationale 

• Genuine Scores:	 Use the label (“Sheep”, “Goat”,
“Lamb”) to assign genuinematch scores to a virtual
identity 

• ImpostorScores: Use the labels of “pairs”	 of virtual 
identities to assign impostor match scores to a virtual
identity 

© Ross 2016 
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From  Real  to  Virtual 

• Aggregate Statistics do not change 
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Reassigning  Genuine  Scores 
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Reassigning  Genuine  Scores 
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Reassigning  Impostor  Scores 
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Reassigning  Impostor  Scores 
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Reassigning  Impostor  Scores 
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Datasets  Used 
• Face:	 WVU Multimodal Dataset 

• 240	 subjects,	 5	 Samples / subject 
• Match scores computed using	 VeriLook 

• Gait:	 CASIA B dataset 
• 124	 subjects,	 6	 samples / subject 
• Match scores computed using	 Gait Curves algorithm 

© Ross 2016 



 

	 	 	 	 	 	
	 	

Evaluation  Criteria 

• ROC data: Area underneath the ROC (AUC) 
• CMC	 data:WeightedRank-M	strategy 

© Ross 2016 



 

	 	 	 	 	 	
	 	 	 	 	 	

	 	
   

	 	 	 	

Generate  Virtual  Identities  

•Generate virtual identities with different input
parameters: (% Sheep, % Goats, % Lambs) 

•Compute AUC	 and Rank-M	values 
Sheep 

(%) 
Goat 
(%) 

Lambs 
(%) 

AUC 
(Face) 

Rank-M 
(Face) 

AUC 
(Gait) 

Rank-M 
(Gait) 

100 0 0 0.999 1.0 0.980 1.0 
82 10 8 0.999 1.0 0.980 0.966 
50 26 24 0.999 0.997 0.980 0.915 
15 10 75 0.999 0.997 0.980 0.800 

Same Aggregate Statistics Different Rank Statistics 

Note:	In creasing the 	proportion	 of 	Goats 	or 	Lambs 	decreases Rank-M	 performance 
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A Closer  Look 
• ROC and CMC curves for “Original” and “Reassigned” 
• (15% Sheep, 10% Goats, 75% Lambs) 

99%	 to	 
75%

100%	 to	 
99.7% 
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Summary 

• It is possible for a single ROC	 curve to be associated 
with multiple CMC curves 

• The distribution of “Sheep”, “Goat”, “Lamb”	 in the 
target	 population results in this phenomenon 

• Any ROC-CMC	 prediction model, should account for
this variability in user performance 

• Soft biometric traits are more likely to exhibit	 this
type of disparity 

• Reporting both ROC and	 CMC	 curves is recommended 

• Note: Closed-set identification 

Project sponsored by ONR 
© Ross 2016 



 

	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	

	 	
	 	 	 	 	

	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	
	 	 	 	

Reading  Material 

• B. DeCann and A. Ross, "Relating ROC and CMC 
Curves via the Biometric Menagerie," Proc. of 6th
IEEE International Conference on Biometrics: Theory,
Applications and Systems (BTAS), (Washington DC,
USA), September2013 

• B. Decann and A. Ross, "Can a Poor Verification 
System be a Good Identification System? A 
Preliminary Study," Proc. of IEEE International
Workshop on Information Forensics and Security
(WIFS), (Tenerife, Spain), December 2012 
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