Relating ROC and CMC Curves

Work done with Brian DeCann

Arun Ross Associate Professor Michigan State University

http://www.cse.msu.edu/~rossarun

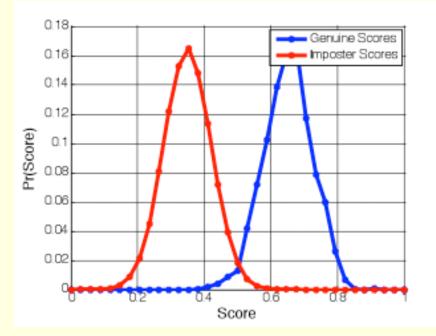
Introduction

- Performance of a verification system is summarized using Receiver Operating Characteristic (ROC) curve
- Performance of a closed-set identification system is summarized using Cumulative Match Characteristic (CMC) curve
- Can the CMC curve be derived from the ROC curve and vice-versa?

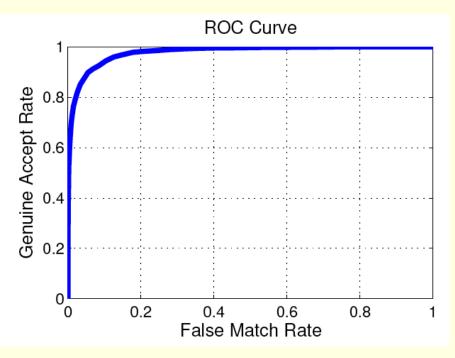
ROC Curve

- Biometrics samples are compared against each other
- Genuine and impostor scores are generated
- False Match Rate (FMR) and False Non-match Rate (FNMR) are computed at multiple thresholds
- ROC Curve: True Match Rate versus False Match Rate
- ROC Curve: Aggregate Statistics

ROC Curve



Match Score Distributions

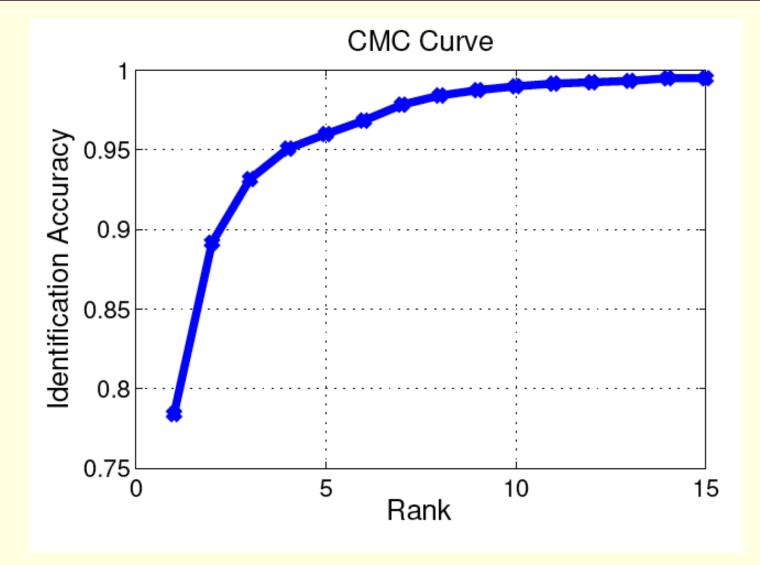


ROC Curve

CMC Curve

- Each probe biometric sample is **compared** against all gallery samples
- The resulting scores are sorted and ranked
- Determine the rank at which a true match occurs
- True Positive Identification Rate (TPIR): Probability of observing the correct identity within the top K ranks
- CMC Curve: Plots TPIR against ranks
- CMC Curve: Rank-based metric

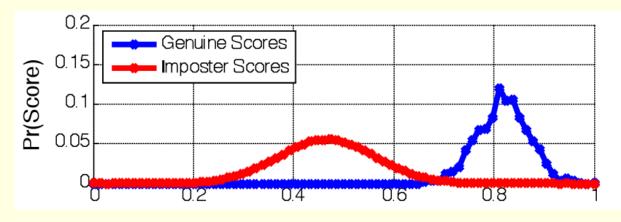
CMC Curve

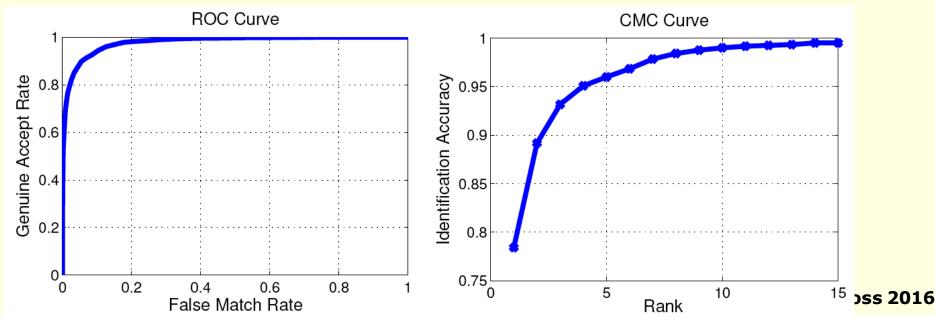


© Ross 2016

CMC versus ROC

• It is reasonable to expect a good ROC curve to be associated with a good CMC curve and vice-versa





Predicting CMC from ROC

• The CMC can be predicted from the ROC data

• Bolle et. al. (2005), Hube (2006)

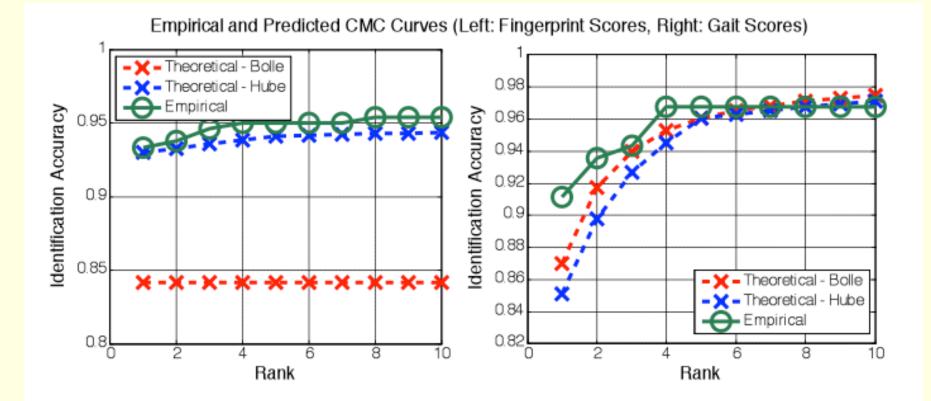
$$\begin{split} \underline{\mathsf{Bolle}}\\ Rank - n &= \sum_{k=1}^{n} \binom{N-1}{k-1} \int_{0}^{\infty} F_{G}(s) \, FAR(s)^{k-1} \big(1 - FAR(s)\big)^{(N-k)} \, ds \\ \underline{\mathsf{Hube}}\\ Rank - n &= \mathrm{TPR}\Big(\mathrm{FAR} = \frac{n}{N}\Big), \, \text{where TPR} = (1-\mathrm{FNMR}) \end{split}$$

- R. Bolle, J. Connell, S. Pankanti, N. Ratha, and A. Senior. *The Relation Between the ROC Curve and the CMC*. AutoID 2005
- J. Hube. Using Biometric Verification to Estimate Identification Performance. BSYM 2005

© Ross 2016

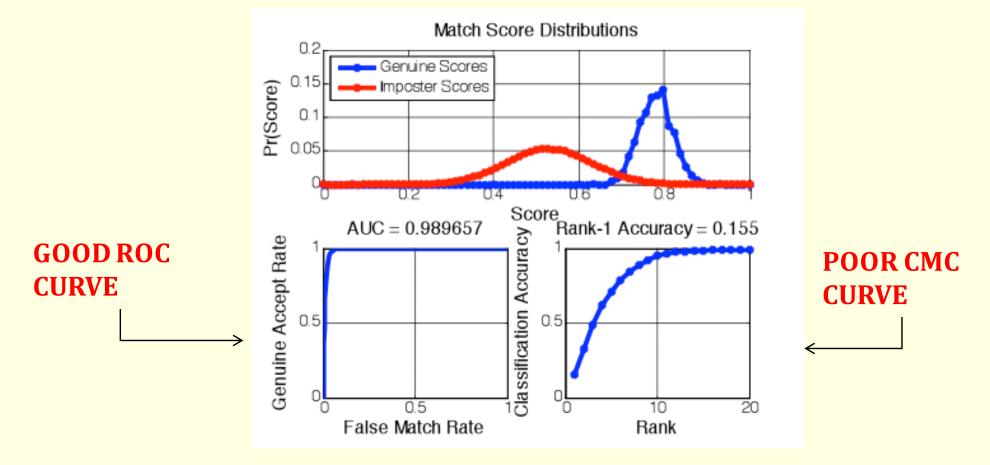
Predicting CMC from ROC

• But neither model perfectly predicts the empirical CMC curve



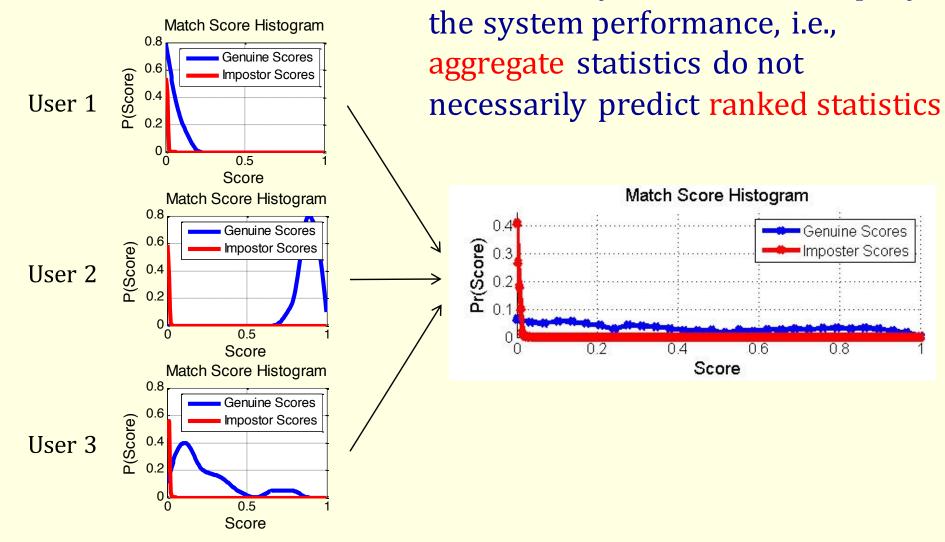
ROC versus CMC

• DeCann and Ross (2012) showed that it is possible for a good ROC curve to be associated with a poor CMC curve and vice-versa

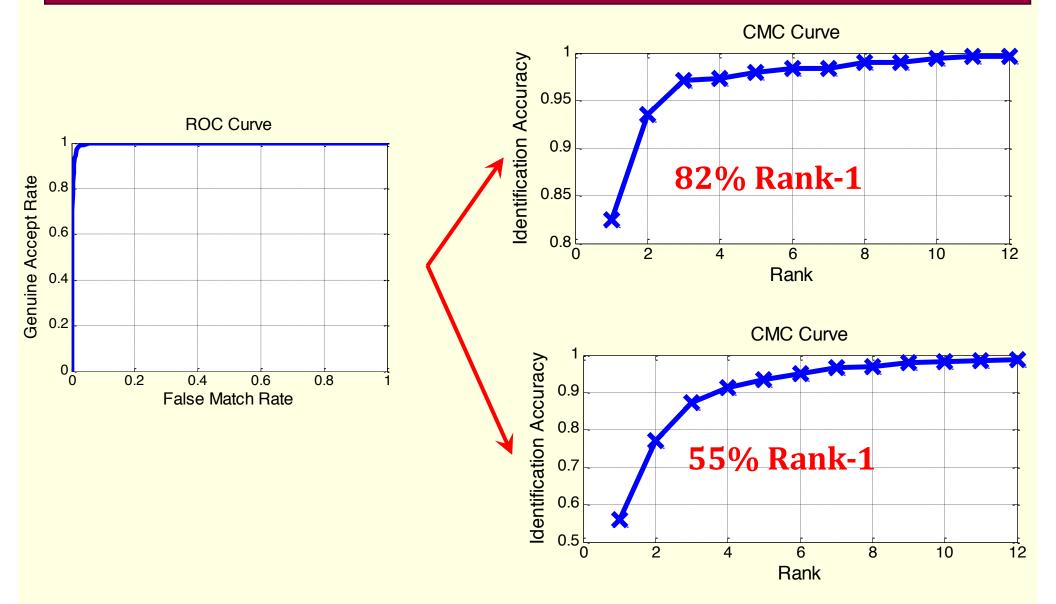


Why did CMC prediction models fail?

• Each identity contributes uniquely to



One ROC Curve: Multiple CMC Curves



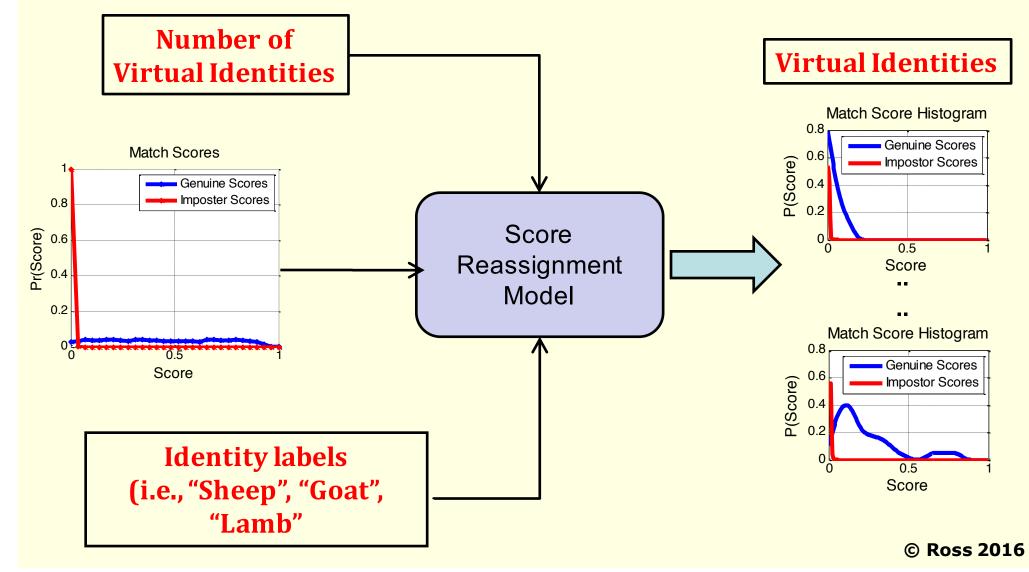
© Ross 2016

Virtual Identities

- Input: Set of genuine and impostor match scores
- Output: Virtual identities with different rank-based statistics
- Method: "Reassign" match scores to virtual identities according to the "Doddington's Zoo" concept
 - Sheep: Low FMR and FNMR
 - Goats: High FNMR
 - Lambs: High FMR

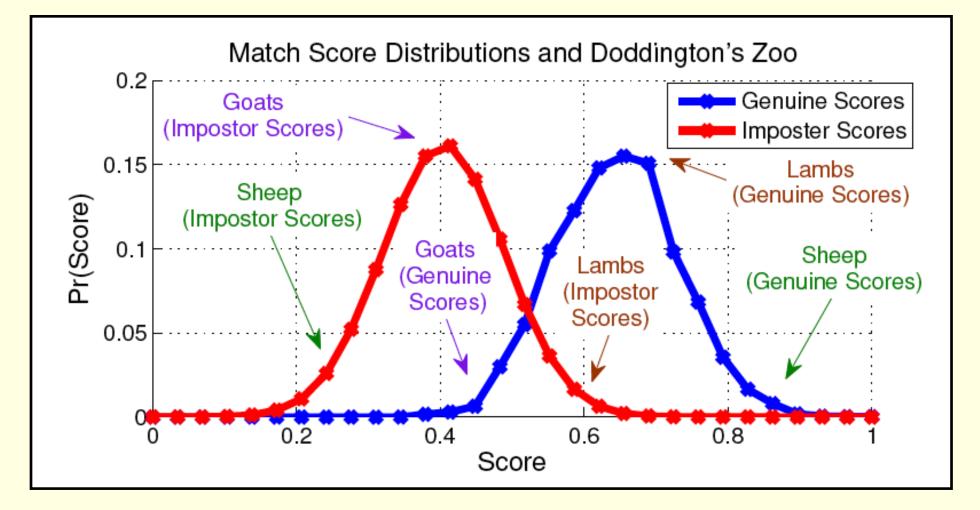
Reassigning Match Scores

• Set of genuine and impostor match scores



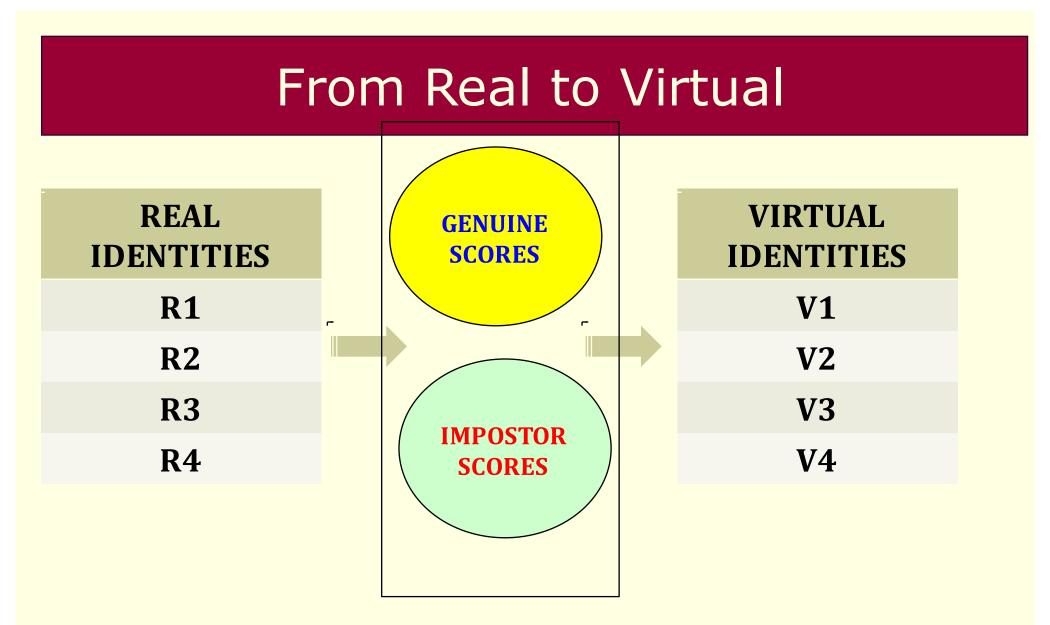
Sampling Match Scores

• Depending upon "Sheep", "Goat", "Lamb" labels



Sampling Rationale

- Genuine Scores: Use the label ("Sheep", "Goat", "Lamb") to assign genuine match scores to a virtual identity
- Impostor Scores: Use the labels of "pairs" of virtual identities to assign impostor match scores to a virtual identity



Aggregate Statistics do not change

Reassigning Genuine Scores

Algorithm 1: Reassigning Genuine Scores

Input: Vector s_{Gen} , containing the genuine scores.

Vector χ , a set containing the labels of each identity

(e.g., "Sheep", "Goat", "Lamb").

Define: δ , ϵ_{Gen} : Scaling parameters.

Output: Matrix S populated with genuine scores.

 $\setminus \setminus$ begin algorithm

Step 1: For each identity, note the assigned label.

Step 2a: Draw a genuine score (without replacement), ϕ ,

 \mathbf{s}_{Gen} , from within subset \mathbf{s}_{rng} , where

$$\mathbf{s}_{rng} = (\mu_{Gen} + \sigma_{Gen}, 1), \text{ if } \chi_n = Sheep.$$

$$\mathbf{s}_{rng} = (0, \mu_{Gen} - \sigma_{Gen}), \text{ if } \chi_n = Goat.$$

$$\mathbf{s}_{rng} = (0, \mu_{Gen} + \sigma_{Gen}), \text{ if } \chi_n = Lamb.$$

Reassigning Genuine Scores

Step 2b: If \mathbf{s}_{rnq} is a null set, and $\mathbf{s}_{rnq} = (a, b)$, set $a = \delta \cdot a$, $b = \frac{b}{\delta}$ and repeat Step 2a. Step 3a: Draw $\binom{N_G}{2}$ – 1 scores (without replacement) from \mathbf{s}_{Gen} within $\phi \pm \epsilon_{Gen}$. Step 3b: If less than $\binom{N_G}{2} - 1$ scores can be drawn set $\epsilon_{Gen} = \frac{\epsilon_{Gen}}{\delta}$ and repeat Step 3a. Step 4: Store the sampled genuine scores in S. return \mathbf{S} $\setminus \setminus$ end algorithm

Reassigning Impostor Scores

Algorithm 2: Reassigning Impostor Scores

Input: Vector s_{Imp} , containing the impostor scores.

Matrix S, where sampled genuine scores are stored (from

Alg. 1) and sampled impostor scores will be stored.

Vector χ , containing the labels of each identity

(e.g., "Sheep", "Goat", "Lamb").

 $\mathbf{S}_{Gen}^{n}, \mathbf{S}_{Gen}^{m}, Assigned$ genuine scores for identities n, m. Define: δ, ϵ_{Imp} : Scaling parameters.

Output: Matrix **S** populated with genuine and impostor scores. $\backslash begin algorithm$

Step 1: For all combinations of n and m (n = 1, ..., N,

 $m = n + 1, \ldots, N$, note χ_n and χ_m .

Reassigning Impostor Scores

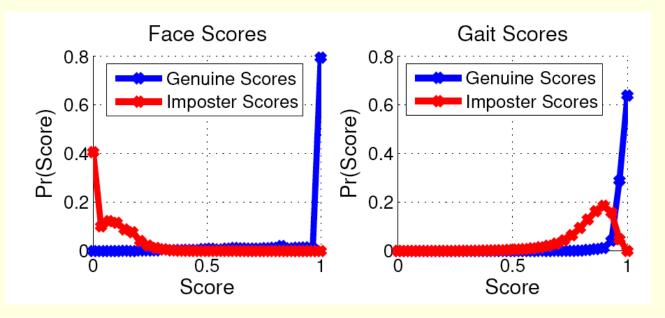
Step 2: Draw an impostor score,
$$\phi$$
 from \mathbf{s}_{Imp} , within
interval \mathbf{s}_{rng} , where
 $\mathbf{s}_{rng} = (0, min\{max\{\mathbf{S}_{Gen}^n\}, max\{\mathbf{S}_{Gen}^m\}\}),$
if $\chi_n = Sheep$ or $Goat, \chi_m = Sheep$ or $Goat$.
 $\mathbf{s}_{rng} = (0, max\{\mathbf{S}_{Gen}^n\}),$
if $\chi_n = Sheep$ or $Goat, \chi_m = Lamb$.
 $\mathbf{s}_{rng} = (0, max\{\mathbf{S}_{Gen}^m\}),$
if $\chi_n = Lamb, \chi_m = Sheep$ or $Goat$.
 $\mathbf{s}_{rng} = (0, 1),$ if $\chi_n = \chi_m = Lamb$.
Step 3: If \mathbf{s}_{rng} is a null set, $\mathbf{s}_{rng} = (0, 1)$.

Reassigning Impostor Scores

Step 4a: Draw $N_G^2 - 1$ scores from \mathbf{s}_{Imp} within $\phi \pm \epsilon_{Imp}$. Step 4b: If less than $N_G^2 - 1$ scores can be drawn set $\epsilon_{Imp} = \frac{\epsilon_{Imp}}{\delta}$, and repeat Step 4a. Step 5: Store the sampled impostor scores in **S**. *return* **S** $\backslash \$ end algorithm

Datasets Used

- Face: WVU Multimodal Dataset
 - 240 subjects, 5 Samples / subject
 - Match scores computed using VeriLook
- Gait: CASIA B dataset
 - 124 subjects, 6 samples / subject
 - Match scores computed using Gait Curves algorithm



© Ross 2016

Evaluation Criteria

- ROC data: Area underneath the ROC (AUC)
- CMC data: Weighted Rank-M strategy

Generate Virtual Identities

- Generate virtual identities with different input parameters: (% Sheep, % Goats, % Lambs)
- Compute AUC and Rank-M values

Sheep (%)	Goat (%)	Lambs (%)	AUC (Face)	Rank-M (Face)	AUC (Gait)	Rank-M (Gait)
100	0	0	0.999	1.0	0.980	1.0
82	10	8	0.999	1.0	0.980	0.966
50	26	24	0.999	0.997	0.980	0.915
15	10	75	0.999	0.997	0.980	0.800

Same Aggregate Statistics

Different Rank Statistics

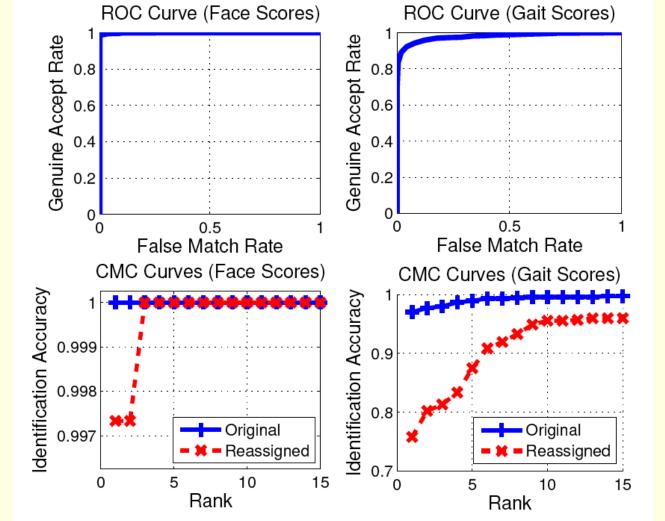
Note: Increasing the proportion of Goats or Lambs decreases Rank-M performance

A Closer Look

- ROC and CMC curves for "Original" and "Reassigned"
- (15% Sheep, 10% Goats, 75% Lambs)

100% to

99.7%



99% to 75%

Summary

- It is possible for a single ROC curve to be associated with multiple CMC curves
- The distribution of "Sheep", "Goat", "Lamb" in the target population results in this phenomenon
- Any ROC-CMC prediction model, should account for this variability in user performance
- Soft biometric traits are more likely to exhibit this type of disparity
- Reporting both ROC and CMC curves is recommended
- Note: Closed-set identification

Project sponsored by ONR

Reading Material

- B. DeCann and A. Ross, "Relating ROC and CMC Curves via the Biometric Menagerie," Proc. of 6th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), (Washington DC, USA), September 2013
- B. Decann and A. Ross, "Can a Poor Verification System be a Good Identification System? A Preliminary Study," Proc. of IEEE International Workshop on Information Forensics and Security (WIFS), (Tenerife, Spain), December 2012