Human Biometric Sensor Interaction (HBSI) Latest Research and Process Model

International Center for Biometric Research

Thanks to the international team of researchers

Dr. Richard Guest	Dr. Eric Kukula
Zach Moore	 Jake Hasselgren
Kevin O'Connor	Mike Brockly
Torrey Hutchison	
Jeff Chudik	
Dr. Steve Elliott	
Joshua Robertson	
Diego Mendez	

What is the Human Biometric Sensor Interaction Framework?

- Its not usability that's defined as the ease of use and learnability of a human-made object (NIST, 150 9241-11:1998)
- Its not ergonomics that's the study of peoples efficiency in their working environment
- Previous versions, dated 2003-2015 did attempt to address the intersection of the human and biometric system; however, the most recent version has progressed beyond usability and ergonomics.
- Its beyond usability and ergonomics
- Today, the HBSI model provides real time situational awareness recommendations and feedback for users interacting with a biometric system

Our philosophy

Usability and Ergonomics have a role, but:

- Biometric systems are not just a fingerprint sensor or an iris sensor in a stand-alone environment
- Standardized metrics are difficult to define for all situations, whether that be use cases, operational and scenarios
- Today, many biometric deployments are a subset in a system of systems
- Usability models typically look at the role of the genuine user, impostors are difficult to test and evaluate
- What use is usability analysis if it is not in real-time and actionable?

The evolution of the model – 13 years of history

Year	Hand	Finger	Iris	Face	Dynamic Signature	Voice	General	
2003				Illumination [2]				(
2004			Mobile iris	Illumination [3], [4]	Different devices [5]		Environment [6]	
2005	Co-rec study [7]	Age [8]						(
2006	Height of hand geometry [9], [10], [11]]Age [12]			Forgeries [13]			
2007	Habituation [14]	Force [15] Age [16] Finger location [17]					Perceptions [18] Interaction [19]	(
2008		Gender [20], Skin characteristics [21]					Advances [22]	
2009		Training [23], Matching [24]					HBSI calculations [25] Ergonomic Design [26]	(
2010		Measurement [27], Force [28], Evaluation [29]	Iris and the Environment [30]				Definitional Framework [26]	
2011	Hand alignment	Force finger interactions [31] Slap segmentation [32]	HBSI training	Detractors	Signature interaction errors [33] Forgery		Evolution of HBSI [34]	(
2012			Iris Recognition				ABC Gate Analysis	
2013	Transaction Times [35]	Number of impressions [36]	Mobile eye recognition	On Mobile Devices		Related Voice data collection		
2014				Signature and User Acceptance [37]				
2015		Border Patrol Replication Booth built in ICBR	Border Patrol Replication Booth built in ICBR, Zach Moore Thesis [43]	Border Patrol Replication Booth built in ICBR			Use of Critical and Associated Tracking Points, HBSI Expansion [38] , Mobile Biometric Usability Assessment [39]	
2016						Interaction evaluation of a mobile voice authentication system [40]	Development of a test harness for biometric data collection and validation [41], A Framework for Biometric and Usage Performance Assessment of Automated Border Control Processes [42]	

- $I Single modality \rightarrow Multimodality$
- Ochanging designs (ergonomics?)
- Manipulating single variables to improve image quality
- Mobile devices (scenario and wild wild difficult to observe)
- Automatic classification of metrics
 based on presentation

HBSI Validation

- Work across a number of modalities and mobile biometrics, and the framework is modality agnostic
- We have used this model, not only on how an observer assesses the biometric user in a static environment but we have conducted multiple tests in the wild. We have now collected HBSI metrics on over 1,000 subjects in the mobile space over the last two years
- Over the past 13 years over 3,000 subjects have been processed through the various iterations of the HBSI models that were developed at Purdue University

The evolution of the framework – 13 years of history

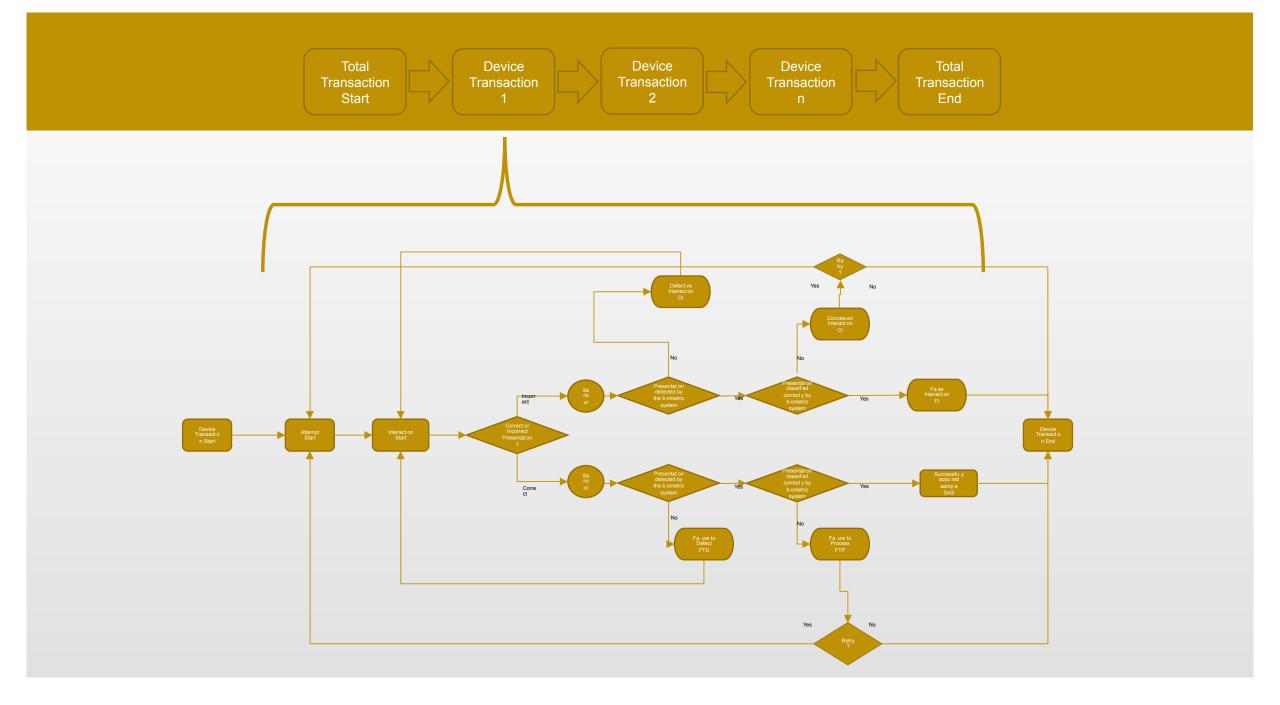
General Model	Hand, Face, Iris, Fingerprint, Voice, Mobile			
Behavioral	Signature			
False Claim				
Attack				
Token				
Process	Attended Border Booth Unattended Borde	er Booth		

HBSI in an operational / scenario environment

Scenario

• Model

- Operator
- User
- Environment
- Baggage



Process HBSI

- Process HBSI model works for a number of different modalities it is in fact user agnostic in terms of biometrics, or any technology. This could work for bar code scanners, passport readers and the like.
- The process HBSI model works for many scenarios, and was designed because of the processes associated with multi-interactions whether that be on a phone, PC, or in a complex system such as a kiosk

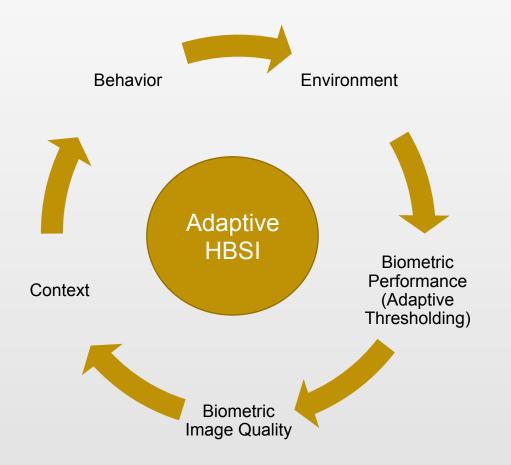
HBSI Unattended Kiosk

Behavior	Possible Systems Handling	HBSI	Notes
Unaware of the process, facing away from the camera	Biometric Presented	Defective Interactions	It is clear in this example that the user made an incorrect presentation
	Not Presented	False Interactions	
User understands where the camera is and is aware of where to look	Biometric Presented	Failure to detect, or SPS	In this example it is clear the user make a correct presentation
	Biometric not presented	Failure to Process	
User is distracted through interaction and loses focus on looking at the camera	Biometric Presented	Successfully Processed Samples, FTP	Cautious behaviors are difficult to classify as a correct or incorrect behavior.
	Biometric not presented	DI, CI, FI	

Model works for border environments

- Three different classifications of ABC systems (Frontex)
 - One-step process (token + identity + border crossing)
 - Integrated two-steps (token and eligibility, then identify)
 - Segregated two-step process (step 1, then a token or ticket, then step two)

Evaluation Points	Definition	Possible Outcome	HBSI categorization
Traveler Presence	Is the traveler's presence detected?	Yes, No (Reject / Assist)	FTD / DI
Token Presence	Is the token detected?	Yes, No (Reject / Assist)	FTD / DI
Token Read	Was the token successfully read?	Yes, No (Reject / Assist)	SPS, FTP / CI
Biometric Capture	What biometric data is required?	Identify Modality	All
Data Verification	At what point does identification take place?	Database / Local Level	Traditional Biometric metrics

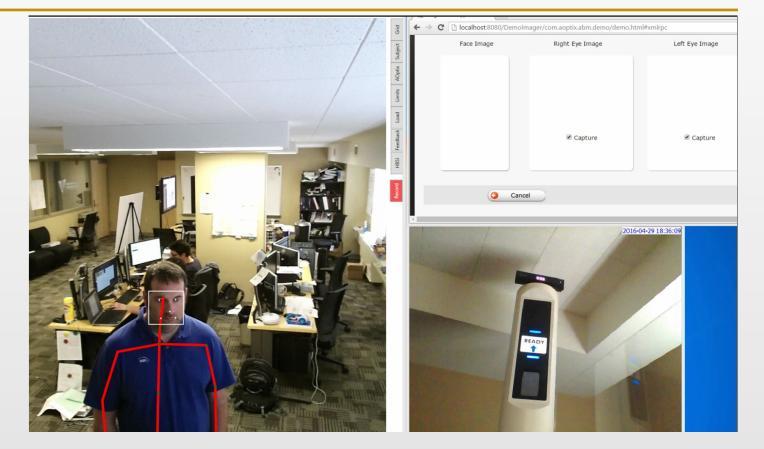

GOAL: Optimize the system

Building blocks of the HBSI framework

Pre Interaction	Predictive tools from research studies and prior data collections	Characteristics about the user from other document data - Passport	Connectors to other 3 rd party data			
	HBSI metrics – tested and evaluated on	User behavior – through the use of primary and		Environmental data (sensor networks and IoT)		
During Interaction	many modalities	secondary tracking points	Feedback to the operator / subject / integrator	Biometric data from the system (IMQ, Performance)	Context	
Post Interaction	Retraining of the system					

Adaptive HBSI

- The ability to influence the environment to enable the biometric system to optimally perform for an individual
 - Behavior
 - Context
 - Environment
 - Biometric performance
 - Biometric image quality

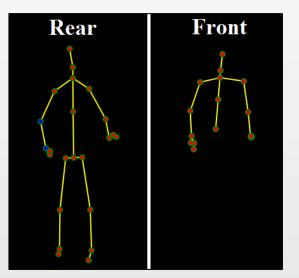


HBSI Model has grown beyond usability to increase situational awareness to modify user behaviors or adapt deployment parameters to increase user experience and optimize system performance

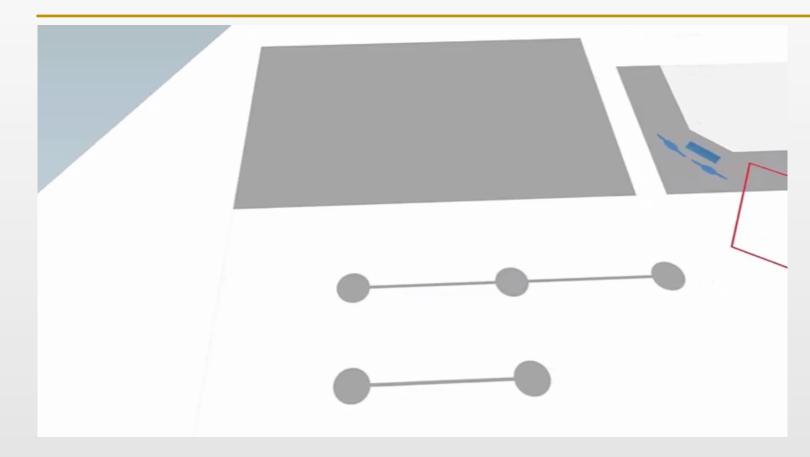

HBSI as part of the system

Scenario in the center

- Real time collection of metrics, including body (pose, angle etc.), face expression, environmental (light, noise etc.), sensor actions, and biometric measurements.
- As this is part of a system (not just the biometric), these metrics are standalone, and not a function of the biometric performance.
- Reacting to the metrics will illustrate how the biometric component of the system works

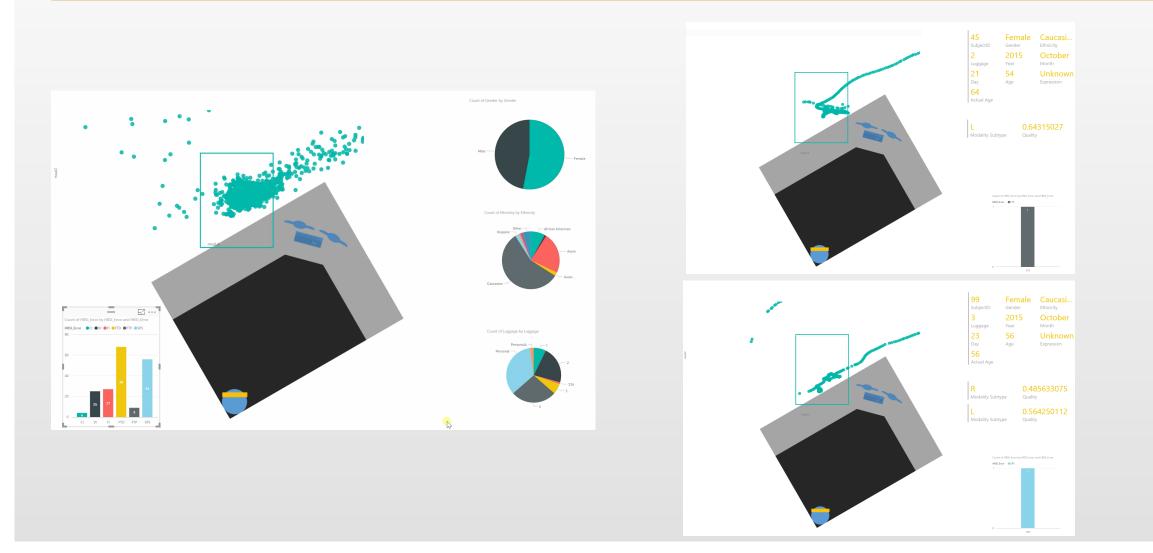


Scenario Evaluations – Critical and Associated Tracking

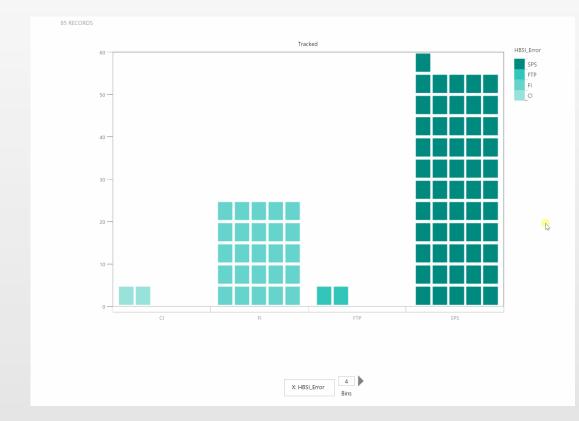


Transaction Luggage Combination

- 1. Backpack
- 2. Large Roller
- 3. Medium Roller
- 4. Small Duffel
- 5. Large Duffel
- . Backpack + Large Roller
- 7. Backpack + Medium Roller
- Backpack + Small Duffel
- 9. Backpack + Large Duffel
- 10. Small Duffel + Large Roller
- 11. Large Duffel + Large Roller
- 12. Large Duffel + Small Duffel
- 13. No Luggage



Border control scenario



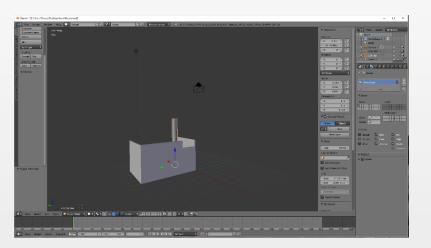
- Subject patterns through the booth (estimate metrics such as throughput impacts)
- Global view of HBSI metrics, automatically segmented in realtime
- Intuitive visualization

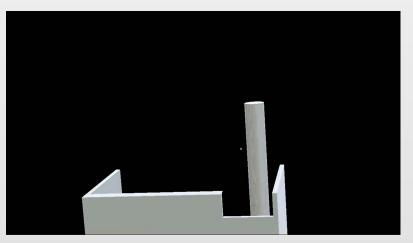
Detailed information about the subject

Real-time data about individuals within the system

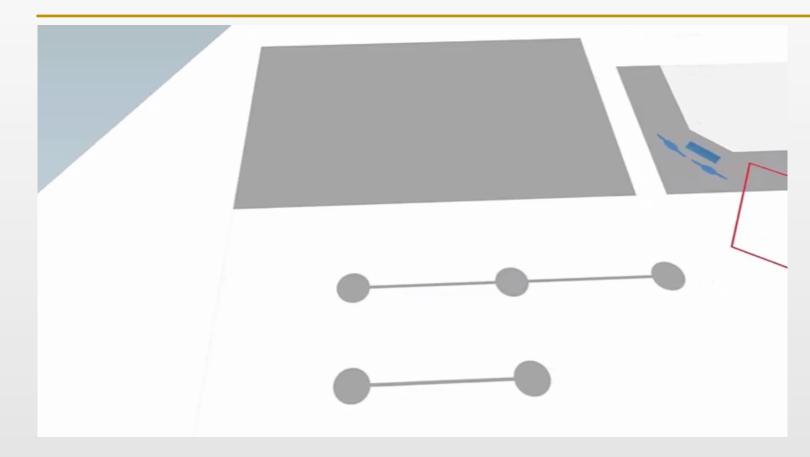
- Distribution of HBSI metrics, can then be tied into the traditional biometric metrics
- Here we see the distribution of iris image quality and iris recognition errors
- We can do this on any number of modalities

HBSI model (Current Work)


- Cloud-based
- Mobile apps developed (iOS, Android, Windows)
- Natural language queries
- Real-time feedback
- Dashboards for actionable data
- Visualization regardless of metric philosophy


Education and Training

- The HBSI model developed at Purdue University has examined the HBSI models, and we have now provided access to our models online
- The next step we are working on is to demonstrate the usability issues that people face in a mixed reality


HBSI Mixed Reality using HoloLens

- Visualize from the data from different perspectives (users, operators, integrators)
- Immerse researchers into the flow of the operation to assess the changes in performance of the biometric system (dry runs)
- Alter the environment for testing and evaluation
- Potential for anomaly and behavior detection to support risk and decision sciences
- Training purposes

Border control scenario

- Subject patterns through the booth (estimate metrics such as throughput impacts)
- Global view of HBSI metrics, automatically segmented in realtime
- Intuitive visualization

HBSI: Beyond Usability

Learn more at hbsi.icbrpurdue.org

References

[2] E. P. Kukula and S. J. Elliott, "Securing a restricted site - biometric authentication at entry point," IEEE 37th Annu. 2003 Int. Carnahan Conf. on Security Technol. 2003. Proceedings., pp. 435–439, 2006.

[3] E. P. Kukula and S. J. Elliott, "Evaluation of a facial recognition algorithm across three illumination conditions," IEEE Aerosp. Electron. Syst. Mag., vol. 19, no. 9, pp. 19–23, 2004.

[4] E. P. Kukula, S. J. Elliott, R. Waupotitsch, and B. Pesenti, "Effects of illumination changes on the performance of geometrix face vision 3D FRS," in 38th Annual 2004 International Carnahan Conference on Security Technology, 2004., 2004, pp. 331–337.

[5] S. J. Elliott, "Differentiation of Signature Traits vis-a-vis Mobile- and Table-Based Digitizers," ETRI J., vol. 26, no. 6, pp. 641–646, 2004.

[6] S. Elliott, E. Kukula, and N. Sickler, "The challenges of the environment and the human/biometric device interaction on biometric system performance," ... forum Model. Simul. ..., 2004.

[7] E. Kukula and S. Elliott, "Implementation of hand geometry at Purdue University's Recreational Center: an analysis of user perspectives and system performance," in *Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology*, 2005, pp. 83–88.

[8] N. C. Sickler and S. J. Elliott, "An evaluation of fingerprint image quality across an elderly population vis-a-vis an 18-25 year old population," in *Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology*, 2005, pp. 68–73.

[9] E. P. Kukula, S. J. Elliott, and P. D, "Critical Anthropometric & Ergonomic Elements for Reliable Hand Placement in Hand Geometry Based Authentication System," Methodology. CERIAS, West Lafayette, IN, p. 1, 2006.

[10]E. Kukula and S. Elliott, "Implementation of Hand Geometry," IEEE Aerosp. Electron. Syst. Mag., vol. 21, no. 3, p. 3, 2006.

[11] E. Kukula and S. Elliott, "Implementing Ergonomic Principles in a Biometric System: A Look at the Human Biometric Sensor Interaction (HBSI)," in *Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology*, 2006, pp. 86–91.

[12] S. K. Modi and S. J. Elliott, "Impact of image quality on performance: comparison of young and elderly fingerprints," in Proceedings of the 6th International Conference on, 2006, pp. 449–45.

[13] S. Elliott and A. Hunt, "The Challenge of Forgeries and Perception of Dynamic Signature Verification," in Proceedings of the 6th International Conference on ..., 2006, pp. 455–459.

[14] E. P. Kukula, B. P. Gresock, S. J. Elliott, and N. W. Dunning, "Defining Habituation using Hand Geometry," in 2007 IEEE Workshop on Automatic Identification Advanced Technologies, 2007, pp. 242–246.

References

[15] E. Kukula, S. Elliott, and C. San Martin, "The impact of fingerprint force on image quality and the detection of minutiae," in 2007 IEEE International Conference on Electro/Information Technology, 2007, pp. 432–437.

[16] S. K. Modi, S. J. Elliott, J. Whetsone, and H. Kim, "Impact of Age Groups on Fingerprint Recognition Performance," in 2007 IEEE Workshop on Automatic Identification Advanced Technologies, 2007, pp. 19–23.

[17] M. R. Young and S. J. Elliott, "Image Quality and Performance Based on Henry Classification and Finger Location," in 2007 IEEE Workshop on Automatic Identification Advanced Technologies, 2007, pp. 51–56.

[18] S. J. S. J. Elliott, S. A. S. A. Massie, and M. J. M. J. Sutton, "The Perception of Biometric Technology: A Survey," in 2007 IEEE Workshop on Automatic Identification Advanced Technologies, 2007, pp. 259–264.

[19] E. Kukula, S. Elliott, and V. Duffy, "The effects of human interaction on biometric system performance," in *First International Conference on Digital Human Modeling (ICDHM 2007), Held as Part of HCI International*, 2007, pp. 904–914.

[20] M. Frick, S. K. Modi, S. J. Elliott, and E. P. Kukula, "Impact of Gender on Fingerprint Recognition," in ICITA 2008, 2008.

[21] C. R. Blomeke, S. K. Modi, and S. J. Elliott, "Investigating the relationship between fingerprint image quality and skin characteristics," in 2008 42nd Annual IEEE International Carnahan Conference on Security Technology, 2008, pp. 158–161.

[22] C. Vielhauer, "Special section on biometrics: Advances in security, usability, and interoperability," J. Electron. Imaging, vol. 17, no. 1, pp. 1–3, 2008.

[23] E. Kukula and R. Proctor, "Human-Biometric Sensor Interaction: Impact of Training on Biometric System and User Performance," in Human Interface, Part II, HCII 2009, 2009, pp. 168–177.

[24] E. P. Kukula, C. R. Blomeke, S. K. Modi, and S. J. Elliott, "Effect of human-biometric sensor interaction on fingerprint matching performance, image quality and minutiae count," *Int. J. Comput. Appl. Technol.*, vol. 34, no. 4, pp. 270–277, 2009.

[25] S. J. Elliott and E. P. Kukula, "A Definitional Framework for the Human-Biometric Sensor Interaction Model," 2010, p. 76670H–76670H–8.

[26] E. P. Kukula and S. J. Elliott, "Ergonomic Design for Biometric Systems," Encyclopedia of Biometrics. Springer Science+Business Media, LLC, pp. 274–280, 2009.

[27] E. P. Kukula, M. J. Sutton, and S. J. Elliott, "The Human–Biometric-Sensor Interaction Evaluation Method: Biometric Performance and Usability Measurements," *IEEE Trans. Instrum. Meas.*, vol. 59, no. 4, pp. 784–791, Apr. 2010.

References

[28] B. Senjaya, S. J. Elliott, S. K. Modi, and T. B. Lee, "Examination of Fingerprint Image Quality and Performance on Force Acquisition vis-a-vis Auto Capture," in 44th Annual IEEE International Carnahan Conference on Security Technology, 2010, pp. 237–242.

[29] S. J. Elliott, "Accuracy, Throughput and Usability of an Aoptix InSight Iris Recognition System," in Blometrics Consortium, 2010.

[30] M. Petrelli, S. Elliott, and C. Dunkelberger, "The Impact of Force on Fingerprint Image Quality, Minutiae Count and Performance," in 2011 International Conference on Hand-Based Biometrics, 2011, pp. 1–5.

[31] A. Wamsley, S. Elliott, C. Dunkelberger, and M. Mershon, "Analysis of slap segmentation and HBSI errors across different force levels," in 2011 Carnahan Conference on Security Technology, 2011, pp. 1–5.

[32] S. Elliott, "Evolution of the HBSI Model." 2012.

[33] S. Elliott, M. Mershon, V. Chandrasekaran, and S. Gupta, "The evolution of the HBSI model with the convergence of performance methodologies," in 2011 Carnahan Conference on Security Technology, 2011, pp. 1–4.

[34] S. Elliott, "Evolution of the HBSI Model." 2012.

[35] M. E. Brockly and S. J. Elliott, "Automatic Detection of Biometric Transaction Times," in The 8th International Conference on Information Technology and Applications (ICITA 2013), 2013, no. lcita, pp. 196–199.

[36] J. Hasselgren, S. Elliott, and J. Gue, "A Trade-off Between Number of Impressions and Number of Interaction Attempts," icbrpurdue.org, no. Icita, pp. 200–204, 2013.

[37] An Investigation into Biometric Signature Capture Device Performance and User Acceptance, Michael Brockly, Stephen Elliott, Jarron Burdine, Michael Frost, Matthew Riedle, Richard Guest, In Proc. IEEE ICCST 2014, Rome, October 2014.

[38] Expanding the Human-Biometric Sensor Interaction Model to Identity Claim Scenarios, Stephen J. Elliott, Kevin O'Connor, Eric Bartlow, Joshua J. Robertson and Richard M. Guest – IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015), Hong Kong, March 2015

[39] Michael Brockly, Stephen Elliott, Richard Guest and Robert Proctor, The development of a test harness for biometric data collection and validation, Submitted to IEE International Carnahan Conference on Security Technology, Florida, September 2016

[40] A Framework for Biometric and Usage Performance Assessment of Automated Border Control Processes - Joshua J. Robertson, Richard M. Guest, Stephen J. Elliott, Kevin O'Connor and John Campbell – Submitted to IEEE Human-Machine Systems. 2016

[41] Richard Guest · Oscar Miguel Hurtado, Mobile Biometric Usability Assessment within PIDaaS, EAB Research Projects Conference (EAB-RPC) 2015, Darmstadt, Germany; 09/2015.

[42] Oscar Miguel-Hurtado, Richard Guest, Ramon Blanco-Gonzalo and Chiara Lunerti, Interaction evaluation of a mobile voice authentication system, Submitted to IEEE International Carnahan Conference on Security Technology, Florida, September 2016

[43] Moore, Z.M. (2016). Human-Biometric sensor interaction automation using the Kinect 2 (Master's Thesis).

Any Questions

Purdue University – the home of HBSI

