Assessment of Digital Twin manufacturing frameworks

Dr. Martin Hardwick Convener WG15 Digital Manufacturing President STEP Tools, Inc.

Troy, NY USA

Background

- In 2017 our team issued a call for Digital Twin manufacturing framework examples.
 - 10 examples were received from 4 countries
- We classified the examples and used them as input for a new ISO 23247 standard.
- The author then extended the classifications and used them to measure the performance of a small scale digital twin framework.
- The team results are shown on slides 3 and 4, and the rest describe the authors results.

Framework classifications

Level of Detail	Physical Element
 material/component level (production item) 	Personnel
 process level (production line) 	- Equipment
 site level (many processes) 	- Material
 enterprise level (supply chain) 	- Process Definition
 regulatory level (industry sector) 	- Product Definition
Communication styles	Application Paradigm
 closed loop adjustment 	- real time control
- collision prevention	 off line analytics
- visualization	- preventative maintenance
- off line analysis	- health check

Framework benefits

- Owner/Operators
 - Want to know real time comprehensive status of their manufacturing/production
 - Want to drive optimization and production efficiency to maximize profit
- Production/Machinist/Operators
 - Want a more intuitive user interface
 - Want to prevent mistakes
- Engineers
 - Want more comprehensive view to understand the true value of their efforts
 - Want to eliminate non-value add tasks such as data re-entry
- Maintenance
 - Want insight to why equipment is failing
 - Want windows of opportunity to do preventative maintenance
- Subcontractors
 - Want access to information so they can bid more easily and accurately
 - Want ability to share manufacturing processes

- Equipment suppliers and builders
 - Want to make it easier to implement and integrate their products
 - Want to efficiently monitor equipment performance for improved performance
- IT developer / integrator
 - Want to be certain organizational security and access control protocols are being followed
 - Want system to robust, flexible, fault tolerant, accurate, scalable and wherever possible non-prescriptive
- Regulatory agencies
 - Want to prove that a process has been followed
 - Want a standardized interface into product information
- Software vendors
 - Want a consistent, reliable, affordable interface to external data, tools and systems
 - Want to make it easier to deploy their solutions
- Standards Development Organizations (SDO's)
 - Want to promote their standards
 - Want to enhance their value by becoming part of an eco-system

Two Digital Twin qualities

- Observable
 - A digital twin is a model of something that is observable in the real world.
 - Describes one or more aspects of the real world phenomenon.
 - Makes it easier to understand, use, control, or operate.
- Measurable
 - The digital twin is "meaningful" to measure.
 - Will learn something about the physical twin.
 - Will not get the same result for every twin.

Digital Twin machining experiment

- Small scale framework (one agent)
- Shown on two five axis machine tools at IMTS 2018
- Twin performance measured after the show from log files

Small Scale Framework

Physical Twin

Digital Twin

Experimental results

	Twitches	Changes	Points	Change %	Point %	Avg	Short	Long	Epsilon
Stage12Hyundai	711451	639789	5303	90%	0.75%	0.178	0.0009	49.38	1.00E-03
Stage12Hyundai	711438	567313	3699	80%	0.52%	0.226	0.0009	49.35	2.00E-03
Stage12Hyundai	711439	542266	2628	76%	0.37%	0.320	0.0009	49.66	5.00E-03

- Twitches are differences to the lowest significant digit of a value
 - Many twitches are roll overs
- Changes are new values in the tool location
 - Many changes are on the same path
- Points are locations where the direction of machining changes
 - These must be captured to make an accurate digital twin

Small Scale Framework

- Digital Twin Challenges
 - We can measure models in real time
 - Identify issues, optimize processes
 - Coordinate multiple operations

- Digital Twin Benefits
 - Stronger, lighter structures
 - Reduced tooling costs
 - Adaptive manufacturing

Proposal for medium scale

Twin Server

- Single large memory space
- Many cores (128)
- One core per agent

Applications

- Collision prevention
- Dynamic scheduling
- Accuracy management

Large Scale Framework

ISO 23247 Part 1 Overview Part 2 Architecture Part 3 Digital Representation Part 4 Information Exchange

Cross-Domain Functional Element (FE)

Complete automotive or aerospace plant

IoT Architecture (ISO 30141)

Conclusion

- A digital twin is a measurable model of a physical element that can be observed in the real world.
- A digital twin agent processes messages streamed from sensors and uses them to synchronize the current state of digital twins with that of their corresponding physical elements.
- A small scale framework manages one agent. A medium scale framework manages multiple agents in a shared memory space. A large scale framework manages multiple levels of agents distributed between many memory spaces.