The ARPA-E Mission

Catalyze and support the development of transformational, high-impact energy technologies

Ensure America’s

- National Security
- Economic Security
- Energy Security
- Technological Lead

History of ARPA-E

2007 RISING ABOVE THE GATHERING STORM PUBLISHED
2007 AMERICA COMPETES ACT SIGNED
2009 AMERICAN RECOVERY & REINVESTMENT ACT $400M
2011 FY2011 BUDGET $180M
2012 FY2012 BUDGET $275M
2013 FY2013 BUDGET $250M

2009 – Present

Programs	2 Open + 14
Projects	285
Dollars (MM)	$770

Creating New Learning Curves

COST / PERFORMANCE

NEW LEARNING CURVES

CURRENT LEARNING CURVE

TIME / SCALE
What Makes an ARPA-E Project?

IMPACT
- High impact on ARPA-E mission areas
- Credible path to market
- Large commercial application

TRANSFORM
- Challenges what is possible
- disrupts existing learning curves
- Leaps beyond today’s technologies

BRIDGE
- Translates science into breakthrough technology
- Not researched or funded elsewhere
- Catalyzes new interest and investment

TEAM
- Comprised of best-in-class people
- Cross-disciplinary skill sets
- Translation oriented

Technology Acceleration Model

How does ARPA-E Enable Transformations?

Science & Technology Knowledgebase	Unique Project Team	Disruptive New Technologies
ARPA-E teams come from a multiple segments of the S&T base to attack problems in entirely new ways

Measuring ARPA-E’s Success

MOVING TECHNOLOGY TOWARD MARKET
- Partnerships with Other Government Agencies
- New Company Formation
- Established Company Partnerships
- New Communities

BREAKTHROUGH ACHIEVEMENTS
- Technology breakthroughs
- Patents
- Publications

OPERATIONAL EXCELLENCE
- Expedited program development and project selection
- Aggressive performance metrics
OPEN 2012: 66 Projects, 24 States, 11 Areas

- **2 Advanced Vehicles**
- **2 Water**
- **13 Advanced Fuels**
- **3 Building Efficiency**
- **2 Stationary Generation**
- **9 Grid Modernization**

66 Projects

Focused Programs

BEEST
ELECTRIC VEHICLE BATTERIES

Mission
Develop a variety of electric vehicle battery technologies that can compete in both cost and performance with traditional gasoline-powered cars.

Goals
- Cost-competitive with traditional cars
- 30% of today's cost at 2-5x energy storage
- 300-500% longer battery life + range

Highlights
- PolyPlus
 - $9 million Vehicle Technologies grant
 - Contracted with Hitachi for fabrication line (Navy as first market)
- Sion
 - CERDEC grant from Army for lithium sulfur battery for UAV's/air Force
 - Funding from Simon Foundation and $20M from BASF

Program Director
Dr. Dane Boysen

Year
2010

Projects
6

Total Investment
$35.5 Million

Mission
Develop technologies that can store renewable energy for use at any location on the grid at an aggressive investment cost less than $100 per kilowatt hour, creating a stronger and more robust electric grid.

Program Director
Dr. Mark Johnson

Year
2010

Projects
12

Total Investment
$33.2 Million

GRIDS
GRID-SCALE RENEWABLE ENERGY STORAGE

Mission
Develop technologies that can store renewable energy for use at any location on the grid at an aggressive investment cost less than $100 per kilowatt hour, creating a stronger and more robust electric grid.

Goals
- Balance intermittent renewable sources connected to the grid
- Efficiently store and send electricity anywhere in the U.S. at a lowest possible cost
- Strong, efficient, stable and robust electric grid

Highlights
- General Compression:
 - $54.5M follow-on funding from private investors for CAES technology deployment
- ABB/SuperPower/Brookhaven NL
 - $4.2M follow-on funding from US Army Research Laboratory for SMES development and testing in DOD microgrids
- Bosch/Lawrence Berkeley NL
 - Attained highest power density ever in hydrogen-bromine flow battery system
HEATS
THERMAL ENERGY STORAGE

Mission
Develop revolutionary, cost-effective ways to store thermal energy by innovating electricity delivery, creating synthetic fuel from sunlight, and improving the range of electric vehicles (EVs).

Goals
- Enable non-intermittent solar power plants and peak-power nuclear power plants
- Create transportable fuels from sunlight
- Modular thermal energy storage for EVs

Highlights
- **UT Austin**
 - Developing sugar derivatives-graphene foam composites with heat of fusion 2-3 x of state of the art and thermal conductivity > 10 – 20 x of state of the art
- **Halotechnics**
 - Developing low cost molten glass as heat transfer and thermal storage for CSP
- **MIT**
 - Developing energy storage device which captures energy from the sun, is transportable like fuels, rechargeable like a battery and emissions-free

Program Director Dr. James Klausner

Year 2011

Projects 15

Total Investment $37.6 Million

Electrofuels
VERSATILE TRANSPORTATION FUEL SOLUTIONS

Mission
Develop microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods.

Goals
- Develop and integrate organisms for autotrophic/non-photosynthetic biological systems
- Increase liquid fuel energy density beyond ethanol

Highlights
- **OPX Biotechnologies (Boulder, CO)**
 - Demonstration of fatty acid production from engineered microbes fed H2 and CO2
 - Raised $64M with venture investors
 - Named to 2012 Global Cleantech 100 list
- **University of California Los Angeles**
 - Demonstration and publication in Science magazine of an integrated system for In situ formate production and microbial conversion to alcohols

Program Director Dr. Ramon Gonzalez

Year 2010

Projects 13

Total Investment $48.3 Million

PETRO
HIGHER PRODUCTIVITY CROPS FOR BIOFUELS

Mission
Develop non-food crops that directly produce transportation fuels to be cost-competitive with petroleum and not impactful on U.S. food supply.

Goals
- To reduce biofuel production costs
- To increase energy yields per acre of land
- To recycle atmospheric CO2

Highlights
- Develop pine trees that will accumulate 20% of their biomass as high energy terpene molecules
- Develop tobacco that produces oil directly, together with high planting density agriculture
- Introduce multiple metabolic pathways into oilseed crops to significantly improve photosynthesis

Program Director Dr. Jonathan Burbaum

Year 2011

Projects 10

Total Investment $37.3 Million

IMPACCT
CARBON CAPTURE TECHNOLOGY

Mission
Develop new materials and processes to lower the cost of removing carbon dioxide (CO2) from existing coal-fired power plants, thus enabling continued use of coal with reduced emissions.

Goals
- Capture 90% of CO2 from coal-fired power plants at no more than a 35% increase in the cost of electricity
- Focus on technologies that could be retrofitted to existing power plants
- Accelerate implementation of carbon capture technology

Highlights
- **Texas A&M University**
 - Designed new class of materials, Single Molecule Traps, tailor-made to capture CO2
 - Created spinout named framergyTM to commercialize the technology
- **University of Colorado – Boulder**
 - Developing new type of membrane based on gels and composite polymer designs
 - Engaged with Total and 3M as industrial partners to commercialize the membranes

Program Director Dr. Karma Sawyer

Year 2010

Projects 15

Total Investment $39.9 Million
REACT
ALTERNATIVES TO CRITICAL MATERIALS IN MAGNETS

Mission
Identify low-cost, abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently.

Goal
• Eliminate most or all rare earth magnets in electric vehicle motors & wind generators

Highlights
• Several new chemistries, not containing critical materials, show promise on a laboratory scale as a replacement for permanent magnets containing critical materials
• Cost-competitive large-scale off-shore wind generators will be enabled by using high current carrying superconductor wiring

Program Director
Dr. Mark Johnson

Year
2011

Projects
14

Total Investment
$27.7 Million

New Funding Opportunities

RANGE
Robust Affordable Next Generation EV-storage
Release Date: 2/19/2013

METALS
Modern Electro/Thermochemical Advances in Light-metal Systems
Release Date: 3/20/2013

REMOTE
Reducing Emissions Using Methanotrophic Organisms for Transportation Energy
Release Date: 3/15/2013

RANGE
NEXT-GENERATION ENERGY STORAGE SYSTEMS FOR ELECTRIC VEHICLES

Mission
Improve EV range and reduce vehicle costs by re-envisioning the total EV battery system, rather than working to increase the energy density of individual battery cells.

Goals
• Develop robust battery chemistries and architectures that would improve vehicle driving range and overall battery robustness
• Focus on multifunctional energy storage designs that use these robust storage systems to simultaneously serve other functions on a vehicle, thus further reducing an energy storage system’s effective weight and overall electric vehicle weight

Highlights
• Coming soon

Program Director
Dr. Ping Liu

Year
2013

Projects
TBD

Available Funding
$20 Million

METALS
ADVANCED PROCESSING AND RECYCLING OF LIGHTWEIGHT METALS

Mission
Develop innovative technologies for cost-effective processing and recycling of Aluminum, Magnesium and Titanium for lightweight vehicle materials.

Goals
• Advance technologies to develop metals have high strength-to-weight ratios, making them ideal for creating lighter vehicles that save fuel and reduce carbon emissions
• Utilize domestically available ores
• Reduce energy inputs and emissions from processing to make light metals cost competitive with current materials, such as steel
• Develop technologies for rapid and efficient light metal sorting to enable domestic recycling

Program Director
Dr. James Klausner

Year
2013

Projects
TBD

Available Funding
$20 Million
REMOTE
BIOLOGICAL CONVERSION OF GAS TO LIQUIDS

<table>
<thead>
<tr>
<th>Mission</th>
<th>Develop transformational biological technologies to convert gas to liquids for transportation fuels.</th>
</tr>
</thead>
</table>
| Goals | • Develop innovative catalysts and lab scale reactors to efficiently and cost-effectively convert natural gas
 | • Lower the cost of gas to liquids conversion
 | • Enable the use of low-cost, domestically sourced natural gas for transportation, which could reduce vehicle emissions compared to conventional gasoline engines |
| Highlights | • Coming soon |

<table>
<thead>
<tr>
<th>Program Director</th>
<th>Dr. Ramon Gonzalez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2013</td>
</tr>
<tr>
<td>Projects</td>
<td>TBD</td>
</tr>
<tr>
<td>Available Funding</td>
<td>$20 Million</td>
</tr>
</tbody>
</table>