
Planning Report 0
2-3

The Economic

Im
pacts

of In
adequate

Infra
str

ucture fo
r

Softw
are Testi

ng

Prepared by:

RTI
for

Natio
nal In

sti
tute of

Standards &
 Tech

nology

Program Offic
e

Stra
tegic

Planning and

Eco
nomic

Analys
is

Group

May 2
002

U.S Department of Commerce
Technology Administration

 RTI Project Number
 7007.011

The Economic Impacts
of Inadequate

Infrastructure for
Software Testing

Final Report

May 2002

Prepared for

Gregory Tassey, Ph.D.
National Institute of Standards and Technology

Acquisition and Assistance Division
Building 101, Room A1000

Gaithersburg, MD 20899-0001

Prepared by

RTI
Health, Social, and Economics Research

Research Triangle Park, NC 27709

iii

Contents

 Executive Summary ES-1

 1. Introduction to Software Quality and Testing 1-1

1.1 Software Quality Attributes.. 1-3

1.2 Software Quality Metrics ... 1-6

1.2.1 What Makes a Good Metric 1-7

1.2.2 What Can be Measured ... 1-8

1.2.3 Choosing Among Metrics....................................... 1-8

1.3 Software Testing.. 1-10

1.4 The Impact of Inadequate Testing 1-11

1.4.1 Failures due to Poor Quality................................. 1-11

1.4.2 Increased Software Development Costs 1-12

1.4.3 Increased Time to Market..................................... 1-12

1.4.4 Increased Market Transaction Costs...................... 1-13

 2. Software Testing Methods and Tools 2-1

2.1 Historical Approach to Software Development................... 2-1

2.2 Software Testing Infrastructure... 2-4

2.2.1 Software Testing Stages .. 2-4

2.2.2 Commercial Software Testing Tools........................ 2-7

2.3 Software Testing Types .. 2-9

2.3.1 Conformance Testing... 2-9

2.3.2 Interoperability Testing .. 2-10

2.3.4 Relationship between Software Stages, Testing
Types, and Testing Tools...................................... 2-13

2.3.5 Standardized Software Testing Technologies 2-15

 3. Inadequate Infrastructure for Software Testing:
Overview and Conceptual Model 3-1

3.1 Software Testing Inadequacies... 3-2

iv

3.1.1 Integration and Interoperability Testing Issues......... 3-2

3.1.2 Automated Generation of Test Code....................... 3-3

3.1.3 Lack of a Rigorous Method for Determining
When a Product Is Good Enough to Release........... 3-3

3.1.4 Lack of Readily Available Performance Metrics
and Testing Procedures .. 3-4

3.1.5 Approaches for Improving Software Testing
Infrastructure ... 3-5

3.2 Conceptual Economic Model... 3-6

3.3 Software Developers ... 3-7

3.3.1 Cost Framework... 3-7

3.3.2 Factors Influencing the Profit-Maximizing Level
of R&D Expenditures.. 3-9

3.4 End Users.. 3-12

3.4.1 Cost Framework... 3-12

3.5 The Market for Software Products 3-14

3.5.1 Quality’s Impact on Market Prices........................ 3-14

3.6 Modeling an Inadequate Software Testing
Infrastructure... 3-15

3.6.1 Inadequate Infrastructure’s Impact on the Cost
of Quality .. 3-17

3.6.2 Inadequate Infrastructure’s Impact on the Cost
of After-Sales Service ... 3-18

3.6.3 Inadequate Infrastructure’s Impact on End-
Users’ Demand.. 3-19

3.6.4 Aggregate Impact... 3-19

3.7 The Time Dimension... 3-20

3.8 Conclusion.. 3-21

 4. Taxonomy for Software Testing Costs 4-1

4.1 Principles that Drive Software Testing Objectives............... 4-1

4.1.1 Testing Activities.. 4-2

4.1.2 Detecting Bugs Sooner... 4-3

4.1.3 Locating the Source of Bugs Faster and with
More Precision .. 4-3

4.2 Software Developers’ Cost Taxonomy................................ 4-3

4.2.1 Resource Categories .. 4-4

v

4.2.2 Summary of Developer Technical and
Economic Metrics .. 4-6

4.3 Software Users’ Cost Taxonomy... 4-7

4.3.1 Pre-purchase Costs .. 4-8

4.3.2 Installation Costs.. 4-9

4.3.3 Post-purchase Costs ... 4-11

 5. Measuring the Economic Impacts of an
Inadequate Infrastructure for Software Testing 5-1

5.1 Defining the Counterfactual World 5-1

5.1.1 Developers’ Costs of Identifying and Correcting
Errors... 5-3

5.1.2 Counterfactual Scenario for Developers 5-8

5.1.3 Counterfactual Scenario for Users 5-9

5.2 Custom Versus Commercial Software Products 5-9

5.3 Estimating Software Developer Costs 5-11

5.4 Estimating Software User Costs .. 5-13

5.5 Period of Analysis.. 5-17

5.6 Industry-Specific User Costs .. 5-19

 6. Transportation Manufacturing Sector 6-1

6.1 Overview of CAD/CAM/CAE and PDM Software in the
Transportation Manufacturing Sector 6-2

6.1.1 Use of CAD/CAM/CAE and PDM Software 6-3

6.1.2 Development of CAD/CAM/CAE and PDM
Software .. 6-5

6.2 Software Developer Costs in the Transportation
Manufacturing Sector .. 6-6

6.2.1 Estimation Approach.. 6-8

6.2.2 Survey Findings ... 6-9

6.2.3 Cost Impacts Per Employee for Software
Developers .. 6-13

6.2.4 Industry-Level Impact... 6-14

6.3 End-User Costs in the Transportation Manufacturing
Sector ... 6-15

6.3.1 Survey Method .. 6-15

6.3.2 Survey Response Rates and Industry Coverage...... 6-16

6.3.3 Survey Findings ... 6-18

vi

6.3.4 Costs of Bugs and Errors Per Employee 6-23

6.3.5 Partial Reduction of Software Errors...................... 6-26

6.4 Users’ Industry-Level Impact Estimates............................. 6-27

 7. Financial Services Sector 7-1

7.1 Overview of the Use of Clearinghouse Software and
Routers and Switches in the Financial Services Sector 7-2

7.1.1 Overview of Electronic Transactions in the
Financial Services Sector.. 7-3

7.1.2 Software Used by Financial Services Providers 7-5

7.1.3 Software Embedded in Hardware Used to
Support Financial Transactions............................... 7-6

7.2 Software Developer Costs in the Financial Services
Sector ... 7-8

7.2.1 Industry Surveys... 7-10

7.2.2 Survey Findings ... 7-10

7.2.3 Cost Impacts Per Employee for Software
Developers .. 7-14

7.2.4 Industry-Level Impacts ... 7-15

7.3 Software User Costs in the Financial Services Sector 7-16

7.3.1 Survey Method .. 7-16

7.3.2 Survey Response Rates and Industry Coverage...... 7-17

7.3.3 Survey Findings .. 7-19

7.3.4 Software User Costs Per Transaction..................... 7-24

7.3.5 Partial Reduction of Software Errors...................... 7-26

7.3.6 Users’ Industry-Level Impact Estimates 7-28

 8. National Impact Estimates 8-1

8.1 Per-Employee Testing Costs: Software Developers............. 8-2

8.2 Per-Employee Costs: Software Users 8-4

8.4 National Impact Estimates ... 8-5

8.5 Limitations and Caveats... 8-6

 References R-1

vii

 Appendixes

A: Glossary of Testing Stages and Tools..................................A-1

B: CAD/CAM/CAE/PDM Use and Development in the
Transportation Sector .. B-1

C: CAD/CAM/CAE/PDM Developers and Users Survey
Instruments ...C-1

D: Financial Services Software Use and DevelopmentD-1

E: Financial Services Survey InstrumentsE-1

viii

Figures

 Figure 2-1 Waterfall Model... 2-3

 Figure 2-2 Commercial Software Testing Infrastructure Hierarchy................ 2-5

 Figure 3-1 Software Quality’s Role in Profit Maximization......................... 3-10

 Figure 3-2 Minimize Joint Costs of Pre-sales Testing and After-Sales
Service (Holding Price and Quantity Constant) 3-11

 Figure 3-3 Change in Quality’s Impact on Price, Quantity, and Net
Revenue .. 3-16

 Figure 3-4 Enhanced Testing Tool’s Impact on the Marginal Cost of
Quality .. 3-18

 Figure 5-1 The Waterfall Process... 5-3

 Figure 5-2 Typical Cumulative Distribution of Error Detection..................... 5-6

 Figure 5-3 Software Testing Costs Shown by Where Bugs Are Detected
(Example Only) .. 5-7

 Figure 5-4 Cost Reductions of Detecting Bugs and Fixing Them Faster
(Example Only) .. 5-8

 Figure 5-5 Custom vs. Commercial Development Cost Allocation 5-10

 Figure 5-6 Relationship between Users Costs and Percentage Reduction
in Bugs .. 5-18

 Figure 6-1 Economic Relationship Among CAD/CAM/CAE Producers
and Consumers .. 6-3

 Figure 6-2 CAD/CAE/CAM and PDM in the Product Development
Cycle... 6-4

ix

Tables

 Table 1-1 McCall, Richards, and Walters’s Software Quality Attributes 1-4

 Table 1-2 ISO Software Quality Attributes.. 1-5

 Table 1-3 List of Metrics Available ... 1-7

 Table 1-4 Recent Aerospace Losses due to Software Failures 1-11

 Table 1-5 Relative Costs to Repair Defects when Found at Different
Stages of the Life-Cycle .. 1-13

 Table 2-1 Allocation of Effort ... 2-4

 Table 2-2 The Degree of Usage of the Different Testing Stages with the
Various Testing Types .. 2-13

 Table 2-3 Software Testing Types Associated with the Life Cycle 2-14

 Table 2-4 Tools Used by Type of Testing.. 2-16

 Table 2-5 Tools Used by Testing Stage... 2-17

 Table 4-1 Labor Taxonomy.. 4-4

 Table 4-2 Software Testing Capital Taxonomy.. 4-5

 Table 4-3 Impact Cost Metrics for Software Developers.............................. 4-7

 Table 4-4 Users’ Pre-Purchase Costs Associated with Bugs 4-9

 Table 4-5 Users’ Implementation Costs Associated with Bugs 4-10

 Table 4-6 Users’ Post-purchase Costs Associated with Bugs...................... 4-11

 Table 5-1 Relative Cost to Repair Defects When Found at Different
Stages of Software Development (Example Only) 5-4

 Table 5-2 Preliminary Estimates of Relative Cost Factors of Correcting
Errors as a Function of Where Errors Are Introduced and
Found (Example Only) ... 5-4

x

 Table 5-3 Example of the Frequency (%) of Where Errors Are Found, in
Relationship to Where They Were Introduced 5-5

 Table 5-4 Impact Cost Metrics for Software Developers............................ 5-12

 Table 5-5 Cost Metrics for Users .. 5-16

 Table 5-6 Importance of Quality Attributes in the Transportation
Equipment and Financial Services Industries............................. 5-20

 Table 6-1 Cost Impacts on U.S. Software Developers and Users in the
Transportation Manufacturing Sector Due to an Inadequate
Testing Infrastructure ($ millions).. 6-2

 Table 6-2 Distribution of Bugs Found Based on Introduction Point 6-10

 Table 6-3 Hours to Fix Bug Based on Introduction Point........................... 6-10

 Table 6-4 Time to Fix a Bug Based on Discovery Point............................. 6-11

 Table 6-5 Distribution of Bugs Based on Infrastructure 6-12

 Table 6-6 Developer Testing Costs for a Typical Company of 10,000
Employees ... 6-13

 Table 6-7 Annual Impact on U.S. Software Developers of
CAD/CAM/CAE/PDM Software... 6-14

 Table 6-8 Transportation Equipment Industry Survey Completion Rates
... 6-17

 Table 6-9 Industry Coverage by Employment ... 6-17

 Table 6-10 Reported Software Products.. 6-19

 Table 6-11 Incidence and Costs of Software Bugs....................................... 6-21

 Table 6-12 Average Company-Level Costs of Search, Installation, and
Maintenance (Life-Cycle Costs) .. 6-22

 Table 6-13 Costs Per Employee.. 6-24

 Table 6-14 Company-Level Costs Associated with Bugs for Hypothetical
Transportation Company at Different Employment Levels 6-25

 Table 6-15 Cost Reductions as a Function of Bug Reductions 6-27

 Table 6-16 Annual Impacts’ Weighted Cost Per Deposits and Loans 6-28

 Table 7-1 Cost Impacts on U.S. Software Developers and Users in the
Financial Services Sector Due to an Inadequate Testing
Infrastructure ($ millions) ... 7-2

 Table 7-2 Characteristics of Firms in the Financial Services Sector,
1997.. 7-4

 Table 7-3 Router Market Shares of Major Firms .. 7-6

 Table 7-4 Distribution of Bugs Found Based on Introduction Point 7-11

 Table 7-5 Hours to Fix Bug based on Introduction Point........................... 7-12

 Table 7-6 Time to Fix a Bug Based on Discovery Point............................. 7-13

xi

 Table 7-7 Shift in the Distribution of Where Bugs are Found Based on
Infrastructure ... 7-13

 Table 7-8 Developer Testing Costs for a Typical Company of 10,000
Employees ... 7-15

 Table 7-9 Annual Impact on U.S. Software Developers Supporting the
Financial Services Sector.. 7-16

 Table 7-10 Financial Industry Survey Completion Rates 7-18

 Table 7-11 Industry Coverage .. 7-19

 Table 7-12 Reported Software Products.. 7-20

 Table 7-13 Incidence and Costs of Software Errors 7-21

 Table 7-14 Total Costs of Search, Installation, and Maintenance (Life-
Cycle Costs)... 7-23

 Table 7-15 Software Bug and Error Costs Per Million Dollars of Deposits
and Loans .. 7-25

 Table 7-16 Company Costs Associated with Bugs for Hypothetical
Company Sizes .. 7-26

 Table 7-17 Cost Reductions as a Function of Error Reductions.................... 7-27

 Table 7-18 Annual Impacts’ Weighted Cost Per Deposits and Loans 7-28

 Table 8-1 National Economic Impact Estimates .. 8-1

 Table 8-2 FTEs Engaged in Software Testing (2000) 8-3

 Table 8-3 Software Developer Costs Per Tester... 8-4

 Table 8-4 National Employment in the Service and Manufacturing
Sectors... 8-5

 Table 8-5 Per-Employee Cost Metrics... 8-5

 Table 8-6 National Impact Estimates .. 8-6

ES-1

 Executive Summary

Software has become an intrinsic part of business over the last
decade. Virtually every business in the U.S. in every sector depends
on it to aid in the development, production, marketing, and support
of its products and services. Advances in computers and related
technology have provided the building blocks on which new
industries have evolved. Innovations in the fields of robotic
manufacturing, nanotechnologies, and human genetics research all
have been enabled by low cost computational and control
capabilities supplied by computers and software.

In 2000, total sales of software reached approximately $180 billion.
Rapid growth has created a significant and high-paid workforce,
with 697,000 employed as software engineers and an additional
585,000 as computer programmers.

Reducing the cost of software development and improving software
quality are important objectives of the U.S. software industry.
However, the complexity of the underlying software needed to
support the U.S.’s computerized economy is increasing at an
alarming rate. The size of software products is no longer measured
in terms of thousands of lines of code, but millions of lines of code.
This increasing complexity along with a decreasing average market
life expectancy for many software products has heightened
concerns over software quality.

Software nonperformance and failure are expensive. The media is
full of reports of the catastrophic impact of software failure. For
example, a software failure interrupted the New York Mercantile
Exchange and telephone service to several East Coast cities in

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-2

February 1998 (Washington Technology, 1998). Headlines
frequently read, “If Microsoft made cars instead of computer
programs, product-liability suits might now have driven them out of
business.” Estimates of the economic costs of faulty software in the
U.S. range in the tens of billions of dollars per year and have been
estimated to represent approximately just under 1 percent of the
nation’s gross domestic product (GDP).

In actuality many factors contribute to the quality issues facing the
software industry. These include marketing strategies, limited
liability by software vendors, and decreasing returns to testing and
debugging.

At the core of these issues is the difficulty in defining and measuring
software quality. Common attributes include functionality,
reliability, usability, efficiency, maintainability, and portability. But
these quality metrics are largely subjective and do not support
rigorous quantification that could be used to design testing methods
for software developers or support information dissemination to
consumers. Information problems are further complicated by the
fact that even with substantial testing, software developers do not
truly know how their products will perform until they encounter real
scenarios.

The objective of this study is to investigate the economic impact of
an inadequate infrastructure for software testing in the U.S. The
National Institute of Standards and Technology (NIST) undertook
this study as part of joint planning with industry to help identify and
assess technical needs that would improve the industry’s software
testing capabilities. The findings from this study are intended to
identify the infrastructure needs that NIST can supply to industry
through its research programs.

To inform the study, RTI conducted surveys with both software
developers and industry users of software. The data collected were
used to develop quantitative estimates of the economic impact of
inadequate software testing methods and tools. Two industry
groups were selected for detailed analysis: automotive and
aerospace equipment manufacturers and financial services providers
and related electronic communications equipment manufacturers.
The findings from these two industry groups were then used as the

“In analyzing repair
histories of 13 kinds of
products gathered by
Consumer Reports, PC
World found that roughly
22 percent [of PCs] break
down every year—
compared to 9 percent of
VCRs, 7 percent of big-
screen TVs, 7 percent of
clothes dryers and 8
percent of refrigerators”
(Barron, 2000).

Executive Summary

ES-3

basis for estimating the total economic impact for U.S.
manufacturing and services sectors.

Based on the software developer and user surveys, the national
annual costs of an inadequate infrastructure for software testing is
estimated to range from $22.2 to $59.5 billion.1 Over half of these
costs are borne by software users in the form of error avoidance and
mitigation activities. The remaining costs are borne by software
developers and reflect the additional testing resources that are
consumed due to inadequate testing tools and methods.

 ES.1 ISSUES OF SOFTWARE QUALITY
Quality is defined as the bundle of attributes present in a
commodity and, where appropriate, the level of the attribute for
which the consumer (software users) holds a positive value.
Defining the attributes of software quality and determining the
metrics to assess the relative value of each attribute are not
formalized processes. Compounding the problem is that numerous
metrics exist to test each quality attribute.

Because users place different values on each attribute depending on
the product’s use, it is important that quality attributes be
observable to consumers. However, with software there exists not
only asymmetric information problems (where a developer has more
information about quality than the consumer), but also instances
where the developer truly does not know the quality of his own
product. It is not unusual for software to become technically
obsolete before its performance attributes have been fully
demonstrated under real-world operation conditions.

As software has evolved over time so has the definition of software
quality attributes. McCall, Richards, and Walters (1977) first
attempted to assess quality attributes for software. His software
quality model characterizes attributes in terms of three categories:
product operation, product revision, and product transition. In
1991, the International Organization for Standardization (ISO)
adopted ISO 9126 as the standard for software quality (ISO, 1991).

1Note that the impact estimates do not reflect “costs” associated with mission

critical software where failure can lead to extremely high costs such as loss of
life or catastrophic failure. Quantifying these costs was beyond the scope of the
study.

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-4

It is structured around six main attributes listed below
(subcharacteristics are listed in parenthesis):

Z functionality (suitability, accurateness, interoperability,
compliance, security)

Z reliability (maturity, fault tolerance, recoverability)

Z usability (understandability, learnability, operability)

Z efficiency (time behavior, resource behavior)

Z maintainability (analyzability, changeability, stability,
testability)

Z portability (adaptability, installability, conformance,
replaceability)

Although a general set of standards has been agreed on, the
appropriate metrics to test how well software meets those standards
are still poorly defined. Publications by IEEE (1988, 1996) have
presented numerous potential metrics that can be used to test each
attribute. These metrics include

Z fault density,

Z requirements compliance,

Z test coverage, and

Z mean time to failure.

The problem is that no one metric is able to unambiguously
measure a particular quality attribute. Different metrics may give
different rank orderings of the same attribute, making comparisons
across products difficult and uncertain.

 ES.2 SOFTWARE TESTING INADEQUACIES
Software testing is the action of carrying out one or more tests,
where a test is a technical operation that determines one or more
characteristics of a given software element or system, according to a
specified procedure. The means of software testing is the hardware
and/or software and the procedures for its use, including the
executable test suite used to carry out the testing (NIST, 1997).

Historically, software development focused on writing code and
testing specific lines of that code. Very little effort was spent on
determining its fit within a larger system. Testing was seen as a
necessary evil to prove to the final consumer that the product
worked. As shown in Table ES-1, Andersson and Bergstrand (1995)
estimate that 80 percent of the effort put into early software

Executive Summary

ES-5

Table ES-1. Allocation of Effort

Requirements

Analysis
Preliminary

Design
Detailed
Design

Coding and
Unit Testing

Integration
and Test

System
Test

1960s – 1970s 10% 80% 10%

1980s 20% 60% 20%

1990s 40% 30% 30%

Source: Andersson, M., and J. Bergstrand. 1995. “Formalizing Use Cases with Message Sequence Charts.”
Unpublished Master’s thesis. Lund Institute of Technology, Lund, Sweden.

development was devoted to coding and unit testing. This
percentage has changed over time. Starting in the 1970s, software
developers began to increase their efforts on requirements analysis
and preliminary design, spending 20 percent of their effort in these
phases.

More recently, software developers started to invest more time and
resources in integrating the different pieces of software and testing
the software as a unit rather than as independent entities. The
amount of effort spent on determining the developmental
requirements of a particular software solution has increased in
importance. Forty percent of the software developer effort is now
spent in the requirements analysis phase.

Testing activities are conducted throughout all the development
phases shown in Table ES-1. Formal testing conducted by
independent test groups accounts for about 20 percent of labor
costs. However, estimates of total labor resources spent testing by
all parties range from 30 to 90 percent (Beizer, 1990).

The worldwide market for software testing tools was $931 million in
1999 and is projected to grow to more than $2.6 billion by 2004
(Shea, 2000). However, such testing tools are still fairly primitive.
The lack of quality metrics leads most companies to simply count
the number of defects that emerge when testing occurs. Few
organizations engage in other advanced testing techniques, such as
forecasting field reliability based on test data and calculating defect
density to benchmark the quality of their product against others.

Numerous issues affect the software testing infrastructure and may
lead to inadequacies. For example, competitive market pressures
may encourage the use of a less than optimal amount of time,

Software testing
infrastructure
improvements include
enhanced

Z integration and
interoperability testing
tools,

Z automated generation
of test code,

Z methods for
determining sufficient
quality for release, and

Z performance metrics
and measurement
procedures.

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-6

resources, and training for the testing function (Rivers and Vouk,
1998), and with current software testing tools developers have to
determine whether applications and systems will interoperate.

In addition, the need for certified standardized test technology is
increasing. The development of these tools and the accompanying
testing suites often lag behind the development of new software
applications (ITToolbox, 1999). Standardized testing tools, suites,
scripts, reference data, reference implementations, and metrics that
have undergone a rigorous certification process would have a large
impact on the inadequacies listed above. For example, the
availability of standardized test data, metrics, and automated test
suites for performance testing would make benchmarking tests less
costly to perform. Standardized automated testing scripts along
with standard metrics would also provide a more consistent method
for determining when to stop testing.

In some instances, developing conformance testing code can be
more time consuming and expensive than developing the software
product being tested. Addressing the high testing costs is currently
the focus of several research initiatives in industry and academia.
Many of these initiatives are based on modeling finite state
machines, combinatorial logic, or other formal languages such as Z
(Cohen et al., 1996; Tai and Carver, 1995; NIST, 1997; Apfelbaum
and Doyle, 1997).

 ES.3 SOFTWARE TESTING COUNTERFACTUAL
SCENARIOS
To estimate the costs attributed to an inadequate infrastructure for
software testing, a precise definition of the counterfactual world is
needed. Clearly defining what is meant by an “inadequate”
infrastructure is essential for eliciting consistent information from
industry respondents.

In the counterfactual scenarios the intended design functionality of
the software products released by developers is kept constant. In
other words, the fundamental product design and intended product
characteristics will not change. However, the realized level of
functionality may be affected as the number of bugs (also referred to
as defects or errors) present in released versions of the software
decreases in the counterfactual scenarios.

Executive Summary

ES-7

The driving technical factors that do change in the counterfactual
scenarios are when bugs are discovered in the software
development process and the cost of fixing them. An improved
infrastructure for software testing has the potential to affect software
developers and users by

Z removing more bugs before the software product is released,

Z detecting bugs earlier in the software development process,
and

Z locating the source of bugs faster and with more precision.

Note that a key assumption is that the number of bugs introduced
into software code is constant regardless of the types of tools
available for software testing; bugs are errors entered by the
software designer/programmer and the initial number of errors
depends on the skill and techniques employed by the programmer.

Because it may not be feasible or cost effective to remove all
software errors prior to product release, the economic impact
estimates were developed relative to two counterfactual scenarios.
The first scenario investigates the cost reductions if all bugs and
errors could be found in the same development stage in which they
are introduced. This is referred to as the cost of an inadequate
software testing infrastructure. The second scenario investigates the
cost reductions associated with finding an increased percentage (but
not 100 percent) of bugs and errors closer to the development stages
where they are introduced. The second scenario is referred to as
cost reduction from “feasible” infrastructure improvements. For the
“feasible” infrastructure improvements scenario, developers were asked to
estimate the potential cost savings associated with enhanced testing
tools and users were asked to estimate cost savings if the software
they purchase had 50 percent fewer bugs and errors.

 ES.4 ECONOMIC IMPACT OF AN INADEQUATE
SOFTWARE TESTING INFRASTRUCTURE:
AUTOMOTIVE AND AEROSPACE INDUSTRIES
We conducted a case study with software developers and users in
the transportation equipment manufacturing sector to estimate the
economic impact of an inadequate infrastructure for software
testing. The case study focused on the use of computer-aided
design/computer-aided manufacturing/computer-aided engineering

An improved software
testing infrastructure would
allow developers to find
and correct more errors
sooner with less cost.

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-8

(CAD/CAM/CAE) and product data management (PDM) software.
Interviews were conducted with 10 software developers (vendors)
and 179 users of these products.

Developers of CAD/CAM/CAE and PDM software indicated that in
the current environment, software testing is still more of an art than
a science, and testing methods and resources are selected based on
the expert judgment of senior staff. Respondents agreed that finding
the errors early in the development process greatly lowered the
average cost of bugs and errors. Most also indicated that the lack of
historic tracking data and inadequate tools and testing methods,
such as standard protocols approved by management, available test
cases, and conformance specification, limited their ability to obtain
sufficient testing resources (from management) and to leverage these
resources effectively.

Users of CAD/CAM/CAE and PDM software indicated that they
spend significant resources responding to software errors (mitigation
costs) and lowering the probability and potential impact of software
errors (avoidance costs). Approximately 60 percent of the
automotive and aerospace manufacturers surveyed indicated that
they had experienced significant software errors in the previous
year. For these respondents who experienced errors, they reported
an average of 40 major and 70 minor software bugs per year in their
CAD/CAM/CAE or PDM software systems.

Table ES-2 presents the economic impact estimates for the
development and use of CAD/CAM/CAE and PDM software in the
U.S. automotive and aerospace industries. The total cost impact on
these manufacturing sectors from an inadequate software testing
infrastructure is estimated to be $1.8 billion and the potential cost
reduction from feasible infrastructure improvements is $0.6 billion.
Users of CAD/CAM/CAE and PDM software account for
approximately three-fourths of the total impact, with the automotive
industry representing about 65 percent and the aerospace industry
representing 10 percent. Developers account for the remaining
one-fourth of the costs.

Executive Summary

ES-9

Table ES-2. Cost Impacts on U.S. Software Developers and Users in the Transportation
Manufacturing Sector Due to an Inadequate Testing Infrastructure ($ millions)

The Cost of Inadequate Software
Testing Infrastructure

(billions)

Potential Cost Reduction from
Feasible Infrastructure Improvements

(billions)

Software Developers

CAD/CAM/CAE and PDM $373.1 $157.7

Software Users

Automotive $1,229.7 $377.0

Aerospace $237.4 $54.5

Total $1,840.2 $589.2

 ES.5 ECONOMIC IMPACT OF AN INADEQUATE
SOFTWARE TESTING INFRASTRUCTURE:
FINANCIAL SERVICES SECTOR
We conducted a second case study with four software developers
and 98 software users in the financial services sector to estimate the
economic impact of an inadequate infrastructure for software
testing. The case study focused on the development and use of
Financial Electronic Data Interchange (FEDI) and clearinghouse
software, as well as the software embedded in routers and switches
that support electronic data exchange.

All developers of financial services software agreed that an improved
system for testing was needed. They said that an improved system
would be able to track a bug back to the point where it was
introduced and then determine how that bug influenced the rest of the
production process. Their ideal testing infrastructure would consist of
close to real time testing where testers could remedy problems that
emerge right away rather than waiting until a product is fully
assembled. The major benefits developers cited from an improved
infrastructure were direct cost reduction in the development process
and a decrease in post-purchase customer support. An additional
benefit that respondents thought would emerge from an improved
testing infrastructure is increased confidence in the quality of the
product they produce and ship. The major selling characteristic of the
products they create is the certainty that that product will accomplish
a particular task. Because of the real time nature of their products, the
reputation loss can be great.

Financial service software
developers said that better
testing tools and methods
used during software
development could reduce
installation expenditures by
30 percent.

The Economic Impacts of Inadequate Infrastructure for Software Testing

ES-10

Approximately two-thirds of the users of financial services software
(respondents were primarily banks and credit unions) surveyed
indicated that they had experienced major software errors in the
previous year. For the respondents that did have major errors, they
reported an average of 40 major and 49 minor software bugs per
year in their FEDI or clearinghouse software systems.
Approximately 16 percent of those bugs were attributed to router
and switch problems, and 48 percent were attributed to transaction
software problems. The source of the remaining 36 percent of
errors was unknown. Typical problems encountered due to bugs
were

Z increased person-hours used to correct posting errors,

Z temporary shut down leading to lost transactions, and

Z delay of transaction processing.

Table ES-3 presents the empirical findings. The total cost impact on
the financial services sector from an inadequate software testing
infrastructure is estimated to be $3.3 billion. Potential cost
reduction from feasible infrastructure improvements is $1.5 billion.

Table ES-3. Cost Impacts on U.S. Software Developers and Users in the Financial Services
Sector Due to an Inadequate Testing Infrastructure ($ millions)

The Cost of Inadequate

Software Testing Infrastructure

Potential Cost Reduction from
Feasible Infrastructure

Improvements

Software Developers

Router and switch $1,897.9 $975.0

FEDI and clearinghouse $438.8 $225.4

Software Users

Banks and savings institutions $789.3 $244.0

Credit unions $216.5 $68.1

Total Financial Services Sector $3,342.5 $1,512.6

Software developers account for about 75 percent of the economic
impacts. Users represented the remaining 25 percent of costs, with
banks accounting for the majority of user costs.

Executive Summary

ES-11

 ES.6 NATIONAL IMPACT ESTIMATES
The two case studies generated estimates of the costs of an inadequate
software testing infrastructure for software developers and users in the
transportation equipment manufacturing and financial services
sectors. The per-employee impacts for these sectors were
extrapolated to other manufacturing and service industries to develop
an approximate estimate of the economic impacts of an inadequate
infrastructure for software testing for the total U.S. economy.

Table ES-4 shows the national annual cost estimates of an
inadequate infrastructure for software testing are estimated to be
$59.5 billion. The potential cost reduction from feasible
infrastructure improvements is $22.2 billion. This represents about
0.6 and 0.2 percent of the U.S.’s $10 trillion dollar GDP,
respectively. Software developers accounted for about 40 percent
of total impacts, and software users accounted for the about
60 percent.

Table ES-4. Costs of Inadequate Software Testing Infrastructure on the National Economy

The Cost of Inadequate Software
Testing Infrastructure

(billions)

Potential Cost Reduction from Feasible
Infrastructure Improvements

(billions)

Software developers $21.2 $10.6

Software users $38.3 $11.7

Total $59.5 $22.2

1-1

 Introduction to
 Software Quality
 1 and Testing

Software is an intrinsic part of business in the late 20th century.
Virtually every business in the U.S. in every sector depends on it to
aid in the development, production, marketing, and support of its
products and services. This software may be written either by
developers who offer the shrink-wrapped product for sale or
developed by organizations for custom use.

Integral to the development of software is the process of detecting,
locating, and correcting bugs.

In a typical commercial development organization, the cost of
providing [the assurance that the program will perform
satisfactorily in terms of its functional and nonfunctional
specifications within the expected deployment environments]
via appropriate debugging, testing, and verification activities
can easily range from 50 to 75 percent of the total
development cost. (Hailpern and Santhanam, 2002)

In spite of these efforts some bugs will remain in the final product to
be discovered by users. They may either develop “workarounds” to
deal with the bug or return it to the developer for correction.

Software’s failure to perform is also expensive. The media is full of
reports of the catastrophic impact of software failure. For example,
a software failure interrupted the New York Mercantile Exchange
and telephone service to several East Coast cities in February 1998
(Washington Technology, 1998). More common types of software
nonperformance include the failure to

Beizer (1990) reports that
half the labor expended to
develop a working program
is typically spent on testing
activities.

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-2

Z conform to specifications or standards,

Z interoperate with other software and hardware, and

Z meet minimum levels of performance as measured by
specific metrics.

Reducing the cost of software development and improving software
quality are important objectives of the commercial U.S. software
industry and of in-house developers. Improved testing and
measurement can reduce the costs of developing software of a given
quality and even improve performance. However, the lack of a
commonly accepted measurement science for information
technology hampers efforts to test software and evaluate the tests’
results.

Software testing tools are available that incorporate proprietary
testing algorithms and metrics that can be used to measure the
performance and conformance of software. However, the value of
these tools and the metrics they produce depend on the extent to
which standard measurements are developed by consensus and
accepted throughout the software development and user community
(NIST, 1997). Thus, development of standard testing tools and
metrics for software testing could go a long way toward addressing
some of the testing problems that plague the software industry.

Improved tools for software testing could increase the net value
(value minus cost) of software in a number of ways:

Z reduce the cost of software development and testing;

Z reduce the time required to develop new software products;
and

Z improve the performance, interoperability, and conformance
of software.

However, to understand the extent to which improvements in
software testing metrology could provide these benefits, we must
first understand and quantify the costs imposed on industry by the
lack of an adequate software testing infrastructure. The objective of
this study is to develop detailed information about the costs
associated with an inadequate software testing infrastructure for
selected software products and industrial sectors.

This section describes the commonly used software quality
attributes and currently available metrics for measuring software

“[A] study of personal-
computer failure rates by
the Gartner Group
discover[ed] that there was
a failure rate of 25 percent
for notebook computers
used in large American
corporations” (Barron,
2000).

“Gary Chapman, director
of the 21st Century Project
at the University of Texas,
noted that ‘repeated
experiences with software
glitches tend to narrow
one’s use of computers to
familiar and routine.
Studies have shown that
most users rely on less than
10 percent of the features
of common programs as
Microsoft Word or
Netscape Communicator’”
(Barron, 2000).

Section 1 — Introduction to Software Quality and Testing

1-3

quality. It also provides an overview of software testing procedures
and describes the impact of inadequate software testing.

 1.1 SOFTWARE QUALITY ATTRIBUTES
Software consumers choose which software product to purchase by
maximizing a profit function that contains several parameters
subject to a budget constraint. One of the parameters in that profit
function is quality. Quality is defined as the bundle of attributes
present in a commodity and, where appropriate, the level of the
attribute for which the consumer holds a positive value.

Defining the attributes of software quality and determining the
metrics to assess the relative value of each attribute are not
formalized processes. Not only is there a lack of commonly agreed
upon definitions of software quality, different users place different
values on each attribute depending on the product’s use.
Compounding the problem is that numerous metrics exist to test
each quality attribute. The different outcome scores for each metric
may not give the same rank orderings of products, increasing the
difficulty of interproduct comparisons.

McCall, Richards, and Walters (1977) first attempted to assess
quality attributes for software. His software quality model focused
on 11 specific attributes. Table 1-1 lists those characteristics and
briefly describes them. McCall, Richards, and Walters’s
characteristics can be divided into three categories: product
operation, product revision, and product transition.

Z Product operation captures how effective the software is at
accomplishing a specific set of tasks. The tasks range from
the ease of inputting data to the ease and reliability of the
output data. Product operation consists of correctness,
reliability, integrity, usability, and efficiency attributes.

Z Product revision measures how easy it is to update, change,
or maintain performance of the software product. This
category is especially important to this analysis because it is
concerned with software testing and the cost of fixing any
bugs that emerge from the testing process. Maintainability,
flexibility, and testability are three subcharacteristics that fit
into this category.

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-4

Table 1-1. McCall, Richards, and Walters’s Software Quality Attributes

Attribute Description

Product Operation

Correctness How well the software performs its required function and meets customers’ needs

Reliability How well the software can be expected to perform its function with required
precision

Integrity How well accidental and intentional attacks on the software can be withstood

Usability How easy it is to learn, operate, prepare input of, and interpret output of the software

Efficiency Amount of computing resources required by the software to perform its function

Product Revision

Maintainability How easy it is to locate and fix an error in the software

Flexibility How easy it is to change the software

Testability How easy it is to tell if the software performs its intended function

Product Transition

Interoperability How easy it is to integrate one system into another

Reusability How easy it is to use the software or its parts in other applications

Portability How easy it is to move the software from one platform to another

Source: McCall, J., P. Richards, and G. Walters. 1977. Factors in Software Quality, NTIS AD-A049-014, 015, 055.
November.

Z Product transition focuses on software migration. The three
main factors that make up this category are the software’s
ability to interact with other pieces of software, the
frequency with which the software can be used in other
applications, and the ease of using the software on other
platforms. Three subcharacteristics are interoperability,
reusability, and portability.

Following McCall, Richards, and Walters’s work, Boehm (1978)
introduced several additional quality attributes. While the two
models have some different individual attributes, the three
categories—product operation, product revision, and product
transition—are the same.

As software changed and improved and the demands on software
increased, a new set of software quality attributes was needed. In
1991, the International Organization for Standardization (ISO)
adopted ISO 9126 as the standard for software quality (ISO, 1991).
The ISO 9126 standard moves from three main attributes to six and
from 11 subcharacteristics to 21. These attributes are presented in
Table 1-2. The ISO standard is based on functionality, reliability,

Section 1 — Introduction to Software Quality and Testing

1-5

Table 1-2. ISO Software Quality Attributes

Attributes Subcharacteristics Definition

Functionality Suitability Attributes of software that bear on the presence and appropriateness
of a set of functions for specified tasks

 Accurateness Attributes of software that bear on the provision of right or agreed
upon results or effects

 Interoperability Attributes of software that bear on its ability to interact with
specified systems

 Compliance Attributes of software that make the software adhere to application-
related standards or conventions or regulations in laws and similar
prescriptions

 Security Attributes of software that bear on its ability to prevent unauthorized
access, whether accidental or deliberate, to programs or data

Reliability Maturity Attributes of software that bear on the frequency of failure by faults
in the software

 Fault tolerance Attributes of software that bear on its ability to maintain a specified
level of performance in case of software faults or of infringement of
its specified interface

 Recoverability Attributes of software that bear on the capability to re-establish its
level of performance and recover the data directly affected in case
of a failure and on the time and effort needed for it

Usability Understandability Attributes of software that bear on the users’ effort for recognizing
the logical concept and its applicability

 Learnability Attributes of software that bear on the users’ effort for learning its
application

 Operability Attributes of software that bear on the users’ effort for operation and
operation control

Efficiency Time behavior Attributes of software that bear on response and processing times
and on throughput rates in performing its function

 Resource behavior Attributes of software that bear on the amount of resources used and
the duration of such use in performing its function

Maintainability Analyzability Attributes of software that bear on the effort needed for diagnosis of
deficiencies or causes of failures or for identification of parts to be
modified

 Changeability Attributes of software that bear on the effort needed for
modification, fault removal, or environmental change

 Stability Attributes of software that bear on the risk of unexpected effect of
modifications

 Testability Attributes of software that bear on the effort needed for validating
the modified software

(continued)

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-6

Table 1-2. ISO Software Quality Attributes (continued)

Attributes Subcharacteristics Definition

Portability Adaptability Attributes of software that bear on the opportunity for its adaptation
to different specified environments without applying other actions
or means than those provided for this purpose for the software
considered

 Installability Attributes of software that bear on the effort needed to install the
software in a specified environment

 Conformance Attributes of software that make the software adhere to standards or
conventions relating to portability

 Replaceability Attributes of software that bear on opportunity and effort using it in
the place of specified other software in the environment of that
software

Source: ISO Standard 9126, 1991.

usability, efficiency, maintainability, and portability. The paradigms
share several similarities; for example, maintainability in ISO maps
fairly closely to product revision in the McCall paradigm, and
product transition maps fairly closely to portability. There are also
significant differences between the McCall and ISO paradigms. The
attributes of product operation under McCall’s paradigm are
specialized in the ISO model and constitute four major categories
rather than just one.

The ISO standard is now widely accepted. Other organizations that
set industry standards (e.g., IEEE) have started to adjust their
standards to comply with the ISO standards.

 1.2 SOFTWARE QUALITY METRICS
Although a general set of standards has been agreed upon, the
appropriate metrics to test how well software meets those standards
are still poorly defined. Publications by IEEE (1988, 1996) have
presented numerous potential metrics that can be used to test each
attribute. Table 1-3 contains a list of potential metrics. The
problem is that no one metric is able to unambiguously measure a
particular attribute. Different metrics may give different rank
orderings of the same attribute, making comparisons across products
difficult and uncertain.

Section 1 — Introduction to Software Quality and Testing

1-7

Table 1-3. List of Metrics Available

Metric Metric

Fault density Software purity level

Defect density Estimated number of faults remaining (by seeding)

Cumulative failure profile Requirements compliance

Fault-days number Test coverage

Functional or modular test coverage Data or information flow complexity

Cause and effect graphing Reliability growth function

Requirements traceability Residual fault count

Defect indices Failure analysis elapsed time

Error distribution(s) Testing sufficiently

Software maturity index Mean time to failure

Person-hours per major defect detected Failure rate

Number of conflicting requirements Software documentation and source listing

Number of entries and exits per module Rely-required software reliability

Software science measures Software release readiness

Graph-theoretic complexity for architecture Completeness

Cyclomatic complexity Test accuracy

Minimal unit test case determination System performance reliability

Run reliability Independent process reliability

Design structure Combined hardware and software (system) availability

Mean time to discover the next K-faults

The lack of quality metrics leads most companies to simply count
the number of defects that emerge when testing occurs. Few
organizations engage in other advanced testing techniques, such as
forecasting field reliability based on test data and calculating defect
density to benchmark the quality of their product against others.

This subsection describes the qualities of a good metric, the
difficulty of measuring certain attributes, and criteria for selecting
among metrics.

 1.2.1 What Makes a Good Metric

Several common characteristics emerge when devising metrics to
measure product quality. Although we apply them to software

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-8

development, these metrics are not exclusive to software; rather
they are characteristics that all good metrics should have:

Z Simple and computable: Learning the metric and applying
the metric are straightforward and easy tasks.

Z Persuasive: The metrics appear to be measuring the correct
attribute. In other words, they display face validity.

Z Consistent and objective: The results are reproducible.

Z Consistent in units or dimensions: Units should be
interpretable and obvious.

Z Programming language independent: The metrics should
not be based on specific tasks and should be based on the
type of product being tested.

Z Gives feedback: Results from the metrics give useful
information back to the person performing the test
(Pressman, 1992).

 1.2.2 What Can be Measured

Regardless of the metric’s quality, certain software attributes are
more amenable to being measured than other attributes. Not
surprisingly, the metrics that are easiest to measure are also the least
important in eliminating the uncertainty the consumer faces over
software quality.

Pressman (1992) describes the attributes that can be measured
reliably and consistently across various types of software programs:

Z effort, time, and capital spent in each stage of the project;

Z number of functionalities implemented;

Z number and type of errors remediated;

Z number and type of errors not remediated;

Z meeting scheduled deliverables; and

Z specific benchmarks.

Interoperability, reliability, and maintainability are difficult to
measure, but they are important when assessing the overall quality of
the software product. The inability to provide reliable, consistent, and
objective metrics for some of the most important attributes that a
consumer values is a noticeable failure of software metrics.

 1.2.3 Choosing Among Metrics

Determining which metric to choose from the family of available
metrics is a difficult process. No one unique measure exists that a
developer can use or a user can apply to perfectly capture the

Section 1 — Introduction to Software Quality and Testing

1-9

concept of quality. For example, a test of the “cyclomatic”
complexity of a piece of software reveals a significant amount of
information about some aspects of the software’s quality, but it does
not reveal every aspect.1 In addition, there is the potential for
measurement error when the metric is applied to a piece of
software. For example, mean time to failure metrics are not
measures of certainty; rather they are measures that create a
distribution of outcomes.

Determining which metric to use is further complicated because
different users have different preferences for software attributes.
Some users care about the complexity of the software; others may
not.

The uncertainty over which metric to use has created a need to test
the validity of each metric. Essentially, a second, observable,
comprehensive and comparable set of metrics is needed to test and
compare across all of the software quality metrics. This approach
helps to reduce the uncertainty consumers face by giving them
better information about how each software product meets the
quality standards they value.

To decide on the appropriate metric, several potential tests of the
validity of each metric are available (IEEE, 1998). For a metric to be
considered reliable, it needs to have a strong association with the
underlying quality construct that it is trying to measure. IEEE
standard 1061-1998 provides five validity measures that software
developers can apply to decide which metrics are most effective at
capturing the latent quality measure:

1. Linear correlation coefficients—Tests how well the
variation in the metrics explains the variations in the
underlying quality factors. This validity test can be used to
determine whether the metric should be used when
measuring or observing a particular quality factor is difficult.

2. Rank correlation coefficients—Provides a second test for
determining whether a particular metric can be used as a
proxy for a quality factor. The advantage of using a rank
order correlation is that it is able to track changes during the
development of a software product and see if those changes
affect software quality. Additionally, rank correlations can
be used to test for consistency across products or processes.

1Cyclomatic complexity is also referred to as program complexity or McCabe’s

complexity and is intended to be a metric independent of language and
language format (McCabe and Watson, 1994).

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-10

3. Prediction error—Is used to determine the degree of
accuracy that a metric has when it is assessing the quality of
a particular piece of software.

4. Discriminative power—Tests to see how well a particular
metric is able to separate low quality software components
from high quality software components.

5. Reliability—If a metric is able to meet each of the four
previous validity measures in a predetermined percentage of
tests then the metric is considered reliable.

 1.3 SOFTWARE TESTING
Software testing is the process of applying metrics to determine
product quality. Software testing is the dynamic execution of
software and the comparison of the results of that execution against
a set of pre-determined criteria. “Execution” is the process of
running the software on a computer with or without any form of
instrumentation or test control software being present. “Pre-
determined criteria” means that the software’s capabilities are
known prior to its execution. What the software actually does can
then be compared against the anticipated results to judge whether
the software behaved correctly.

The means of software testing is the hardware and/or software and
the procedures for its use, including the executable test suite used to
carry out the testing (NIST, 1997). Section 2 of this report examines
in detail the various forms of software testing, the common types of
software testing being conducted and the available tools for
software testing activities.

In many respects, software testing is an infrastructure technology or
“infratechnology.” Infratechnologies are technical tools, including
scientific and engineering data, measurement and test methods, and
practices and techniques that are widely used in industry (Tassey,
1997). Software testing infratechnologies provide the tools needed
to measure conformance, performance, and interoperability during
the software development. These tools aid in testing the relative
performance of different software configurations and mitigate the
expense of reengineering software after it is developed and released.
Software testing infratechnologies also provide critical information
to the software user regarding the quality of the software. By
increasing quality, purchase decision costs for software are reduced.

In many respects,
software testing is an
infrastructure
technology or
“infratechnology.”

Section 1 — Introduction to Software Quality and Testing

1-11

 1.4 THE IMPACT OF INADEQUATE TESTING
Currently, there is a lack of readily available performance metrics,
procedures, and tools to support software testing. If these
infratechnologies were available, the costs of performance
certification programs would decline and the quality of software
would increase. This would lead to not only better testing for
existing products, but also to the testing of products that are not
currently tested.

The impact on the software industry due to lack of robust,
standardized test technology can be grouped into four general
categories:

Z increased failures due to poor quality,

Z increased software development costs,

Z increased time to market due to inefficient testing, and

Z increased market transaction costs.

 1.4.1 Failures due to Poor Quality

The most troublesome effect of a lack of standardized test technology
is the increased incidence of avoidable product defects that emerge
after the product has been shipped. As illustrated in Table 1-4, in the
aerospace industry over a billion dollars has been lost in the last
several years that might be attributed to problematic software. And
these costs do not include the recent losses related to the ill-fated
Mars Mission. Large failures tend to be very visible. They often result
in loss of reputation and loss of future business for the company.
Recently legal action has increased when failures are attributable to
insufficient testing.

Table 1-4. Recent Aerospace Losses due to Software Failures

Airbus A320

(1993)

Ariane 5 Galileo
Poseidon
Flight 965

(1996)

Lewis
Pathfinder
USAF Step

(1997)

Zenit 2 Delta 3
Near

(1998)

DS-1 Orion 3
Galileo Titan 4B

(1999)

Aggregate cost $640 million $116.8 million $255 million $1.6 billion

Loss of life 3 160

Loss of data Yes Yes Yes Yes

Note: These losses do not include those accrued due to recent problems with the Mars Mission.

Source: NASA IV&V Center, Fairmount, West Virginia. 2000.

The Economic Impacts of Inadequate Infrastructure for Software Testing

1-12

Software defects are typically classified by type, location
introduced, when found, severity level, frequency, and associated
cost. The individual defects can then be aggregated by cause
according to the following approach:

Z Lack of conformance to standards, where a problem occurs
because the software functions and/or data representation,
translation, or interpretation do not conform to the
procedural process or format specified by a standard.

Z Lack of interoperability with other products, where a
problem is the result of a software product’s inability to
exchange and share information (interoperate) with another
product.

Z Poor performance, where the application works but not as
well as expected.

 1.4.2 Increased Software Development Costs

Historically, the process of identifying and correcting defects during
the software development process represents over half of
development costs. Depending on the accounting methods used,
testing activities account for 30 to 90 percent of labor expended to
produce a working program (Beizer, 1990). Early detection of defects
can greatly reduce costs. Defects can be classified by where they
were found or introduced along the stages of the software
development life cycle, namely, requirements, design, coding, unit
testing, integration testing, system testing, installation/acceptance
testing, and operation and maintenance phases. Table 1-5 illustrates
that the longer a defect stays in the program, the more costly it
becomes to fix it.

 1.4.3 Increased Time to Market

The lack of standardized test technology also increases the time that
it takes to bring a product to market. Increased time often results in
lost opportunities. For instance, a late product could potentially
represent a total loss of any chance to gain any revenue from that
product. Lost opportunities can be just as damaging as post-release
product failures. However, they are notoriously hard to measure. If
standardized testing procedures were readily available, testers
would expend less time developing custom test technology.
Standardized test technology would accelerate development by
decreasing the need to

Section 1 — Introduction to Software Quality and Testing

1-13

Table 1-5. Relative Costs to Repair Defects when Found at Different Stages of the Life-Cycle

Life Cycle Stage
Baziuk (1995) Study

Costs to Repair when Found
Boehm (1976) Study

Costs to Repair when Founda

Requirements 1Xb 0.2Y

Design 0.5Y

Coding 1.2Y

Unit Testing

Integration Testing

System Testing 90X 5Y

Installation Testing 90X-440X 15Y

Acceptance Testing 440X

Operation and Maintenance 470X-880Xc

aAssuming cost of repair during requirements is approximately equivalent to cost of repair during analysis in the Boehm
(1976) study.

bAssuming cost to repair during requirements is approximately equivalent to cost of an HW line card return in Baziuk
(1995) study.

cPossibly as high as 2,900X if an engineering change order is required.

Z develop specific test software for each implementation,

Z develop specific test data for each implementation, and

Z use the “trial and error” approach to figuring out how to use
nonstandard automated testing tools.

 1.4.4 Increased Market Transaction Costs

Because of the lack of standardized test technology, purchasers of
software incur difficulties in comparing and evaluating systems.
This information problem is so common that manufacturers have
warned purchasers to be cautious when using performance numbers
(supplied by the manufacturer) for comparison and evaluation
purposes. Standardized test technology would alleviate some of the
uncertainty and risk associated with evaluating software choices for
purchase by providing consistent approaches and metrics for
comparison.

2-1

 Software Testing
 2 Methods and Tools

Software testing is the action of carrying out one or more tests,
where a test is a technical operation that determines one or more
characteristics of a given software element or system, according to a
specified procedure. The means of software testing is the hardware
and/or software and the procedures for its use, including the
executable test suite used to carry out the testing (NIST, 1997).

This section examines the various forms of software testing, the
types of software testing, and the available tools for software testing.
It also provides a technical description of the procedures involved
with software testing. The section begins with a brief history of
software development and an overview of the development process.

 2.1 HISTORICAL APPROACH TO SOFTWARE
DEVELOPMENT
The watershed event in the development of the software industry
can be traced to 1969, when the U.S. Justice Department forced
IBM to “unbundle” its software from the related hardware and
required that the firm sell or lease its software products. Prior to
that time, nearly all operating system and applications software had
been developed by hardware manufacturers, dominated by IBM, or
by programmers in the using organizations. Software developers in
the 1950s and 1960s worked independently or in small teams to
tackle specific tasks, resulting in customized one-of-a-kind products.
Since this landmark government action, a software development
market has emerged, and software developers and engineers have
moved through several development paradigms (Egan, 1999).

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-2

During the 1970s, improvements in computing capabilities caused
firms to expand their use of automated information-processing tasks,
and the importance of programming to firms’ activities increased
substantially. Simple tools to aid software development, such as
programming languages and debugging tools, were introduced to
increase the software programmer’s productivity. The introduction
of the personal computer and its widespread adoption after 1980
accelerated the demand for software and programming, rapidly
outpacing these productivity improvements. Semiconductor power,
roughly doubling every 18 months, has dramatically outpaced the
rate of improvement in software, creating a “software bottleneck.”
Although software is easily mass-produced, allowing for economies
of scale, the entrenched customized approach to software
development was so strong that economies of scale were never
realized.

The historic approach to the software development process, which
focused on system specification and construction, is often based on
the waterfall model (Andersson and Bergstrand, 1995). Figure 2-1
shows how this process separates software development into several
distinct phases with minimal feedback loops. First, the
requirements and problem are analyzed; then systems are designed
to address the problem. Testing occurs in two stages: the program
itself is tested and then how that program works with other
programs is tested. Finally, normal system operation and
maintenance take place. Feedback loops only exist between the
current stage and its antecedent and the following stage. This
model can be used in a component-based world for describing the
separate activities needed in software development. For example,
the requirements and design phase can include identifying available
reusable software.

Feedback loops throughout the entire development process increase
the ability to reuse components. Reuse is the key attribute in
component-based software development (CBSD). When building a
component-based program, developers need to examine the
available products and how they will be integrated into not only the
system they are developing, but also all other potential systems.
Feedback loops exist throughout the process and each step is no
longer an isolated event.

Section 2 — Software Testing Methods and Tools

2-3

Requirements Analysis and
Definition

System and Software Design

Implementation and Unit
Testing

Integration and System
Testing

Operation and Maintenance

Adapted from Andersson and Bergstrand (1995), Table 2-1
illustrates where software developers have placed their efforts
through time. In the 1960s and 1970s, software development
focused on writing code and testing specific lines of that code. Very
little effort was spent on determining its fit within a larger system.
Testing was seen as a necessary evil to prove to the final consumer
that the product worked. Andersson and Bergstrand estimate that
80 percent of the effort put into early software development was
devoted to coding and unit testing. This percentage has changed
over time. Starting in the 1970s, software developers began to
increase their efforts on requirements analysis and preliminary
design, spending 20 percent of their effort in these phases.

Additionally, software developers started to invest more time and
resources in integrating the different pieces of software and testing
the software as a system rather than as independent entities (units).
The amount of effort spent on determining the developmental
requirements of a particular software solution has increased in
importance. Forty percent of the software developer effort is now
spent in the requirements analysis phase. Developers have also
increased the time spent in the design phase to 30 percent, which

Figure 2-1. Waterfall
Model

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-4

Table 2-1. Allocation of Effort

Requirements

Analysis
Preliminary

Design
Detailed
Design

Coding and
Unit Testing

Integration
and Test

System
Test

1960s – 1970s 10% 80% 10%

1980s 20% 60% 20%

1990s 40% 30% 30%

Source: Andersson, M., and J. Bergstrand. 1995. “Formalizing Use Cases with Message Sequence Charts.”
Unpublished Master’s thesis. Lund Institute of Technology, Lund, Sweden.

reflects its importance. Design phases in a CBSD world are
extremely important because these phases determine the
component’s reuse possibilities.

 2.2 SOFTWARE TESTING INFRASTRUCTURE
Figure 2-2 illustrates the hierarchical structure of software testing
infratechnologies. The structure consists of three levels:

Z software test stages,

Z software testing tools, and

Z standardized software testing technologies.

Software testing is commonly described in terms of a series of
testing stages. Within each testing stage, testing tools are used to
conduct the analysis. Standardized testing technologies such as
standard reference data, reference implementations, test procedures,
and test cases (both manual and automated) provide the scientific
foundation for commercial testing tools.

This hierarchical structure of commercial software-testing
infratechnologies illustrates the foundational role that standardized
software testing technologies play. In the following subsections, we
discuss software testing stages and tools.

 2.2.1 Software Testing Stages

Aggregated software testing activities are commonly referred to as
software testing phases or stages (Jones, 1997). A software testing
stage is a process for ensuring that some aspect of a software
product, system, or unit functions properly. The number of software
testing stages employed varies greatly across companies and

Section 2 — Software Testing Methods and Tools

2-5

Figure 2-2. Commercial Software Testing Infrastructure Hierarchy

General
Subroutine

New Function
Regression
Integration

System

Specialized
Stress
Error

Recovery
Security

Performance
Platform

Viral

User-Involved
Usability

Field
Lab

Acceptance

Stages

Procedure
Tests

Automated Scripts

Reference Data
Reference Value

Reference Implementation
Test Suites

Manual Scripts

Standardized Software Testing Technologies

Tools:
• Test Design
• Test Execution and Evaluation
• Accompanying and Support Tools

applications. The number of stages can range from as low as 1 to as
high as 16 (Jones, 1997).

For large software applications, firms typically use a 12-stage
process that can be aggregated into three categories:

Z General testing stages include subroutine testing, unit
testing, new function testing, regression testing, integration,
and system testing.

Z Specialized testing stages consist of stress or capacity testing,
performance testing, platform testing and viral protection
testing.

Z User-involved testing stages incorporate usability testing and
field testing.

After the software is put into operational use, a maintenance phase
begins where enhancements and repairs are made to the software.
During this phase, some or all of the stages of software testing will
be repeated. Many of these stages are common and well
understood by the commercial software industry, but not all

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-6

companies use the same vocabulary to describe them. Therefore, as
we define each software stage below, we identify other names by
which that stage is known.

General Testing Stages

General testing stages are basic to software testing and occur for all
software (Jones, 1997). The following stages are considered general
software testing stages:1

Z subroutine/unit testing

Z new function testing

Z regression testing

Z integration testing

Z system testing

Specialized Testing Stages

Specialized software testing stages occur less frequently than
general software testing stages and are most common for software
with well-specified criteria. The following stages are considered
specialized software testing stages:

Z stress, capacity, or load testing

Z error-handling/survivability testing

Z recovery testing

Z security testing

Z platform testing stage

Z viral protection testing stage

User-Involved Testing Stages

For many software projects, the users and their information
technology consultants are active participants at various stages
along the software development process, including several stages of
testing. Users generally participate in the following stages.

Z usability testing

Z field or beta testing

Z lab or alpha testing

Z acceptance testing

1All bulleted terms listed in this section are defined in Appendix A.

Section 2 — Software Testing Methods and Tools

2-7

 2.2.2 Commercial Software Testing Tools

A software testing tool is a vehicle for facilitating the performance of
a testing stage. The combination of testing types and testing tools
enables the testing stage to be performed (Perry, 1995). Testing, like
program development, generates large amounts of information,
necessitates numerous computer executions, and requires
coordination and communication between workers (Perry, 1995).
Testing tools can ease the burden of test production, test execution,
test generation, information handling, and communication. Thus,
the proper testing tool increases the effectiveness and efficiency of
the testing process (Perry, 1995).

This section categorizes software testing tools under the following
headings:

Z test design and development tools;

Z execution and evaluation tools; and

Z accompanying and support tools (which includes tools for
planning, reviews, inspections, and test support) (Kit, 1995).

Many of the tools that have similar functions are known by different
names.

Test Design and Development Tools

Test design is the process of detailing the overall test approach
specified in the test plan for software features or combinations of
features and identifying and prioritizing the associated test cases.
Test development is the process of translating the test design into
specific test cases.

Tools used for test design and development are referred to as test
data/case generator tools. As this name implies, test data/case
generator tools are software systems that can be used to
automatically generate test data/cases for test purposes. Frequently,
these generators only require parameters of the data element values
to generate large amounts of test transactions. Test cases can be
generated based on a user-defined format, such as automatically
generating all permutations of a specific, user-specified input
transaction. The following are considered test data/case generator
tools:

Z data dictionary tools

Z executable specification tools

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-8

Z exhaustive path-based tools

Z volume testing tools

Z requirements-based test design

Test Execution and Evaluation Tools

Test execution and evaluation is the process of executing test cases
and evaluating the results. This includes selecting test cases for
execution, setting up the environment, running the selected tests,
recording the execution activities, analyzing potential product
failures, and measuring the effectiveness of the effort.

Execution tools primarily are concerned with easing the burden of
running tests. Execution tools typically include the following.

Z capture/playback tools

Z test harnesses and drivers tools

Z memory testing tools

Z instrumentation tools

Z snapshot monitoring tools

Z system log reporting tools

Z coverage analysis tools

Z mapping tools

Simulation tools are also used to test execution. Simulation tools
take the place of software or hardware that interacts with the
software to be tested. Sometimes they are the only practical method
available for certain tests, like when software interfaces with
uncontrollable or unavailable hardware devices. These include the
following tools:

Z disaster testing tools

Z modeling tools

Z symbolic execution tools

Z system exercisers

Accompanying and Support Tools

In addition to the traditional testing tools discussed above,
accompanying and support tools are frequently used as part of the
overall testing effort. In the strict sense, these support tools are not
considered testing tools because no code is usually being executed
as part of their use. However, these tools are included in this
discussion because many organizations use them as part of their

Section 2 — Software Testing Methods and Tools

2-9

quality assurance process, which is often intertwined with the
testing process.

Accompanying tools include tools for reviews, walkthroughs, and
inspections of requirements; functional design, internal design, and
code are also available. In addition, there are other support tools
such as project management tools, database management software,
spreadsheet software, and word processors. The latter tools,
although important, are very general in nature and are implemented
through a variety of approaches. We describe some of the more
common testing support tools:

Z code comprehension tools

Z flowchart tools

Z syntax and semantic analysis tools

Z problem management tools

 2.3 SOFTWARE TESTING TYPES
Software testing activities can also be classified into three types:

Z Conformance testing activities assess the conformance of a
software product to a set of industry wide standards or
customer specifications.

Z Interoperability testing activities assess the ability of a
software product to interoperate with other software.

Z Performance testing activities assess the performance of a
software product with respect to specified metrics, whose
target values are typically determined internally by the
software developer.

In the following subsections, we define the roles played by each of
the three types of software testing in the software development
process.

 2.3.1 Conformance Testing

Conformance testing activities assess whether a software product
meets the requirements of a particular specification or standard.
These standards are in most cases set forth and agreed upon by a
respected consortium or forum of companies within a specific
sector, such as the Institute of Electrical and Electronics Engineers,
Inc. (IEEE) or the American National Standards Institute (ANSI).
They reflect a commonly accepted “reference system,” whose
standards recommendations are sufficiently defined and tested by

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-10

certifiable test methods. They are used to evaluate whether the
software product implements each of the specific requirements of
the standard or specification.

One of the major benefits of conformance testing is that it facilitates
interoperability between various software products by confirming
that each software product meets an agreed-upon standard or
specification. Because of its broad usefulness, conformance testing
is used in most if not all of the software testing stages and by both
software developers and software users. Conformance testing
methodologies have been developed for operating system
interfaces, computer graphics, document interchange formats,
computer networks, and programming language processors.
Conformance testing methodologies typically use the same concepts
but not always the same nomenclature (NIST, 1997). Since the
specifications in software standards are complex and often
ambiguous, most testing methodologies use test case scenarios (e.g.,
abstract test suites, test assertions, test cases), which themselves
must be tested.

Standardization is an important component of conformance testing.
It usually includes developing the functional description and
language specification, creating the testing methodology, and
“testing” the test case scenarios. Executable test codes, the code
that tests the scenarios, have been developed by numerous
organizations, resulting in multiple conformance testing products on
the market. However, many rigorous testing methodology
documents have the capability to measure quality across products.

Sometimes an executable test code and the particular
hardware/software platform it runs on are accepted as a reference
implementation for conformance testing. Alternatively, a widely
successful commercial software product becomes both the defacto
standard and the reference implementation against which other
commercial products are measured (NIST, 1997).

 2.3.2 Interoperability Testing

Interoperability testing activities, sometimes referred to as
intersystems testing, assess whether a software product will
exchange and share information (interoperate) with other products.
Interoperability testing activities are used to determine whether the
proper pieces of information are correctly passed between

For router software
development:
Z Conformance testing

verifies that the routers
can accurately
interpret header
information and route
data given standard
ATM specification.

Z Interoperability testing
verifies that routers
from different vendors
operate properly in an
integrated system.

Z Performance testing
measures routers’
efficiency and tests if
they can handle the
required capacity
loading under real or
simulated scenarios.

Section 2 — Software Testing Methods and Tools

2-11

applications. Thus, a major benefit of interoperability testing is that
it can detect interoperability problems between software products
before these products are put into operation. Because
interoperability testing often requires the majority of the software
product to be completed before testing can occur, it is used
primarily during the integration and system testing stages. It may
also be used heavily during beta and specialized testing stages.

Interoperability testing usually takes one of three approaches. The
first is to test all pairs of products. Consumers are in a poor position
to accomplish this because they are unaware of the interoperability
characteristics across software products and across software firms.
This leads to the second approach—testing only part of the
combinations and assuming the untested combinations will also
interoperate. The third approach is to establish a reference
implementation and test all products against the reference
implementation (NIST, 1997). For example, a typical procedure
used to conduct interoperability testing includes developing a
representative set of test transactions in one software product for
passage to another software product for processing verification.

Performance Testing

Performance testing activities assess the performance of a software
product with respect to specified metrics. The target metrics are
usually determined within the company using industry reference
values. Performance testing measures how well the software system
executes according to its required response times, throughput, CPU
usage, and other quantified features in operation by comparing the
output of the software being tested to predetermined corresponding
target and reference values.

Performance testing is also commonly known by the other names
and/or associated with other testing activities, such as stress testing,
capacity testing, load testing, volume testing, and benchmark
testing. These various performance testing activities all have
approximately the same goal: “measuring the software product
under a real or simulated load” (Beizer, 1984).

Performance testing is usually performed as a separate testing stage,
known as the performance testing stage. However, it is not
uncommon for performance testing activities to be conducted as
part of the integration or system testing stage. Typically,

Throughput, delay,
and load are typical
performance testing
parameters for large
transaction systems,
such as product data
management (PDM).

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-12

performance testing cannot be performed earlier in the life cycle
because a fully or nearly fully developed software product is
needed. In fact, proper performance testing may require that the
software product be fully installed in a real or simulated operational
environment. As result of its benefits, both users and developers
engage in performance testing. The process is so valuable that large
software developers, users, and system integrators frequently
conduct benchmark comparisons (Michel, 1998).

A major benefit of performance testing is that it is typically designed
specifically for pushing the envelope on system limits over a long
period of time. This form of testing has commonly been used to
uncover unique failures not discovered during conformance or
interoperability tests (Jones, 1997; Perry, 1995; Wilson, 1995). In
addition, benchmarking is typically used to provide competitive
baseline performance comparisons. For instance, these tests are
used to characterize performance prior to manufacturing as well as
to compare performance characteristics of other software products
prior to purchase (Wilson, 1995).

Performance testing procedures provide steps for determining the
ability of software to function “properly,” particularly when near or
beyond the boundaries of its specified capabilities or requirements.
These “boundaries” are usually stated in terms of the volume of
information used. The “specific metrics” are usually stated in terms
of time to complete an operation. Ideally, performance testing is
conducted by running a software element against standard datasets
or scenarios, known as “reference data” (NIST, 1997).

Performance measures and requirements are quantitative, which
means that they consist of numbers that can be measured and
confirmed by rational experiments. A performance specification
consists of a set of specified numbers that can be reduced to
measured numbers, often in the form of a probability distribution.
The numbers measured for the software product are either less or
more than or equal to the specified values. If less, the software
product fails, if more than or equal to, the software product passes
the tests. Every performance specification is a variation of these
simple ideas (Beizer, 1984).

Z The rate at which the
system processes
transactions is called
the throughput.

Z The time that it takes
to process those
transactions is called
the processing delay.

Z Processing delay is
measured in seconds.

Z The rate at which
transactions are
submitted to a
software product is
called the load.

Z Load is measured in
arriving transactions
per second.

Section 2 — Software Testing Methods and Tools

2-13

 2.3.4 Relationship between Software Stages, Testing
Types, and Testing Tools

Certain software testing types are associated with particular software
testing stages. During these stages, different types of testing are
performed by different parts of the software industry. Table 2-2
illustrates the relationship between the software testing types and
stages, while Table 2-3 maps the software testing types with the
software development life cycle. Table 2-3 also indicates whether
developers or end users are likely to conduct the activities.

Table 2-2. The Degree of Usage of the Different Testing Stages with the Various Testing
Types

 Testing Types
Testing Stages Conformance Interoperability Performance

General
Subroutine/unit H
New function H L
Regression H L
Integration M H M
System M H H

Specialized
Stress/capacity/load
Error-handling/survivability
Recovery
Security H
Performance H
Platform H M
Viral protection H

User-involved
Usability H M L
Field (beta) M H H
Lab (alpha)
Acceptance

Note: H = Heavy, M = Medium, L = Light: These descriptors illustrate the relative use of the testing types during the
various testing stages.

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-14

T
a

b
le

 2
-3

.
 S

o
ft

w
a

re
 T

e
s
ti

n
g

 T
yp

e
s

A
ss

o
c

ia
te

d
 w

it
h

 t
h

e
 L

if
e

 C
yc

le

G

en
er

al

Sp
ec

ia
liz

ed

U
se

r
In

vo
lv

ed

U

ni
t

N
ew

Fu
nc

ti
on

R
eg

re
s-

si
on

In
te

gr
a-

ti
on

Sy

st
em

St

re
ss

Er

ro
r

R
ec

ov
-

er
y

Se
cu

-

ri
ty

Pe
rf

or
m

-

an
ce

Pl
at

-

fo
rm

V

ir
al

U
sa

-

bi
lit

y
Fi

el
d

La
b

A
cc

ep
t-

an
ce

C
on

fo
rm

an
ce

D

D

D

D

D

D

D

B

U

In
te

ro
pe

ra
bi

lit
y

D

D

B

B

U

Pe
rf

or
m

an
ce

D

D

D

B

B

U

N
ot

e:
 D

 =
 D

ev
el

op
er

s,
 U

 =
 U

se
rs

, B
 =

 B
ot

h.

N
ot

e:
 T

he
 in

fo
rm

at
io

n
in

 T
ab

le
s

2-
2

an
d

2-
3

w
as

 g
at

he
re

d
fr

om
 th

e
lit

er
at

ur
e

an
d

in
fo

rm
al

 in
du

st
ry

 in
te

rv
ie

w
s.

Section 3 — Software Testing Methods and Tools

2-15

Certain software testing tools are also associated with particular
software testing types. In addition, certain tools are also associated
with certain software testing stages. Table 2-4 illustrates the
relationship between the software testing tools and types, and
Table 2-5 maps the software testing tools to the software testing
stages.

 2.3.5 Standardized Software Testing Technologies

Standardized software testing technologies such as standard
reference data, reference implementations, test procedures, metrics,
measures, test scripts, and test cases (both manual and automated)
provide a scientific foundation for the commercial testing tools and
the testing types used during the software testing stages.

Although there are general standards for test documentation and
various verification and validation activities and stages (IEEE/ANSI,
1993), there appears to be a lack of specific standardized test
technology (such as reference data and metrics) that is readily
available for commercial software. The degree of standardization
varies across software applications. In addition, even when
software publishers provide testing tools, they still require
customization and contain inconsistencies because the
development of testing tools lags behind new software product
releases (ITToolbox, 1999).

The Economic Impacts of Inadequate Infrastructure for Software Testing

2-16

Table 2-4. Tools Used by Type of Testing

Test Tools Conformance Interoperability Performance

Test Design and Development

Test data/case generator M L H

Data dictionary

Executable specification

Exhaustive path based

Volume testing tool

Requirements-based test design tool

Execution Evaluation

Execution tools H M H

Capture/playback

Test harness and drivers

Analysis tools H L L

Coverage analysis

Mapping

Evaluation tools L L H

Memory testing

Instrumentation

Snapshot monitoring

System log reporting

Simulation tools M H H

Performance

Disaster testing

Modeling tools

Symbolic execution

System exercisers

Accompanying and Support Tools

Code inspection tools L

Code comprehension

Flowchart

Syntax and semantic analysis

Problem management tools

System control audit database

L L L

Scoring database tools

Configuration management tools H H H

Note: H = Heavy, M = Medium, L = Light: These descriptors illustrate the relative use of the testing tools with the
various testing types.

Section 3 — Software Testing Methods and Tools

2-17

Table 2-5. Tools Used by Testing Stage

Test Tools General Specialty User-Involved

Test Design and Development

Test data/case generator H M L

Data dictionary

Executable specification

Exhaustive path based

Volume testing tool

Requirements-based test design tool

Execution Evaluation

Execution tools H M H

Capture/playback

Test harness and drivers

Analysis tools M M

Coverage analysis

Mapping

Evaluation tools M M M

Memory testing

Instrumentation

Snapshot monitoring

System log reporting

Simulation tools M H M

Performance

Disaster testing

Modeling tools

Symbolic execution

System exercisers

Accompanying and Support Tools

Code inspection tools L

Code comprehension

Flowchart

Syntax and semantic analysis

Problem management tools

System control audit database

H H L

Scoring database tools

Configuration management tools H H L

Note: H = Heavy, M = Medium, L = Light: These descriptors illustrate the relative use of the testing types during the
various testing stages.

Note: The information in Tables 2-4 and 2-5 is based on the literature and comments from industry participants.

3-1

 Inadequate
 Infrastructure for
 Software Testing:
 Overview and
 3 Conceptual Model

An inadequate infrastructure for software testing means that software
developers and users incur costs above levels with more efficient
testing methods. For example, with the current infrastructure,
developers spend extra resources on detecting, locating, and
correcting bugs to produce a given level of product quality, but
more bugs remain in the software to be discovered by users. Users
who encounter bugs incur the costs associated with the reduced
quality of the activities supported by the software and the costs of
developing “workarounds” to deal with the bug or of returning the
software to the developer for correction.

Because bugs negatively affect perceived product quality, they can
also be expected to negatively impact software sales. For example,
bugs present in early (beta) versions of software releases increase the
cost for early adopters, slowing the diffusion of new software
products. Decreased software sales reduce developers’ revenues
and mean that some potential users forego the benefits of new
releases. Furthermore, such delays may mean that a firm or country
will lose the early-mover advantage. When an entity is the first to
introduce a product that changes the competitive position of the
market, being first may give it an advantageous position for some
time.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-2

 3.1 SOFTWARE TESTING INADEQUACIES
General standards for test documentation and various verification
and validation activities and stages have been available for several
years (IEEE/ANSI, 1993). Organizations such as the Carnegie
Mellon Software Engineering Institute have promoted de facto
standards for assessing and improving software processes.1
Carnegie Mellon is also managing the Sustainable Computing
Consortium that is investigating standards and methods to reduce
software defects (InformationWeek.com, 2002). However, a
specific standardized test technology (such as reference data and
metrics) that is readily available for commercial software appears to
be lacking. Even when the software publisher provides testing tools,
they still require customization and contain inconsistencies because
development of testing tools lags behind new software product
releases (ITToolbox, 1999).

Compounding this problem are competitive market pressures that
have increased automation in business and manufacturing,
increasing the amount of information that is shared between
applications within and among companies. These forces are
simultaneously pushing the complexity, reliability, interoperability,
performance, and “speed of deployment” requirements of software.
However, these forces have led several inadequacies in software
testing infrastructure technology to emerge and become problematic
for the software industry. For the discussion below, inadequacies
are grouped into four categories:

Z integration and interoperability testing issues,

Z automated generation of test code,

Z lack of a rigorous method for determining when a product is
good enough to release, and

Z lack of readily available performance metrics and testing
measuring procedures.

 3.1.1 Integration and Interoperability Testing Issues

Initiatives such as real-time integrated supply chain management are
driving the need to integrate PDM and computer-aided design
(CAD), computer-aided manufacturing (CAM), and computer-aided

1See Carnegie Mellon Software Engineering Institute’s Capability Maturity Model

for Software (SW-CMM), <http://www.sei.cmu.edu/cmm/>. Last modified April
24, 2002.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-3

engineering (CAE) with other systems that are part of the extended
organization and supply chain. The integration of applications is a
difficult and uncertain process. Meta Group estimates that
application integration can account for up to one-third of the cost of
systems implementation (Booker, 1999). Enterprise applications
integration (EAI) is currently a huge expense, occupying 30 percent
of company information technology budgets. Its importance is
expected to increase in the future when it could occupy up to 56
percent of company information technology budgets (Booker,
1999). Estimated worldwide information technology expenditures
were $270 billion in 1998. Given that 30 percent of the
expenditures were on EAI, this translates to total expenditures of
$81 billion in 1998.

Developers rely heavily on interoperability testing during the
integration testing stage. One of the major inadequacies within the
software-testing infrastructure is the difficulty in determining
whether applications and systems will interoperate. For example, if
application A and application B interoperate and if application B
and application C interoperate, what are the prospects of
applications A and C interoperating (NIST, 1997)?

 3.1.2 Automated Generation of Test Code

Developing conformance testing code can be more time consuming
and expensive than developing the standard or product that will be
tested. Addressing the high testing costs is currently the focus of
several research initiatives in industry and academia. Some of these
initiatives are based on modeling finite state machines, combinatorial
logic, or other formal languages such as Z (Cohen et al., 1996; Tai
and Carver, 1995; NIST, 1997; Apfelbaum and Doyle, 1997). NIST
has also been involved in developing formal methods for
automatically generating tests for software products from formal
specifications (Black, 2002; Gallagher, 1999).

 3.1.3 Lack of a Rigorous Method for Determining When a
Product Is Good Enough to Release

The major problem for the software industry is deciding when a firm
should stop testing (Vouk, 1992; Voas and Friedman, 1995; Voas,
1998; Rivers and Vouk, 1998; Offlutt and Jeffery, 1997; NIST, 1997).
In other words, how much testing is enough, or when is the quality
“sufficient” for the product to be released. A more rigorous definition

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-4

of the certainty of software quality is needed. The problem is
exacerbated because there is disagreement not only on how to define
enough, but also on what tests should be run to determine what is
enough. For example, commercial software developers use a
combination of the following nonanalytical methods to decide when
a software element is “good enough” to release:

Z A “sufficient” percentage of test cases run successfully.

Z Developers execute a test suite while running a code
coverage analyzer to gather statistics about what code has
been exercised.

Z Defects are classified into different severity categories and
numbers and trends within each category are analyzed.

Z Beta testing is conducted, allowing real users to run a
product for a certain period of time and report problems;
then developers analyze the severity and trends for reported
problems.

Z Developers analyze the number of reported problems in a
period of time; when the number stabilizes or is below a
certain threshold for a period of time, it is considered “good
enough.”

Although code coverage and trend analysis are initial steps towards
a more rigorous definition of the certainty of software quality,
mathematical foundations and methods for assessing the uncertainty
in quality determinations still need to be defined. Analytically
derived levels of confidence for software test results would give
software developers and users a more consistent method of
determining and comparing their estimates of the risk of deploying
software products.

 3.1.4 Lack of Readily Available Performance Metrics and
Testing Procedures

The larger software developers provide performance testing
certification programs as well as performance benchmark metrics
(Michel, 1998). However, performance-testing programs are
expensive to develop and maintain and too costly for smaller
software developers (Michel, 1998). Typically, hardware platform
developers only conduct performance testing for the more popular
or largest software systems. Small, new, or less popular systems
often have no performance testing done by either the software or
hardware developer.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-5

Currently, there is a lack of readily available performance metrics or
testing procedures. If these metrics and procedures were available,
the costs of performance certification programs would decline. This
would lead to not only better testing for existing products, but also
to the testing of products that are not currently tested.

 3.1.5 Approaches for Improving Software Testing
Infrastructure

Numerous issues affect the software testing infrastructure and may
lead to inadequacies. For example, competitive market pressures
may encourage the use of a less than optimal amount of time,
resources, and training for the testing function (Rivers and Vouk,
1998). Improvements in standardized test technology can provide
cascading improvements throughout the entire software testing
infrastructure and as a result provide improvements throughout the
software industry. As illustrated in Figure 2-2 standardized software
testing technologies are the foundation of the entire software testing
infrastructure, which in turn supports the software industry.

There is a great need for certified standardized test technology. For
example, some software publishers provide test tools. However, the
development of these tools and the accompanying testing suites
often lag behind the development of new software applications
(ITToolbox, 1999). Even when commercial testing tools are
available, testers complain that many of these tools are confusing
and potentially harmful to the firm that uses them (ITToolbox,
1999). Standardized testing tools, suites, scripts, reference data,
reference implementations, and metrics that have undergone a
rigorous certification process would have a large impact on the
inadequacies listed in the previous section. For instance,
integration issues could be reduced if standard test suites could give
a certain level of confidence that if products A, B, and C pass these
tests, then these products will interoperate with each other. Another
example would be the availability of standardized test data, metrics,
and automated test suites for performance testing. This would make
benchmarking tests on less popular applications less costly to
perform. Standardized automated testing scripts along with
standard metrics would also provide a more consistent method for
determining when to stop testing.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-6

One of the main objectives of this study is to identify approaches to
improve the software testing infrastructure. Based on findings from
our surveys and case studies, this subsection will be expanded.

 3.2 CONCEPTUAL ECONOMIC MODEL
The cost of an inadequate infrastructure for software testing can also
be expressed as the benefit of an improved infrastructure for
software testing. These values (cost and benefit) are symmetrical.
They are properly measured as either the minimum amount of
money all members of society would collectively require to forego
the improved infrastructure or as the maximum amount of money all
members of society would collectively pay for the improved
infrastructure.

An appropriate measure of the economic impact of an inadequate
infrastructure for software testing is the profit differences of
developers and users between conditions with the current testing
infrastructure and conditions with the counterfactual infrastructure.
This can be expressed by summing over all developers and users as
follows:

∆ economic welfare = Σ ∆ developers’ profits +

Σ ∆ end-users’ profits.

An improved testing infrastructure could have several potential
impacts on software developers and end users. Understanding the
mechanism through which costs are incurred (or benefits foregone)
is an important first step in developing a cost taxonomy (presented
in Section 4) for estimating the economic impact of the failure to
achieve these improvements.

To model these impacts, we set up representative firms’ profit
functions for developers and end users under the current and
counterfactual conditions and investigated how changes in the
software testing infrastructure affect firms’ costs and revenues. In
addition, we are interested in the software developer’s selection of
the “optimal” level of software testing resources dedicated to
achieving software quality. The empirical analysis in Sections 6
through 8 investigates not only a testing infrastructure’s cost impact
associated with achieving a given level of quality, but also its

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-7

impact on the level of quality embedded in software products,
which is influenced by the market.

 3.3 SOFTWARE DEVELOPERS
In this section, we define the software developer’s profit function in
terms of sales revenue, pre-sale software R&D expenditures,
production costs, marketing, and after-sales service costs. We also
graphically illustrate the developers’ selection of the profit-
maximizing level of R&D expenditures and show how this level is
affected by an inadequate testing infrastructure.

 3.3.1 Cost Framework

The appropriate measure of the value developers would place on an
improved infrastructure for software testing is their profit difference
between conditions with the current testing infrastructure and
conditions with the counterfactual infrastructure (see Just, Hueth,
and Schmitz [1982]).

Profits are firm revenues minus costs. Suppose the firm produces a
single software product (q) at a price (p). Total revenues are

 TR = pq

Taking a product life-cycle perspective (but ignoring the timing of
activities to simplify the notation), costs are of two types: R&D and
production. R&D costs are the one-time fixed costs of product
development including testing activities. Production costs are the
recurring costs of product production, distribution, and service.

Suppose the developer uses n inputs or resources (x11, …, x1n) in
the R&D phase of software development and that the prices for the
resources are w11, …, w1n. The cost of R&D effort expended to
develop and test the product is

 ∑
i=1

n
 w1ix1i.

The cost of production (i.e., of all activities after the successful
development of the software) includes both the production,
marketing, and distribution costs and the costs of dealing with user-
identified bugs. Suppose the developer uses r resources (x11, …,
x1r) per product sold in software production and distribution and s

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-8

resources (x21, …, x2s) per product sold in after-sales service dealing
with user-identified bugs. Developers’ production and
distribution/service costs are

 qxwxw
s

1i
i3i3

r

1i
i2i2

+ ∑∑

==
. (3.1)

The total costs over the product life-cycle of developing and
producing the software are the sum of the R&D and production, and
distribution/service costs:

 qxwxwxw
s

1i
i3i3

r

1i
i2i2

n

1i
i1i1

+ ∑∑∑

===
. (3.2)

The profit, π, the developer receives over the entire product life-
cycle is

+−=π ∑∑∑

===
qxwxwxwpq

s

1i
i3i3

r

1i
i2i2

n

1i
i1i1 (3.3)

where the first term is the revenues, the second, costs.

With improvements in testing infrastructure, resource use in the
R&D phase (x11, …, x1n) will change. Fewer bugs will be
embodied in shipped products; thus, resource use for after-sales
service (x31, …, x3s) will also change. With improvements in
product quality demand may increase, increasing sales of the
software products (q) and thereby changing the resource use in
software production and distribution (x1, …, xr). Because
developers are producing a (better) unique product and because
production costs will change, product prices (p) will also change.

Profit, π‘, under the counterfactual condition will be (where the
prime symbol is used to indicate changed values for the variables):

 ′′+′′+′′−′′=π′ ∑∑∑

===
qxwxwxwqp

s

i
ii

r

i
ii

n

i
ii

1
33

1
22

1
11 . (3.4)

Thus, the benefit of an improved software testing infrastructure to a
developer is the developer’s profit difference: π‘ – π. Alternatively,
this profit difference can be viewed as the cost to the developer of
failing to provide the improved infrastructure. Regardless of the
perspective, the value can be thought of as having two components:

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-9

the difference in the R&D and production costs plus the difference
in the revenues received. The industry-level values are the sum of
the firm-level profit differences for all firms in the industry.

 3.3.2 Factors Influencing the Profit-Maximizing Level of
R&D Expenditures

Product quality is an integrating factor underlying the firm’s R&D
expenditure decision, after-sales service costs, and revenue from the
sale of software products. This subsection models R&D
expenditures on software testing as an endogenous variable in the
developer’s profit-maximizing decision and investigates the
developer’s decision criteria for determining the level of quality it
will provide in its products. The level of quality is modeled as a
function of the R&D resources developers invest prior to shipping a
software product. We present our model in terms of a shrink-
wrapped product. However, it could be easily extended to custom
software development by replacing the quality decision maximized
at the time of shipping for a shrink-wrapped product with the
quality decision maximized at the time of acceptance for a custom
software product.

Consider a software developer who is maximizing profits
(represented by Eq. [3.3]) with respect to the level of R&D
expenditures it will devote to product quality. The developer would
prefer to maximize with respect to product quality; however,
product quality is an unobservable attribute at the time of shipping.
Thus, what the developer selects is the level of testing resources
invested to produce a target level of quality. The software quality
(Q) production function can be expressed as a function of R&D
expenditures (i.e., labor and capital to support testing) (Σx1i)
invested prior to shipping plus an error term (e):

 Q = f(Σx1i) + e (3.5)

where f’ > 0 and f’’ < 0.

The level of quality can be thought of as the inverse in the number
of bugs remaining in the product including its level of
interoperability with complementary products or legacy systems.

As shown in Figure 3-1, software quality potentially affects
developers’ profits through changes in

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-10

Profit = Revenue – [Testing + Production + After-Sales Service]

++−=π ∑∑∑

===
qxwxwxwpq

s

i
ii

r

i
ii

n

i
ii

1
33

1
22

1
11

 Q = f(Σx1i) + e

Z after-sales service costs,

Z the market price of the software, and

Z the quantity sold.

The exact relationships determining the impact of quality on these
three profit components depend on a variety of factors. For
example, the extent to which quality affects developers’ after-sales
service costs depends on the type of service agreements established
between developers and end users. Also, the extent to which
quality influences market price and quantity depends on end-users’
ability to evaluate software quality and on the search costs they are
willing to expend to obtain information on quality.

After-Sales Service Costs

We begin evaluating software developers’ R&D expenditure
decision by investigating the tradeoff between pre-sales testing and
after-sales service costs (i.e., holding price and quantity of the
software product constant—this assumption is relaxed in the
following section). The profit-maximizing software developer will
continue to invest in software testing as long as the marginal cost of
obtaining an additional unit of quality is less than the marginal
benefit of the additional unit of quality.2 As shown in Figure 3-2a,
the marginal cost of pre-sales quality increases exponentially and
the marginal benefit of avoided after-sales service is represented as

2The MC curve represents the distribution of costs for a given level of testing

technology. Additional testing resources move a developer along the curve.
An improved testing infrastructure will shift the MC curve down.

Figure 3-1. Software
Quality’s Role in Profit
Maximization
Software quality not only affects
price (p) and quantity (q), but
also the resources per unit sold
(x3i) needed, for after-sales
service.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-11

Figure 3-2. Minimize Joint Costs of Pre-sales Testing and After-Sales Service (Holding Price
and Quantity Constant)

Marginal
Cost
(MC)

Marginal
Benefit

(MB)

"Quality Gap"

Share of After-Sales
Costs borne by End

Users

MC Testing
Prior to

Shipping

MB1

Q1
Quality

MB* of
Avoided After-
Sales Service

Q*

Developer’s
Profits

π1

Quality

π*

(b)

(a)

flat. The flat marginal benefits curve reflects a constant avoided
after-sales service cost per unit of quality.3

If the developer bears all the after-sales service costs (or if the
developer and end user are the same entity such as in-house
software development), as shown by MB*, the optimal level of

3It is unclear if bugs found after a “large” amount of testing has already been done

are more costly or less costly to fix. Thus, we assume a flat MB curve, implying
that the average cost per after-sales bug is constant with respect to the level of
quality.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-12

quality is Q*. Q* also reflects the optimal social level of software
quality. However, if the developer only bears part of the after-sales
costs, the MB of quality to the developer is less. As a result, the
developer will select a quality level of less than Q*, yielding a
“quality gap” of (Q* – Q1).

As shown in Figure 3-2b, the quality gap reflects instances where
profit-maximizing software developers do not have the proper
incentives to invest testing resources to achieve the socially optimal
level of software testing. The quality gap illustrates that the greater
the market power of developers, the more costs are shifted toward
users, lowering developers’ incentives to invest in quality.

 3.4 END USERS
End users complete the market for software products. They
influence R&D testing efforts through the share of after-sales costs
they bear and through their valuation of perceived software quality.
Restated, the end-users’ ability to observe software quality at the
time of purchase and the contractual agreements determining who
bears the after-sales costs of poor quality influence end-users’
demand for software quality.

 3.4.1 Cost Framework

As with software developers, the appropriate measure of the value
end users would place on an improved infrastructure for software
testing is their profit difference between conditions with the current
testing infrastructure and conditions with the counterfactual
infrastructure.

End-users’ profits are modeled as a function of the difference in
revenues and production costs. End-users’ total revenues are
expressed as the price times quality for the product the firm
produces:

 TR = py.

The key inputs to end-users’ production functions are divided into
four components: pre-purchase software costs, software
expenditures, after-purchase software costs, and “other”
nonsoftware-related costs incurred by the end user. As with
software developers, costs are viewed from a product life-cycle

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-13

perspective (but again ignoring the timing of activities to simplify
the notation).

Suppose the end user expends n inputs or resources (x11, …, x1n)
prior to purchasing software and that the prices for the resources are
w11, …, w1n. These costs may include, for example, search costs or
delay costs from uncertainty over the quality of available software.

End users will then purchase up to r software products (x21, …, x2r)
at market prices (w21, …, w2r). Purchase costs are one-time fixed
costs covering software and implementation expenditures.

In addition to the purchase cost of the software, end users may
experience after-purchase (after-acceptance) costs comprising
resources (x31, …, x3s) at prices (w31, …, w3s). After-purchase costs
include activities, such as implementing patches and work arounds,
idle labor, and capital resources due to software problems. Note
that resources x1, x2, and x3 are modeled as fixed, one-time
expenditures.

Finally, end-user “other” production costs are included for
completeness to capture all nonsoftware-related activities per unit
produced. Other production costs are represented as V resources
(x41, …, x4v) at a price of (w41, …, w4v), times y units produced.

The end-user’s profit, π, can be expressed as its product life-cycle
revenue minus its costs:

+++−=π ∑∑∑∑

====
yxwxwxwxwpy

v

1i
i4i4

s

1i
i3i3

r

1i
i2i2

n

1i
i1i1 (3.6)

where the first term is revenues, the remaining terms are costs.

With improvements in testing infrastructure, resource use in the pre-
purchase, purchase, and post-purchase phases of the software’s life-
cycle will change. For example, certified testing procedures may
facilitate the comparison of products across different software
vendors, lowering search costs. Fewer bugs embodied in software
products reduces after-sales purchase costs for end users. Finally,
because better software may lead to better final products, the
demand for the end-user’s final products may increase, leading to
changes in final product prices and quantities.

Profit, π‘, under the counterfactual condition will be

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-14

+′′+′′+′′−′′=π′ ∑∑∑∑

====
yxwxwxwxwyp

v

1i
i4i4

s

1i
i3i3

r

1i
i2i2

n

1i
i1i1 (3.7)

Thus, the benefit of an improved software testing infrastructure to a
end user is the change in profit: π‘ – π.

 3.5 THE MARKET FOR SOFTWARE PRODUCTS
In this section we build on the insights from the developers’ and
end-users’ profit-maximizing behavior to model the market for
software products. We illustrate the determination of market price
and quantity, along with consumer and producer surplus, assuming
under a market structure of monopolistic competition. Section 3.6
then shows the impact of an inadequate infrastructure for software
testing on prices, quantities, and economic welfare.

 3.5.1 Quality’s Impact on Market Prices

If end users bear some share of the cost associated with the lack of
software quality, this will influence the price (P) they are willing to
pay for the product and the quantity purchased (q). To model the
impact we assume that developers are maximizing profits with respect
to selecting the level of pre-sale testing resources they will invest. In
addition, we make the following modeling assumptions:

Z Developers’ R&D expenditures, including software testing
costs, are one-time fixed costs.

Z After-sales service costs are variable costs and are a function
of q (distribution of patches and customer service
operations).

Z End-user demand is a function of quality (Q).

The distinction between fixed and variable costs is important in the
software industry because the physical production of software
products has close to zero marginal costs. In our model, per unit
after-sales support is the primary variable cost and for simplicity is
assumed to be constant with respect to the quantity produced.4

4There are likely to be some economies of scale in providing after-sales support; for

example, maintaining service centers and developing and distributing patches
will have decreasing per-unit costs. However, the more end users using a piece
of software, the higher the probability a bug will be found or an interoperability
problem will materialize. Relaxing the assumption of constant MC of after-sales
service would add decreasing slope to the MC curve in Figure 3-3 but would
not affect the analysis findings.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-15

Figure 3-3 illustrates the marginal benefits to users (referred to as the
demand curve) and marginal cost as a function of the number of
units sold (q) and shows how these curves shift as software quality
changes. In a market with monopolistic competition, software
developers will price their products where MR = MC. As quality
improves, the software products’ value to end users increases,
shifting out both the demand and marginal revenue curves.
Increased quality also decreases the marginal cost of after-sales
services, leading to a downward shift in the MC curve. The new
intersection of the MC and marginal revenue (MR) curves results in
increased price and quantity and increased net revenue for the
developer.

The profit-maximizing software developer will invest in product
quality as long as the increased net revenue (change in total
revenue [∆TR] minus change in total variable cost [∆TVC]), shown
in Figure 3-3, is greater than the increased fixed costs (∆FC). It can
be shown that the profit-maximizing level of R&D expenditures for
the developer is where the marginal change in net revenue with
respect to testing is equal to the marginal change in fixed costs.

 ∂(TR – TVC) / ∂Σx1i = ∂FC / ∂Σx1i. (3.8)

As mentioned earlier, key factors influencing the initial position of
the curves in Figure 3-3 and the way they shift in response to
changes in software quality are

Z the share of after-sales costs borne by end users (this
influences the initial demand and MC curves and how they
respond to changes in quality), and

Z end-users’ ability to determine the level of quality prior to
purchasing the product (this influences the initial demand
curve and its responsiveness to changes in quality).

These factors are discussed in the following subsection.

 3.6 MODELING AN INADEQUATE SOFTWARE
TESTING INFRASTRUCTURE
Inadequate software testing infrastructure affects both developers’
and end-users’ profit functions and hence affects their supply and
demand for software quality, respectively. Enhanced testing tools
and services will enable users to find bugs faster and fix them with
fewer resources and allow users to better assess the quality of

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-16

Quality �

 (TR � TVC)0

Quantityq0

MR0 D0

MC0

Q↑

Q↑

Q↑

 (TR � TVC)

Quantityq′

MR′

D′

MC′

P0

MC, MB

MC, MB

P′

a)

b)

software products. This in turn will affect developers’ and end-
users’ behavior by changing the following underlying relationships
embedded in the profit functions:

Z cost of quality (prior to shipping),

Z cost of after-sales service, and

Z search costs for end users to determine quality.

Figure 3-3. Change in
Quality’s Impact on
Price, Quantity, and Net
Revenue

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-17

The impact of these three items on developer and end-user’ profits,
software quality, and economic welfare is described below.

 3.6.1 Inadequate Infrastructure’s Impact on the Cost of
Quality

Improved software tools could decrease the testing resources
needed to achieve a given level of quality. In effect an improved
infrastructure would make R&D resources more productive and, as
shown in Figure 3-4, shift the MC of testing prior to shipping down
to the right closer to the asymptote of maximum quality (Qmax, i.e.,
no bugs in shipped software products). If f1 represents the
relationship between R&D resources and quality (as shown in Eq.
[3.5]) with an inadequate infrastructure and f2 represents the
relationship with an improved infrastructure, then

 f1(Σx1i) < f2(Σx1i).

In terms of the cost minimization analysis illustrated in Figure 3-2,
an improved testing infrastructure would decrease the MC of quality
and increase the socially optimum and market level of quality (see
Figure 3-4). In addition, an improved testing infrastructure might
also narrow the “quality gap” by altering the shape of the MC
testing function. For example, as the MC curve moves closer to the
asymptote of “perfect” quality (i.e., no bugs) the MC curve may
become steeper, leading to a smaller quality gap.

In terms of the profit-maximizing developer shown in Figure 3-3,
increased pre-sales quality due to enhanced testing tools will lead to
decreased after-sales resources needed to fix bugs and develop and
implement patches and will lead to increased demand for the higher
quality software products.

The overall impact on the level of R&D expenditures, however, is
ambiguous. The shift in the quality function (Eq. [3.5]) means that
fewer resources are required to achieve a target level of quality. But
the lower cost of quality increases the demand for quality. The final
change in R&D resources will depend greatly on who bears the
costs of poor quality and end-users’ ability to evaluate the quality of
software products at the time of purchase.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-18

Figure 3-4. Enhanced Testing Tool’s Impact on the Marginal Cost of Quality

Marginal Cost
(MC)

Marginal Benefit
(MB)

f1

Quality
Gap1

Quality

f2

Quality
Gap2

Share of After-Sales
Costs Borne by End

Users
MB

MB

Qmax

 3.6.2 Inadequate Infrastructure’s Impact on the Cost of
After-Sales Service

As mentioned above, fewer bugs lead to fewer resources required
for after-sales service. In addition, an inadequate infrastructure also
affects the cost of detecting and correcting bugs that are present in
software after it is sold. By enhancing testing tools to detect and
correct after-sales bugs and interoperability problems, the cost of
after-sales service is lowered, leading to economic benefits to
society.

However, a counterintuitive effect of increasing the efficiency of
after-sales services is that it could reduce the incentive for
developers to build quality into their products. If it is less costly to
fix errors after sales, then other factors, such as time-to-market, may
dominate the quality determination. This in part may explain why
software products have a lower quality compared to other consumer
products such as appliances or automobiles. The cost of developing
a software “patch” and distributing it to customers is relatively low
for developers. Developers frequently e-mail patches out to

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-19

customers at virtually zero marginal cost and the cost of installing
the patch falls on the customers. In contrast, manufacturers of
appliances or automobiles can incur significant per unit costs if their
products need to be recalled to correct a defect.

 3.6.3 Inadequate Infrastructure’s Impact on End-Users’
Demand�

Changes in software quality will affect end-users’ demand functions
only if end users are able to observe the changes in quality at the
time of sales.5 An improved software testing infrastructure may
include certification tests and metrics that would enable end users
to compare quality across different venders’ products. These
certification tests would increase the responsiveness (elasticity) of
end-users’ demand to changes in software quality. Increasing the
responsiveness of the end-users’ demand curve provides greater
incentive for software developers to improve pre-sales quality
through increased R&D resources.

 3.6.4 Aggregate Impact�

In every instance, an inadequate infrastructure for software testing
leads to reductions in economic welfare as reflected in the
combined profits of developers and end users. The magnitude and
distribution of impacts between developers and end users depends
on the underlying relationships in the R&D quality function, after-
sales debugging function, and end-users’ demand function.

The impact of an inadequate infrastructure on the level of quality
provided by the market is less certain. In some instances enhanced
testing and certification tools increase the optimal and market levels
of software, such as in the cases of their impact on the R&D quality
function and end-user demand function. On the other hand, after-
sales testing tools lead to decreased levels of software quality at the
time of sale.

5Because, for simplicity, we have not incorporated time in our model, at this point

we are not including reputational impacts from repeat buyers or word of mouth
recommendations. It is true that the discovery of bugs and interoperability
problems after sales do affect end-users’ perception of software quality and
hence demand. However, for this discussion we are focusing on infrastructure
technology that provides information or quality at the time of purchase or
acceptance.

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-20

 3.7 THE TIME DIMENSION
Because an inadequate software testing infrastructure delays when a
new product can be introduced into the market, it decreases the
probability of a supplier capturing the early-mover advantage. This
can affect the timing and distribution of profits.

The early-mover advantage is found in the superior profit position of
the early mover compared to his position if he were not the early
mover. The primacy of this position may be due to the following
(Besanko, Dranove, and Shanley, 1996):

Z Economies of learning give the innovator a cost advantage.

Z Network externalities make a product more valuable as the
number of consumers adopting the product increases. This
may lead to a competitive advantage for the innovator.

Z Reputation and buyer uncertainty over the expected
performance of goods, especially experience goods, give the
established supplier a competitive advantage.

Z Buyer switching costs arise when product-specific
knowledge is not fully transferable to new products, making
it difficult for new suppliers to effectively compete with
established suppliers. This is also referred to as “lock-in” or
“installed-base” effects.

Although the specific magnitude of benefits from the early-mover
advantage is conditional on the specific context, the general
consensus in the economics and strategy literature is that firms that
move first and are able to establish a standard have the opportunity
to economically benefit from their initiatives. In recent literature on
the early-mover advantage, Robinson, Kalyanaram, and Urban
(1994) find that firms first to market can develop advantages that
can last for decades. Although the benefits vary across types of
industry, the empirical evidence supports the belief that an early-
mover advantage is greatest when brand name recognition for
experience goods is involved.

The literature does not, however, unambiguously find a competitive
advantage for early movers. The highest risk for the early mover is
the risk of backing the wrong technology or product.

In addition, whereas early-mover advantage is of great interest to
individual firms, it is primarily an issue of redistribution of sales.
This can be important for U.S. market share, if U.S. companies
adopt enhanced testing tools earlier than foreign competitors.

Section 3 — Inadequate Infrastructure for Software Testing: Overview and Conceptual Model

3-21

However, if worldwide software developers all adopt enhanced
testing tools together, then the primary benefit to the U.S. economy
is the accelerated availability of higher quality products and not an
early-mover advantage.

 3.8 CONCLUSION
Software testing infrastructure influences developers’ and end-users’
costs and hence the level of software quality provided in the market.

Section 4 develops the resource cost taxonomy for developers and
end users to inform the collection of the data needed to estimate the
changes in the profits with an improved infrastructure. The cost
taxonomy is built on the determinants of economic welfare
described in this section.

∆ economic welfare = Σ ∆ developers’ profits +

Σ ∆ end-users’ profits

where

∆ developers’ profits = ∆ software revenues – ∆ R&D costs

– ∆ software production costs

– ∆ after-sales costs

and

∆ end-users’ profits = ∆ revenues

– ∆ pre-purchase software costs

– ∆ software expenditures

– ∆ post-purchase software costs

– ∆ nonsoftware production costs.

But since

∆ software revenues = ∆ software expenditures,

and we assume no change in developers’ software production costs
or end-users’ revenues and nonsoftware production costs, then

The Economic Impacts of Inadequate Infrastructure for Software Testing

3-22

∆ economic welfare = Σ [∆ developers’ R&D costs

+ ∆ developers’ after-sales costs]

+ Σ [∆ end users’ pre-purchase

 software costs

+ ∆ end-users’ post-purchase

 software costs].

Technical and economic impact metrics for the components of
economic welfare are defined in Sections 4 and 5.

4-1

 Taxonomy for
 Software Testing
 4 Costs

Section 3 shows conceptually that an inadequate infrastructure for
software testing affects the resources consumed by software
developers to produce their products and the resources consumed
by users to integrate and operate software in their business
operations. This section provides a taxonomy to describe the
resources employed by software developers and users that are
linked to software testing activities.

This section begins with a general discussion of the principles that
drive software testing objectives. This discussion is followed by a
taxonomy for measuring the labor and capital resources used by
software developers to support software testing and by a taxonomy
for the impact of errors (bugs) on users of software products.

Section 5 builds on this taxonomy and describes our approach for
estimating how an inadequate infrastructure for software testing
affects these resources.

 4.1 PRINCIPLES THAT DRIVE SOFTWARE
TESTING OBJECTIVES
Any code, no matter how accomplished the programmers, will have
some bugs. Some bugs will be detected and removed during unit
programming. Others will be found and removed during formal
testing as units are combined into components and components into
systems. However, all developers release products knowing that
bugs still remain in the software and that some of them will have to
be remedied later.

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-2

Determining the appropriate level of software testing is a subjective
process. An infinite amount of testing will not prove the negative:
that a bug is not in the software (see Myers [1979]). In addition, the
more one tests software for bugs the more likely one is to find a bug
(Beizer, 1990), and the number of feasible tests for a complex
program is virtually infinite.

If the primary reason why software is shipped with bugs is that it is
impossible not to do so, the secondary reason is that it is seldom
economically efficient to remove all bugs even if it were feasible.
As shown in Section 3, testing consumes resources and, while it
improves product quality, the efficient level of quality may well be
short of perfection because, as the number of tests approaches
infinity, the time and resource costs of such thorough testing would
also become infinite. Thus, developers must identify the risk they
are willing to accept and use it to identify when the product is good
enough to ship (see Beizer [1990]).

Identifying when the product is good enough is especially important
in very competitive markets where being first to market offers
economic returns to developers. In such cases where the pressure
to meet delivery schedules and to remain competitive induces
developers to release products before they are thoroughly vetted,
early adopters become, in effect, beta test sites.

 4.1.1 Testing Activities

Testing requires planning, execution, and evaluation. Test planning
requires selecting the specific test to be performed and organizing
the tests. Test execution is the process of actually conducting the
selected tests. It includes the pre-run setup, execution, and post-run
analysis. In test evaluation, the test coverage is reviewed for
thoroughness of the test cases, the product error is evaluated, and
an assessment is made regarding the need for further tests or
debugging before the software can be ready for the next stage in the
production process (Kit, 1995).

When users report bugs to the software developer, the developer
has to first test the software to determine if a bug actually exists in
the software or if the error is related to the user. If the developer
confirms the bug’s existence, he re-develops the software and
undertakes another round of testing. The re-development of the

It is seldom
economically
efficient to remove
all bugs even if it
were feasible.

Section 4 — Taxonomy for Software Testing Costs

4-3

product usually consists of building a software patch that is
delivered to users.

 4.1.2 Detecting Bugs Sooner

“Test early, test often” is the mantra of experienced programmers.
When defects are detected early in the software development
process, before they are allowed to migrate to the next stage, fewer
remain in the shipped product and they are less costly to correct
than if they are discovered later in the process (Kit, 1995).

For example, it is costlier to repair a bug that is created in the unit
stage in the component or system development stage than it is to
remedy the same bug in the unit stage when it was introduced. An
important reason why it is more costly to correct bugs the longer
they are left undetected is because additional code is written around
the code containing the bug. The task of unraveling mounting
layers of code becomes increasingly costly the further downstream
the error is detected.

 4.1.3 Locating the Source of Bugs Faster and with More
Precision

Modern software products typically contain millions of lines of
code. Precisely locating the source of bugs in that code can be very
resource consuming. If the location of bugs can be made more
precise, both the calendar time and resource requirements of testing
can be reduced. Most bugs are introduced at the unit stage. Thus,
effective testing methods for finding such bugs before units are
combined into components and components into systems would be
especially valuable.

 4.2 SOFTWARE DEVELOPERS’ COST TAXONOMY
Every software developer provides at least some of their own
software testing services. In some cases, however, commercial
testing services supplement in-house services. When testing is
outsourced, the costs are simply the expenditures made by the
developer plus the implicit costs of contracting for these services.
Implicit costs are the value of self-owned resources devoted to the
activity. When testing services are self-provided, most costs are
implicit, and we must identify, quantify, and value the self-owned
resources developers allocate to testing.

If the location of bugs
can be made more
precise, both the
calendar time and
resource requirements
of testing can be
reduced.

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-4

 4.2.1 Resource Categories

The resources used in software testing can be broadly grouped into
labor and capital services. The distinguishing feature of capital is
that it is long-lived with an up-front payment, whereas labor costs
are virtually a continuous expenditure by developers.

Labor resources include all the labor-hours spent in testing the
software, locating the source of the errors, and modifying the code.
Because different types of labor have different opportunities, it is
appropriate to subdivide labor into the skill levels used in testing.
Table 4-1 describes the skills of three major types of programming
expertise used in testing software.

Table 4-1. Labor Taxonomy

Labor Type Skills

Annual Salary
(median in

2000)

Computer programmers Write, test, and maintain the detailed instructions, called
programs, that computers must follow to perform their
functions. They also conceive design and test logical
structures for solving problems by computer.

$57,590

Computer software
engineers: applications

Analyze users’ needs and design, create, modify, and test
general computer applications software or specialized
utility programs. They develop both packaged systems and
systems software or create customized applications.

$67,670

Computer software
engineers: systems
software

Coordinate the construction and maintenance of a
company’s computer systems, and plan their future
growth. Software systems engineers work for companies
that configure, implement, and install complete computer
systems.

$69,530

Source: Bureau of Labor Statistics, Occupational Outlook Handbook, 2002.

The annual costs for labor, computers, and testware do not fully
capture the costs to developers of these resources because overhead
is not included in the estimates. To estimate the labor cost
associated with software testing, a fully loaded wage rate should be
used that includes benefits and other employee-related costs
incurred by software developers. It is impractical to quantify all of
these individual resources. Thus, a simple loading factor of two is
used to scale the hourly wages obtained from the BLS.

Section 4 — Taxonomy for Software Testing Costs

4-5

One of the two primary capital resources used in software testing is
the computer. It includes the hardware systems (including
peripherals), software (e.g., operating system, compilers), and
network configuration equipment (Wilson, 1995). Typically, these
items are considered part of the test facility. Computer resources
used in testing are further described in Table 4-2. Typically,
computers are replaced not because they are physically incapable
of performing their original purpose but because of technological
obsolescence as new computers are introduced that have more
desirable attributes (e.g., processing speed, memory).

Table 4-2. Software Testing Capital Taxonomy

Capital Type Description

Computer Resources

Hardware systems Clients, servers, simulator hardware (such as fault injectors, test harnesses,
and drivers) plus operating systems or compilers (if necessary)

Network infrastructure Routers, cabling, data storage devices, etc.

Testing Resources (CAST)a

Tools for test planning Project management tools, database management software, spreadsheet
software, and word processors

Tools for test design and
development

Test data/case generator tools include executable specification tools,
exhaustive path-based tools, volume testing tools, data dictionary tools,
and requirements-based test design tools

Tools for test execution and
evaluation

Execution tools include capture/playback tools, test harnesses, and
drivers. Analysis tools include coverage analysis tools and mapping tools.
Evaluation tools include memory testing tools, instrumentation tools,
snapshot monitoring tools, and system log reporting tools. Simulation
tools include performance tools, disaster-testing tools, modeling tools,
symbolic execution tools, and system exercisers

aSource: Kit, Edward. 1995. Software Testing in the Real World. Essex, England: Addison-Wesley.

The second main software testing capital resource is the software
that runs the tests. Programmers may develop their own software
testing capabilities or they may purchase computer-aided software
testing (CAST) tools. Testware (software purchased or developed for
testing applications) may be designed for a single application and
then discarded, or more commonly, it is purchased or developed
with the intent to be used in several projects. Other more general-
purpose software such as spreadsheets and word processors may
also be used in testing. Testware is a product that does not wear out

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-6

with repeated use; however, it is subject to technological
obsolescence as testware and the software become more advanced.

Testware is used for test planning, test design and development, and
test execution and evaluation. Test planning tools assist a company
in defining the scope, approach, resources, and scheduling of
testing activities. Test design tools specify the test plan and identify
and prioritize the test cases. Test execution and evaluation tools
run the selected test, record the results, and analyze them. These
tools may be supplemented with testing support tools that are used
to assist with problem management and configuration management.
Other more general-purpose software, such as spreadsheets and
word processors, may also be used in testing (Kit, 1995).

Testing resources may be shared with software development
activities or dedicated to testing. The most obvious and important
resource subject to such sharing of responsibilities is labor. In small
organizations, testing may be each developer’s responsibility.
Usually with growth in size come opportunities for division and
specialization of labor. In the extreme case, software developers
will have a centralized test organization that is independent of the
development effort. Students of organizational theory argue that
such independence is essential to provide the unbiased and
complete examination needed to thoroughly evaluate the product.

Computer resources have the potential to be used in both software
development and in testing. Testware, however, is specific to the
testing activity.

In addition to the resources directly employed in software testing,
any organization will have an infrastructure (overhead) needed to
support testing. Because it is not practical to enumerate all the
resources and estimate their quantities, we use a multiplier of 1.2 to
capture the associated overhead costs associated with software and
hardware expenditures.

 4.2.2 Summary of Developer Technical and Economic
Metrics

Software developers’ costs include both pre-release costs and post-
release costs. Pre-release costs include testing costs absorbed by the
developer of the software at each individual stage of the testing
process. Technical and economic metrics are shown in Table 4-3.

The worldwide market for
automated software quality
tools reached $931 million
in 1999 and is projected to
grow to $2.6 billion by
2004 (Shea, 2000).

Section 4 — Taxonomy for Software Testing Costs

4-7

Table 4-3. Impact Cost Metrics for Software Developers

Specific Cost Technical Metric Economic Metric

Pre-release costs

Pre-release labor costs Labor hours to support testing
to find bugs

Labor costs of detecting bugs

 Labor hours for locating and
correcting bugs

Labor costs for fixing bugs

Hardware costs Total hardware used to support
testing activities and support
services

Total hardware costs to support detecting
and fixing bugs in the software
development process and support activities

Software costs Total software used to support
testing activities and support
services

Total software costs to support detecting
and fixing bugs in the software
development process and support activities

External Testing costs Testing services provided by
specialized companies and
consultants

Total expenditures on external testing

Post-release costs

After-sales service costs Labor hours for support services Total labor costs for support services

Post-release costs emerge after the user has accepted the custom
product or after the developer has released the commercial product.
In both custom and commercial applications, the developer
frequently supplies some type of customer support services. This
support can range from technical service hot lines that answer
questions for commercial products, to developing patches to correct
bugs that remain in the post-purchase versions of the software, to
full-service support contracts to continually maintain and enhance
custom products.

 4.3 SOFTWARE USERS’ COST TAXONOMY
Software testing activities affect users primarily through the bugs that
remain in the software programs they purchase and operate. The
degree to which bugs in software products affect users’ business
operations varies across the types of software product purchased
and their role in the user’s business operations. Bugs present in
software integral to the real-time business operations of companies
can significantly affect profits through installation delays and system
failures. For other software applications that are more involved in

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-8

batch or offline business operations, bugs may be problematic but
less costly.

To investigate the impact of bugs, we group user costs associated
with software into three categories:

Z pre-purchase costs—time and resources users invest to
investigate different software companies and different
software products;

Z installation costs—time and resources users invest in
installing and verifying operation of the new software
products; and

Z post-purchase costs—costs that emerge because of software
failures and the corresponding maintenance and upkeep
expenditures needed to repair the software bugs and
damaged data.

The following subsections provide more detail on these three
categories and provide a taxonomy for measuring the cost of bugs to
users.

 4.3.1 Pre-purchase Costs

Bugs in software products affect users even before they purchase the
product. Because the number and severity of bugs remaining in a
software product upon purchase are unobservable, users may be
uncertain about the product’s quality. As a result, users must invest
additional time and resources to learn about the commercial
product they are purchasing or the company they are hiring to
develop their custom software. Pre-purchase costs associated with
bugs in software are shown in Table 4-4 and emerge in three ways:

Z First, users must spend additional labor hours investigating
products, learning about products, and gaining additional
information. Senior scientists and upper management are
typically involved in these purchase decisions, and labor
costs can be generated using their typical hourly labor rates.

Z Second, the time users spend investigating new software
products delays the profits that firms could have received if
they were to install the product earlier. This leads to the
continued use of products with lower quality attributes.

Section 4 — Taxonomy for Software Testing Costs

4-9

Table 4-4. Users’ Pre-Purchase Costs Associated with Bugs

Cost Category Specific Cost Technical Matrix Economic Matrix

Purchase decision
costs

Labor costs Labor hours spent on
information gathering and
purchase decision process

Fully loaded labor rates times
labor hours

 Increase
information
gathering time

Purchase time is delayed
because of information-
gathering activities

Additional operating cost or
lost revenue due to continued
operation of lower-quality
system

Delayed adoption
costs

Delayed
adoption

Purchase time is postponed
because of uncertainty over
bugs

Additional operating cost or
lost revenue due to continued
operation of lower-quality
system

Z Third, and related to the first two items, even after users
gather all available information, they may choose to delay
adoption of a new software product until the uncertainty is
reduced when historical information is available about the
product’s quality. By delaying their purchase, users
decrease the probability of purchasing a product that has an
unexpectedly large number of bugs. Most users do not want
to be the “early adopters” or “beta testers,” so they wait until
the product has been well established in the marketplace
and several versions have been released.

The economic impacts of the second and third categories are
basically the same. They both delay the adoption of higher-quality
software and hence increase the cost of operation or delay the
introduction of new products and services. However, the source of
the delay is slightly different—one lengthens the decision-making
process, and the other delays the adoption decision.

 4.3.2 Installation Costs

Bugs remaining in software after its release can significantly increase
the cost of installation. Installations of new software technologies
often fail or generate unforeseen problems as they are integrated
with existing (legacy) software products. When this occurs, users
must spend additional resources on installing and repairing the
software system. These expenditures can emerge as additional labor
hours, expenditures on consultants, or time spent on support calls
with software developers.

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-10

However, the magnitude of installation costs due to bugs and who
bears these costs differ between commercial products and custom
products. When a commercial product is purchased, installation is
generally straightforward and relatively bug free. Many commercial
software products are designed to interoperate with other
technologies, lowering the installation costs. However, if installation
problems do occur, the user typically bears most of the costs.

In contrast, custom product installation can be a very complicated
process, and users often work with the software developer or a
third-party integrator to install the new software. Contractual
arrangements determine which parties bear the bulk of
implementation costs. If third-party developers are hired to aid with
installation, then users typically bear the cost of bugs. If the
contract with software developers includes installation support, then
these costs will be captured in the total costs that the software
developers incur during the development stage. As shown in
Table 4-5, users’ labor costs can be estimated using the fully loaded
labor costs presented in the previous section and the estimated
number of additional labor hours due to software bugs.

Table 4-5. Users’ Implementation Costs Associated with Bugs

Cost Category Specific Cost Technical Matrix Economic Matrix

Installation costs Labor costs Labor hours of company
employees

Fully loaded labor rates
times labor hours

 Third-party integrator Labor hours of consultants Consultants’ hourly rate
times labor hours charged

 Lost sales Company downtime due to
extended installation

Cost of foregone profits

In addition to labor costs, bugs encountered during installation lead
to lost sales due to company downtime while the product is being
installed. In some cases, firms will be able to install software
outside of traditional business hours. In these cases no sales are
forfeited. However, other users may have to suspend business
operations to install software. If part of this downtime is due to bugs
in the software or increased post-installation testing due to
uncertainty over bugs, then this will lead to increased lost profits.

Section 4 — Taxonomy for Software Testing Costs

4-11

 4.3.3 Post-purchase Costs

Once the decision to purchase the software has been made and the
new software is installed, additional costs due to bugs may continue
to emerge. Because of bugs, software may not have the desired
functionality anticipated by users. This can lead to lower
performance or total failure of the new and/or existing software
systems. For example, bugs may lead to interoperability problems
between the new software and existing software, leading to
inefficient operations, system downtime, or lost data. Table 4-6
describes post-purchase costs associated with software bugs.

Table 4-6. Users’ Post-purchase Costs Associated with Bugs

Cost Category Specific Cost Technical Matrix Economic Matrix

Product failure
and repair costs

Labor costs Labor time of employees spent
repairing bugs and reentering lost
data

Fully loaded labor rates
times labor hours

 Capital costs Early retirement or “scrapping” of
ineffective systems

Expenditures on
new/replacement system

 Consultants’
costs

Hiring consultants to repair data
archives

Expenditures on outside
consultants

 Sales forfeited Company downtime attributable
to lost data

Lost profit from foregone
transactions during this time
period

Inability to fully
accomplish tasks

Labor costs Labor time of employees to
implement “second best”
operating practices

Fully loaded labor rates
times labor hours

 Sales forfeited Lost sales due to “second best”
operating practices

Lost profit from foregone
transactions

Redundant
systems

Hardware costs Multiple hardware systems
maintained in case of system
failure

Expenditures on hardware
systems

 Software costs Licensing or updating old
software after shift to new
software system

Expenditures to license or
update old software

 Labor costs Labor time of employees
maintaining a redundant
hardware and software system

Fully loaded labor rates
times labor hours for
maintaining old system

Software failures are the most publicized user impact associated
with bugs. These failures typically stem from interoperability

The Economic Impacts of Inadequate Infrastructure for Software Testing

4-12

problems between new and existing software products. The result
of failures is frequently a shutdown in part or all of the firm’s
operations. However, not all catastrophic software failures are
associated with bugs. Some failures are due to inadequate
parameter specifications (by users) or unanticipated changes in the
operating environment. Thus, when estimating the costs associated
with software failure due to inadequate software testing one cannot
simply quantify all failure costs.

In addition to catastrophic failures, software bugs can also lead to
efficiency problems for users. Although less dramatic, when
software does not operate as promised, users can experience
increased operating costs due to second-best work-arounds or
patches and lost or delayed sales. User impacts can become sizable
if these bugs lead to ongoing problems that impose costs over the
life of the software product.

The final post-purchase cost that emerges because of bugs is the
cost of redundant systems. Because of uncertainty about bugs,
software users often keep their old software system in place for a
period of time after they have purchased and installed a new
software system. If bugs are continually emerging in the new
system, users may maintain their old system for significantly longer
than they would have if they were more confident about the quality
of the new software product that they purchased.

5-1

 Measuring the
 Economic Impacts of
 an Inadequate
 Infrastructure for
 5 Software Testing

This section describes the counterfactual scenario associated with
an inadequate infrastructure for software testing and outlines our
approach for estimating the economic impacts for software
developers and users. It also provides an introduction for the case
studies that follow in Sections 6 and 7, describing how the impacts
of inadequate software testing may differ between CAD/CAM/CAE
users in the transportation equipment manufacturing sector and
FEDI/clearinghouse software users in the financial services sector.

 5.1 DEFINING THE COUNTERFACTUAL WORLD
To estimate the costs attributed to an inadequate infrastructure for
software testing, a precise definition of the counterfactual world is
needed. Clearly defining what is meant by an “inadequate”
infrastructure is essential for eliciting consistent information from
industry respondents.

In the counterfactual scenario we keep the intended functionality of
the software products released by developers constant. In other
words, the fundamental product design and intended product
characteristics will not change. However, the realized level of
functionality may be affected as the number of bugs (also referred to

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-2

as defects or errors) present in released versions of the software
decreases in the counterfactual scenario.

The driving technical factors that do change in the counterfactual
scenario are when bugs are discovered in the software development
process and the cost of fixing them. An improved infrastructure for
software testing has the potential to affect software developers and
users by

Z removing more bugs before the software product is released,

Z detecting bugs earlier in the software development process,
and

Z locating the source of bugs faster and with more precision.

A key assumption is that the number of bugs introduced into
software code is constant regardless of the types of tools available
for software testing; they are errors entered by the software
designer/programmer and the initial number of errors depends on
the skill and techniques employed by the programmer.1

Figure 5-1 (re-illustrated from Section 2) provides an illustration of
the software development process. The development of software
starts with the system software design, moves to implementation and
unit testing, and then ends with integration testing as the
subcomponents of the software product are assembled and then the
product is released.

Errors are generated (or introduced) at each stage of the software
development process. An improved infrastructure would find the
bugs within (or closer to) the stage in which they were introduced
rather than later in the production process or by the end user of the
software product. As described in Section 4, the later in the
production process that a software error is discovered the more
costly it is to repair the bug.

1We make the distinction between inadequate software testing and inadequate

programming skills or techniques. For example, Carnegie Mellon Software
Engineering Institute has developed the Personal Software Process (PSP) and the
Team Software Process (TSP) that are designed to reduce the number of errors in
the program when it is first compiled. In general, the PSP and TSP involve
individual programmers tracking their errors to improve their programming
skills and team members thoroughly reviewing code to identify errors prior to
compiling and run time testing. For this study, we define these programming
activities as up stream and not part of the software testing process. Thus, the
number of errors generated as part of initial software coding does not change in
the counterfactual scenario. It is the process of identifying and correcting these
“exogenous” errors that changes.

A key assumption is
that the number of
bugs introduced into
software code is
constant regardless
of the types of tools
available for
software testing.

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-3

Figure 5-1. The Waterfall Process
In the waterfall process, testing occurs at multiple stages during the software development process.

HLD: High-Level Design
I0: HLD Inspection
LLD: High-Level Design
I1: LLD Inspection
I2: Code Inspection
UT: Unit Test
RAISE: Reliability, Availability, Install

Serviceability, and Ease of Use

Requirements
Gathering and

Analysis

Architectural
Design

HLD/I0

Component Test

RAISE System Test

Release

Early Customer
Feedback and Beta

Test Programs

LLD/I1 CODE/I2 UT

• • •
• • •

• • •
• • •

Integration

 5.1.1 Developers’ Costs of Identifying and Correcting
Errors

The relative cost (also referred to as cost factors) of repairing defects
found at different stages of software development increases the longer
it takes to find a bug. Table 5-1 illustrates this with an example
showing the relative differences in the cost of repairing bugs that are

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-4

Table 5-1. Relative Cost to Repair Defects When Found at Different Stages of Software
Development (Example Only)
X is a normalized unit of cost and can be expressed terms of person-hours, dollars, etc.

Requirements Gathering
and Analysis/

Architectural Design
Coding/Unit

Test

Integration and
Component/RAISE

System Test

Early Customer
Feedback/Beta Test

Programs
Post-product

Release

1X 5X 10X 15X 30X

introduced in the requirements gathering and analysis/architectural
design stage as a function of when they are detected. For example,
errors introduced during this stage and found in the same stage cost
1X to fix. But if the same error is not found until the integration and
component/RAISE system test stage, it costs 10 times more to fix. This
is due to the reengineering process that needs to happen because the
software developed to date has to be unraveled and rewritten to fix
the error that was introduced earlier in the production process.
However, bugs are also introduced in the coding and integration
stages of software design.

A complete set of relative cost factors is shown in Table 5-2 and
shows that regardless of when an error is introduced it is always
more costly to fix it downstream in the development process.

Table 5-2. Preliminary Estimates of Relative Cost Factors of Correcting Errors as a Function of
Where Errors Are Introduced and Found (Example Only)

 Where Errors are Found

Where Errors are
Introduced

Requirements
Gathering and

Analysis/
Architectural Design

Coding/
Unit Test

Integration and
Component/
RAISE System

Test

Early
Customer

Feedback/Beta
Test Programs

Post-
product
Release

Requirements Gathering
and Analysis/
Architectural Design

1.0 5.0 10.0 15.0 30.0

Coding/Unit Test

 1.0 10.0 20.0 30.0

Integration and
Component/
RAISE System Test

 1.0 10.0 20.0

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-5

In addition, as part of our analysis we investigate the difference in
the cost of introducing errors in the same stage throughout the
software development process. Conceptually there is no need to
restrict the diagonal elements in Table 5-2 to be all 1.0. Each
column has its own unique base multiplier. This could capture, for
example, that errors introduced during integration are harder to find
and correct than coding or design errors.

The relative cost factors for developers shown in Table 5-2 also
illustrate that errors are found by users in the beta testing and post-
product release stages because typically not all of the errors are
caught before the software is distributed to customers. When users
identify an error, developers bear costs related to locating and
correcting the error, developing and distributing patches, and
providing other support services. Users bear costs in the form of
lost data, foregone transactions, and product failures; however,
these costs are not included in developers’ relative cost factors and
were estimated separately, as described Section 5.3.

The total cost of errors can be calculated by combining the relative
cost factors with the number and distribution of errors. Table 5-3
shows an example of the frequency distribution of where errors may
be found, in relationship to where they may be introduced.

Table 5-3. Example of the Frequency (%) of Where Errors Are Found, in Relationship to Where
They Were Introduced

 Where Errors Are Found

Where Errors are
Introduced (%)

Requirements
Gathering and

Analysis/
Architectural

Design
Coding/
Unit Test

Integration
and

Component/
RAISE

System Test

Early
Customer
Feedback/
Beta Test
Programs

Post-
product
Release Total

Requirements Gathering
and Analysis/Architectural
Design

3.5 10.5 35 6 15 70

Coding/Unit Test

 6 9 2 3 20

Integration and
Component/RAISE System
Test

 6.5 1 2.5 10

Total 3.5 16.5 50.5 9 20.5 100%

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-6

The “smoothed” cumulative distribution of error detection is
depicted in Figure 5-2. The data in this figure exhibit the classic S
shape of the cumulative distribution of the discovery of errors with
respect to life-cycle stages as published by several researchers
(Vouk, 1992; Beizer, 1984). This is important because it (along with
Table 5-3) most clearly illustrates the problem plaguing the software
development industry for years: “Most software errors are found
during the middle to later stages of development (namely integration
through primary release), which happen to be the most expensive
stages to fix errors” (Rivers and Vouk, 1998).

Figure 5-2. Typical Cumulative Distribution of Error Detection

100

90

80

70

60

50

40

30

20

10

0
R-D C-U I-S E-R

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 (

%
)

Errors Detected in Each Stage

P-R

Legend:
R-D: Requirements Gathering and Analysis/Architectural Design
C-U: Coding/Unit Test
I-S: Integration and Component/RAISE System Test
E-R: Early Customer Feedback/Beta Test Programs
P-R: Post-product Release

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-7

Combining the distribution of where errors are found with the
relational cost factors to correct the errors provides a graphical
depiction of developers’ costs. In Figure 5-3, the area below the
step-wise graph represents the costs associated with errors detected
in the various stages of the software life cycle. Thus, if we knew the
total expenditures software developers spend on testing and
correction activities, we can solve for the average cost per bug and
the individual step-wise areas shown in Figure 5-3.

Figure 5-3. Software Testing Costs Shown by Where Bugs Are Detected (Example Only)
“Costs” can be expressed in terms of expenditures or hours of testing time.

Average
Cost per

Bug

X1

X2

X3

X4

X5

I-S

R-D

C-U

15% 20% 40% 15% 10%

Distribution Where
Bugs Are Detected

100%

E-R P-R

I-SR-D C-U E-R P-R

Legend:
R-D: Requirements Gathering and Analysis/Architectural Design
C-U: Coding/Unit Test
I-S: Integration and Component/RAISE System Test
E-R: Early Customer Feedback/Beta Test Programs
P-R: Post-product Release

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-8

 5.1.2 Counterfactual Scenario for Developers

The core of our counterfactual scenario for developers can then be
described in terms of the introduction–found categories as shown in
Figure 5-4. The impact of an inadequate infrastructure for software
testing on fixing errors can be calculated from

Z changes in the relative cost factors in the introduction–found
error categories (Table 5-2) and

Z changes in the distribution of where errors are detected
(Table 5-3).

Figure 5-4. Cost Reductions of Detecting Bugs and Fixing Them Faster (Example Only)
Shaded area represents the developers’ costs due to an inadequate infrastructure for software testing.

Average
Cost per

Bug

Lower Cost of
Fixing Bugs

Detecting
Bugs

Earlier

Distribution Where
Bugs Are Detected

C1

C0

15%

20%

For example, the cost to fix a bug that occurred during the coding
stage that is not discovered until the integration phase may decrease
from C0 to C1 if enhanced software testing tools decrease the time
needed to locate the error’s source. Alternatively, with better testing
tools, more bugs introduced in the requirements stage might be
found during that stage, increasing the percentage of bugs found in
this stage from 15 to 20 percent.

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-9

Note again that the total number of errors introduced into the
software is assumed to be unchanged in the counterfactual. These
bugs are a normal and expected part of the software production
process. The distribution of the bug’s location and the cost of fixing
the errors change.

In addition to changes in correction costs and detection distribution
described in Tables 5-2 and 5-3, we also investigated changes in
fixed costs such as hardware and software used to support software
testing. With enhanced testing tools developers may change their
annual expenditures on these capital inputs. However, changes in
labor costs associated with locating and correcting errors are the
dominant economic impact for developers.

 5.1.3 Counterfactual Scenario for Users

The primary impact for users associated with the counterfactual of
an improved infrastructure for software testing is that few bugs
would make it to the software operations stage. This would lead to
lower user maintenance costs and lower software failure costs. In
Section 5.4 we discuss the behavior changes users may undertake in
response to fewer bugs. For example, changes in avoidance
activities such as backup data storage and redundant operating
systems may represent significant annualized cost savings.

A key assumption in the counterfactual scenario is the “level” of
reduction in the number of bugs encountered by users during
business operations. In some instances it may be unrealistic to
assume that an improved infrastructure will lead to the detection of
all bugs during software testing. As part of the developers’ surveys,
we asked developers to estimate cost impacts under different
percentage error reduction scenarios.

 5.2 CUSTOM VERSUS COMMERCIAL SOFTWARE
PRODUCTS
To quantify the economic costs attributable to an inadequate
infrastructure for software testing, we distinguish between costs
borne by the developer of the software product and costs borne by
the users of the software product. This distinction is necessary to
facilitate data collection activities and prevent double counting. To
support this partitioning of costs, we will need to be cognizant of

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-10

the difference between custom and commercial software product
development, as presented in Figure 5-5.

Custom Development Commercial Products

Software Development
(Developer Cost)

Testing
(Developer Cost)

Implementation
(Developer and User Cost)

Performance/Operation
(User Cost)

Software Development
(Developer Cost)

Testing
(Developer Cost)

Implementation
(User Cost)

Performance/Operation
 (User Cost)

Release

Figure 5-5. Custom vs.
Commercial
Development Cost
Allocation

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-11

Both custom and commercial (prepackaged) software products have
similar production processes. As shown in Figure 5-5, they both start
with software design and coding, move to software unit and
integration testing, then implementation, and finally to operation and
product support.

The primary difference between custom and commercial software
products is that there is no formal release for custom products and the
implementation may require significant resources compared to
commercial products. As a result, the developer plays a much larger
role in the implementation and post-purchase service of custom
software, compared to commercial software. Finally, third-party
integrators are frequently involved in implementing custom software.
Because third-party integrators are typically hired by users, we
collected this cost information as part of the user surveys.

 5.3 ESTIMATING SOFTWARE DEVELOPER COSTS
An inadequate infrastructure for software testing will lead to errors
being identified later in the development process and more
resources being needed to locate and correct the source of the error.
These consequences affect developer costs throughout the
software’s life cycle through changes in the following:

Z labor costs—additional employee and contract labor
expenditures for pre-purchase testing and error correction,
installation, and post-purchase repair;

Z software costs—additional or redundant testing software
purchases;

Z hardware costs—additional expenditures on equipment,
computers, and other physical technologies used in the
testing process;

Z after-sales service costs—additional nontesting and
debugging activities such as fielding an increased number of
service calls and the distribution of patches;

Z delay costs—discounted value of lost profits due to time
delays in product releases and delayed adoption by users
due to large numbers of bugs in early software versions; and

Z reputation costs—lost sales or market share due to highly
publicized product failures.

The impact cost metrics that guided the development of the survey
instruments for survey developers are discussed in Section 4 and are
summarized in Table 5-4.

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-12

Table 5-4. Impact Cost Metrics for Software Developers

Cost Category Specific Cost Technical Metric Economic Metric

Pre-release
labor costs

Labor hours to support testing
to find bugs

Labor costs of detecting bugs Pre-release
costs

 Labor hours for location and
correction of bugs

Labor costs for fixing bugs

 Hardware
costs

Total hardware used to support
testing activities and support
services

Total Hardware costs to support
detecting and fixing bugs in the
software development process and
support activities

 Software costs Total software used to support
testing activities and support
services

Total software costs to support
detecting and fixing bugs in the
software development process and
support activities

 External
Testing costs

Testing services provided by
specialized companies and
consultants

Total expenditures on external testing

Post-release
costs

After sales
service costs

Labor hours for support services Total labor costs for support services

Current
Distribution of
Cost and Errors

Relative cost
factors

Relative cost factors relating the
cost of correcting errors for
each introduction-detection
category (Table 5-2)

Area under graph in Figure 5-2 shows
the distribution of costs by the stage
detected

 Distribution of
bugs

Distribution of detected bugs
over the introduction-detection
space (Table 5-3)

 Relative cost
factors

Change relative cost factor for
introduction-detection
categories (Table 5-2)

Change in labor costs locating and
correcting errors once they have been
identified

Counterfactual
Scenario
(improved
testing
infrastructure)

 Distribution
of bugs

Change in distribution of bug
introduction-detection
(Table 5-3)

 Hardware Change in hardware needed to
support error detection,
location and correction

Change in annual hardware
expenditures

 Software Change in software needed to
support error detection,
location and correction

Change in annual software
expenditures

Impact on sales Delayed
market
introduction

Length of delay and the number
of units that would have been
sold per period of delay

Delayed benefits to users

 Delayed user
adoption

Decreased market penetration Delayed benefits to users

 Reputation Lost market share NA—transfer payments

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-13

To quantify developer costs, we began by asking for the company’s
total pre-release testing costs and post-release (after-sales) service
costs. We asked them to break the pre-release testing costs into
total labor costs, software expenditures, hardware expenditures, and
external testing services.

The remaining developer metrics in Table 5-4 address the
incremental impact of an inadequate software infrastructure. The
information represented in Tables 5-2 and 5-3 first was developed
for current development practices, referred to as the baseline
scenario, and second for the counterfactual scenario of improved
testing capabilities. During the case studies, we asked developers to
focus on changes in labor costs captured by the relative cost factors
when filling out the cost tables. We anticipated that labor costs
account for most of the impact of an inadequate software testing
infrastructure on software developers. However, we also asked
developers to estimate the impact of improved testing capabilities
on hardware and software expenditures.

Finally we asked developers about the impact of market delay and
reputation on revenues. As shown in the economic welfare
equations in Section 3.6, these developer revenues do not directly
enter into the calculation of economic impacts because they
represent transfer payments between consumers and producers.
However, the delay in introducing new products indirectly creates
economic impacts by delaying the benefits realized by users from
adopting new software products. Thus, in this light, developers
delaying product introduction and users delaying adoption have a
similar impact.

 5.4 ESTIMATING SOFTWARE USER COSTS
Inadequate software testing affects users through the uncertainty and
number of bugs remaining in software that is released. Users are at
the end of the supply chain and are the source of benefits and costs
realized from software quality. For example, if there is a software
failure that prevents a transaction from occurring or delays the
release of a new product, these costs originate with the users.

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-14

User costs associated with software errors begin with the software
purchase decision. Users evaluate the set of potential software
products that are available to them and compare price and quality.
This search process is costly and requires time because users do not
have complete information about the quality of all of the software
products that they could purchase. This lack of an ability to
compare across products based on price and quality is magnified by
an inadequate software testing infrastructure because uncertainty
about bugs and interoperability increases. As a result, users must
spend additional time and resources to determine which product to
buy and in some instances may delay purchasing new software
products until more information about software quality is revealed
by early adopters. Delays in adoption reduce the benefits from the
new software and in turn lead to reductions in economic welfare.

Once users have decided to purchase a product, they must install
and incorporate it into their business operations. If the product is a
custom product, implementation can be potentially costly and may
involve significant effort by both users and developers. Custom
products must frequently be integrated with legacy systems, and
errors leading to interoperability problems may exist in both the
new software and the legacy software. Bugs encountered while
implementing a custom product can lead to delays in bringing the
system on line and the need for special patches and interface
programs. The potential for excess costs due to an inadequate
software testing infrastructure may be great at this point. To a lesser
extent, these problems also potentially exist when implementing
commercial software products. However, typically implementation
problems such errors leading to improper or incomplete installation
are minimal with commercial software.

The final stage of the process for users occurs after the product has
been implemented and business operations begin. At this point,
additional bugs that cause the system to fail may emerge that were
not captured during development and implementation. Costs
associated with bugs in this stage can be catastrophic and include
loss of production data and customer information, lost sales,
production delays, and lost reputation and market share.

The general costs categories for software users are described below:

This search process
is costly and
requires time
because users do
not have complete
information about
the quality of all of
the software
products that they
could purchase.

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-15

Z labor costs—additional employee and contract labor (third-
party integrators) expenditures for testing, installation, and
repair of new software due to an inadequate infrastructure
for testing the software before it is purchased;

Z failure costs—costs associated with catastrophic failure of
software products;

Z performance cost—impact on users’ operating costs when
software does not perform as expected. These include the
cost of “work arounds” and loss of productivity when
purchased software does not perform as anticipated;

Z redundant systems—additional hardware or software
systems that users maintain to support operations and back
up data in case of a software failure attributable to an
inadequate infrastructure for software testing;

Z delayed profits—discounted value of time delays in
production and transactions attributable to an inadequate
software product; and

Z sales forfeited—discounted value of foregone transactions
due to an inadequate software product.

Redundant systems resulting from inadequate software testing
represent a significant, but less publicized, economic impact.
Companies commonly maintain parallel systems for up to a year or
more as a security measure against catastrophic failures. If an
improved software testing infrastructure could reduce the
probability and severity of bugs remaining in products after
purchase, the time window for redundant systems could be greatly
reduced.

The number of bugs still remaining in software products with an
improved software testing infrastructure is a key assumption that
must be clearly addressed in the counterfactual scenario and related
data collection efforts. Because assuming that all bugs can be
removed is not realistic, users were asked how different cost
categories will be affected by a partial reduction in bugs (say a 75
percent reduction). Our approach to quantifying the impact of
removing most but not all of the bugs users encounter is to

Z estimate the total cost of bugs to users and

Z determine which costs are linearly related to the number of
bugs encountered and which costs are nonlinearly related.

Table 5-5 summarizes cost categories and metrics for measuring the
total costs bugs impose on users. We began our user surveys by
asking respondents to estimate the total cost of bugs in each
category. It is simpler for software users to provide information on

Companies
commonly maintain
parallel systems for
up to a year or more
as a security
measure against
catastrophic failures.

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-16

Table 5-5. Cost Metrics for Users

Cost Category Specific Cost Technical Matrix Economic Matrix

Pre-purchase Costs

Purchase decision
costs

Labor costs Additional effort spent searching
for a new CAD/CAM/CAE and
PDM software product

Labor costs of
employees

Delayed installation
costs

Delay
associated with
search

Additional time spent searching
for a new CAD/CAM/CAE and
PDM software product.

Delayed benefits from
adoption of new
software products

 Delayed
adoption due to
uncertainty

Delayed adoption time associated
with uncertainty over quality of
CAD/CAM/ CAE and PDM
software

Delayed benefits from
adoption of new
software products

Post-purchase costs

Installation costs Labor costs User labor hours required for
installation and testing

Fully loaded wage rate
times number of Labor
hours

 Labor costs Consultant labor hours required
for installation and testing

Fully loaded wage rate
times number of Labor
hours

 Delay costs Delays due to new software
causes old software to fail, or old
software prevents new software
from working

Lost benefits associated
with new software
product

Product failure costs Delayed profits Time required to reenter lost data Time delay attributable
to reentering data

 Repair costs Labor time of employees and
consultants reentering lost data or
repair data archives

Labor costs of
employees and
consultants

 Replacement
costs

Early retirement or “scrapping” of
ineffective systems

Expenditures on new/
replacement systems

 Lost sales Company downtime attributable
to software failure

Lost profit from foregone
transactions during this
time period

 Reputation
costs

Future impact on market share Expenditures on outside
consultants

Suboptimal
performance

Inability to fully
accomplish
tasks

Resources expended for patches
and work arounds—may be one-
time cost or ongoing activity

Increased labor and
hardware expenditures
that would be needed to
accomplish the same
task

Redundant systems Hardware costs Multiple hardware systems
maintained in case of system
failure

Expenditures on
hardware systems

 Software costs Maintaining old or redundant
software system after shift to new
software system

Maintenance and labor
expenditures on old
software

 Labor costs Labor time of employees
maintaining a redundant system

Labor costs of
maintaining old system

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-17

their total costs associated with bugs as opposed to marginal
changes in costs associated with an incremental decrease in bugs.

Users were then asked to assess general trends in how the total costs
they provide would change as the number of bugs is reduced. For
example, how would each cost category change if bugs were cut in
half or reduced by 75 percent? For product failure or installation,
the cost of bugs may be linearly related to the number of bugs (i.e.,
if product failures are reduced by 75 percent, then repair and lost
sales would be reduced by 75 percent). However, for other cost
categories, such as redundant system costs, a 75 percent reduction
in the probability of bugs may not significantly reduce the need for
backup systems.

Figure 5-6 illustrates the relationship between user costs and the
percentage reduction in bugs. The case studies investigate the
shape of these curves for each cost category listed in Table 5-5.
These relationships are useful for conducting sensitivity tests. The
relationships in Figure 5-6 also allow us to estimate the upper and
lower bounds for economic impacts associated with ranges, such as
50 to 100 percent, of reductions in bugs.

In addition, as described in the Section 5.6, the total costs and the
relationship between total costs and the percentage reduction in
bugs will be different for different sectors of the economy. A
separate set of curves were developed for each of the two case
studies in Sections 6 and 7.

 5.5 PERIOD OF ANALYSIS
Two conventions are available for developing the costs of an
inadequate infrastructure for software testing. They are to express
them either for

Z a specific historical period (e.g., 2000) or

Z a specific product or set of products.

The empirical analysis that follows uses the first approach. The
advantage of the historical period is that it directly provides the cost
information in dollars per year where it can be readily compared to
other annual flows. With this approach, impacts can be expressed
as annual spending on software testing. The drawback with this

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-18

Figure 5-6. Relationship between Users Costs and Percentage Reduction in Bugs

Percent
Reduction

in Total
Costs

100%

Current
Total
Costs

(100%)

Failure Costs

Redundant
System Costs

Percent
Reduction in

Bugs

approach is that, for any set of developers, the period for which the
information is collected may be unrepresentative of the costs for a
typical year. For example, simply by historical accident, one may
collect data for a year during which new projects were atypically
few or frequent.

By developing estimates of the testing costs for a product, we can be
sure that the costs are comprehensive, not subject to a sampling
convention. With this approach, one would be able to say
something like “the testing cost of a typical software development
project is about $y.” However, we would have no indication of
how often that cost is incurred. All products would have to be
enumerated, both commercial and in-house, and putting them on
an equal footing to calculate an annual cost estimate would be
difficult. Further, this approach requires greater recall by
respondents than the first approach. For these reasons, we selected
the first approach and collected testing resource usage and cost data
from developers for 2000.

Section 5 — Measuring the Economic Impacts of an Inadequate Infrastructure for Software Testing

5-19

 5.6 INDUSTRY-SPECIFIC USER COSTS
Different industries experience different types of costs from an
inadequate infrastructure for software testing. The individual
industry studies that follow in Sections 6 and 7 describe how user
costs differ between CAD/CAM/CAE users in the transportation
equipment manufacturing sector and FEDI/clearinghouse software
users in the financial services sector.

The transportation equipment manufacturing and financial services
sectors differ in several important ways. The most important
difference may be in the timing of business-to-business (B2B)
interactions. The design of transportation equipment is generally a
batch process where different subunits of the machine are designed
and then assembled. On the other hand, the financial services
sector relies on real-time processing to reconcile transactions
between two entities.

A second major difference between the two industries is in the
nature of their B2B relationships. The transportation equipment
manufacturing industry has traditionally interacted with a well-
defined set of customers; buyer–supplier relationships are well
established and frequently characterized by long-term business
agreements. Knowledge of the users’ customers and repeat business
may be used to mitigate some software shortcomings. In contrast, in
the financial services sector, transactions can occur with anyone at
any point in time. This creates a different set of needs and potential
impacts within the financial services sector. However, it should be
noted that the production process in the transportation equipment
manufacturing sector is becoming more similar to the financial
services sector as concurrent engineering and B2B commerce
networks are established.

The different roles software plays in the business operations of these
two industry sectors lead to different impacts associated with an
inadequate infrastructure for software testing. Based on the ISO
standards’ quality categories presented in Section 1, Table 5-6
indicates the quality issues associated with using software in the two
industries.

The Economic Impacts of Inadequate Infrastructure for Software Testing

5-20

Table 5-6. Importance of Quality Attributes in the Transportation Equipment and Financial
Services Industries

Quality Category Main Issues
Transportation

Equipment Financial Services

Functionality Attributes of software that focus on the
set of functions, the results of those
functions, including security, timeliness,
and adherence to common standards

Less important
because of fewer
outside interactions

More important
because of security,
timeliness, and
interaction issues

Reliability Attributes of software that bear on the
frequency of failure by faults in the
software, its specified level of
performance, and its ability to recover
lost data

Important because
of use in product
design

More important
because of need to
recover lost data if
failure occurs

Usability Attributes of software that bear on the
users’ ability to understand, use, learn,
and control the software

More important
because of
manipulation of
software to design
product

Less important
because of minimal
accounting
knowledge required
to engage in a
transaction

Efficiency Attributes of software that bear on
response and processing times of the
software

Less important
because of batch
processing

Very important
because of real time
processing

Maintainability Attributes of software that bear on the
effort needed for diagnosing failures,
removing failures, updating the software,
and validating changes to the software

More important as
errors become more
costly to repair the
longer they stay in
the production
process

More important as
errors become more
costly to discover
the longer they stay
in the production
process

Portability Attributes of software that bear on the
opportunity for its adaptation to different
environments, ease of installation, and
interaction with other software

Less important
because of
commonly agreed
upon
interoperability
standards (STEP)

Very important
because of potential
interactions with
numerous types of
users

6-1

 Transportation
 Manufacturing
 6 Sector

This section investigates the excess costs incurred by software
developers and users in the transportation equipment manufacturing
sector due to an inadequate infrastructure for software testing. The
impact estimates are based on interviews with developers and users
of CAD/CAM/CAE and PDM software.

Impact estimates were developed relative to two counterfactual
scenarios. The first scenario investigates the cost reductions if all
bugs and errors could be found in the same development stage in
which they are introduced. This is referred to as the cost of an
inadequate software testing infrastructure. The second scenario
investigates the cost reductions associated with finding an increased
percentage (but not 100 percent) of bugs and errors closer to the
development stages where they are introduced. The second
scenario is referred to as a cost reduction from feasible infrastructure
improvements.

Table 6-1 presents an overview of the economic impact estimates
for the development and use of CAD/CAM/CAE and PDM software
in the U.S. automotive and aerospace industries. The total impact
on these transportation equipment manufacturing sectors from an
inadequate software testing infrastructure is estimated to be $1.8
billion. The potential cost reduction from feasible infrastructure
improvement is $0.6 billion. Developers of CAD/CAM/CAE and
PDM software account for approximately 25 percent of the total

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-2

Table 6-1. Cost Impacts on U.S. Software Developers and Users in the Transportation
Manufacturing Sector Due to an Inadequate Testing Infrastructure ($ millions)

 The Cost of Inadequate Software
Testing Infrastructure

Potential Cost Reduction from
Feasible Infrastructure Improvements

Software Developers

CAD/CAM/CAE and PDM $373.1 $157.7

Software Users

Automotive $1,229.7 $377.0

Aerospace $237.4 $54.5

Total $1,840.2 $589.2

impact. Users account for the remaining share: the automotive
industry accounts for about 65 percent and the aerospace industry
accounts for about 10 percent.

This section begins with an overview of the use of CAD/CAM/CAE
and PDM software in the transportation manufacturing sector. A
more detailed industry profile of CAD/CAM/CAE/PDM software
developers and users is provided in Appendix B. We then describe
the analysis approach and survey findings used to estimate the
economic impacts of an inadequate infrastructure for software
developers and software users in the automotive and aerospace
industries in Sections 6.2 and 6.3.

 6.1 OVERVIEW OF CAD/CAM/CAE AND PDM
SOFTWARE IN THE TRANSPORTATION
MANUFACTURING SECTOR
Transportation equipment manufacturing consists of the production
of products used for road, rail, water, and air transportation. It is
one of the largest sectors in the economy, with total sales of over
$639 billion in 2000 and employment of more than 1.8 million
people (U.S. Department of Commerce, 2002).

Software use within the transportation sector has steadily increased
in recent years. It has now reached the point where transportation
equipment is designed and production is managed almost
exclusively with computers.

Section 6 — Transportation Manufacturing Sector

6-3

This section provides a framework for understanding the interactions
between CAD/CAM/CAE and PDM software developers and users in
the transportation equipment manufacturing sector. The
interrelationship of these sectors is shown in Figure 6-1.

Figure 6-1. Economic Relationship Among CAD/CAM/CAE Producers and Consumers
Several information technology and service industries provide CAD/CAM/CAE software and services to manufacturers.

Software
Publishing
(511210)

Computer
Systems Design &
Related Services

(5415)

Testing
Services Modified &

Tested CAD/
CAM/CAE
Software

Transportation
Equipment
Manufacturing (336)

Manufactured
Products

CAD/CAM/CAE
Software

 6.1.1 Use of CAD/CAM/CAE and PDM Software

The development and manufacturing of transportation equipment,
like all products, goes through a product development cycle.
Products move from a planning phase through design and
engineering phases and end with the manufacturing and production
phase. Figure 6-2 illustrates both the production process and points
at which CAD/CAE/CAM and PDM are used.

Engineers use two key types of software tools: “point tools” and
“life-cycle” tools. CAD, CAE, and CAM are point tools because
they are applied to one part of the production process. PDM is a
life-cycle tool used to manage the flow of information throughout
the product development cycle and the manufacturing organization.

CAD, CAM, and CAE refer to functions that a computer and
peripheral equipment may perform for a user with the aid of
application software.

CAD software functions enable users to design products and
structures with the aid of computer hardware and peripherals more
efficiently than with traditional drafting technologies. The user

CAD, CAM, and
CAE refer to
functions that a
computer and
peripheral
equipment may
perform for a user
with the aid of
application
software.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-4

Product Planning

Product Development Cycle Software Uses

Product Design

Product Engineering

Production

CAD

CAE

CAM

PDM

creates a computer image of a two-dimensional or three-
dimensional design using a light pen, mouse, or tablet connected to
a workstation or personal computer. The design can be easily
modified. It can be viewed on a high-quality graphics monitor from
any angle and at various levels of detail, allowing the user to readily
explore its physical features. Designers can use CAD software to
integrate drawings in such a way that adjusting one component
alters every attached component as necessary.

CAM software functions allow a manufacturer to automate
production processes. CAM software includes programs that create
instructions for manufacturing equipment that produces the product.
In addition, the software provides instructions to other computers
performing real-time control of processes, in using robots to
assemble products, and in providing materials requirements
associated with a product design (P.C. Webopaedia, 1996).

CAE software functions allow users to conduct engineering analyses
of designs produced using CAD applications to determine whether a
product will function as desired. The engineering analysis may
involve simulating the eventual operating conditions and
performance of a designed product or structure. Or users can
analyze the relationships between components of a product system.

Figure 6-2.
CAD/CAE/CAM and PDM
in the Product
Development Cycle

Section 6 — Transportation Manufacturing Sector

6-5

PDM software supports concurrent engineering by managing all of
the product-related information generated throughout the product
life-cycle. PDM creates a master document that can be logged out
and held in a secure location. Other engineers working on the
project can access a duplicate copy that they can use in their work.
Whenever changes are made to the master copy, all users are
notified and the copy that they are using is updated to reflect any
changes. PDM tools focus on automating existing processes and
managing electronic documentation, files, and images. PDM is
used almost exclusively in CAD/CAM/CAE systems.

 6.1.2 Development of CAD/CAM/CAE and PDM Software

The CAD/CAM/CAE and PDM software industry that supplies the
transportation sector is a complex and changing landscape of
information technology products, publishers, designers, consultants,
and product users. Underlying this industry is a set of production
relationships characterized by substantial resource requirements for
product development and relatively few resources to reproduce and
distribute the product.

The total CAD/CAM/CAE industry comprises a small set of
publishers who sold an estimated $9.3 billion worth of software
products in 1999 and a very large number of potential users
(Daratech, Inc., 1999). The industry also consists of a number of
firms that make modifications to the basic CAD/CAM/CAE software
products, tailoring them to specific applications; firms that provide
design and related services; and consulting firms that primarily assist
users in selecting and installing the software. The PDM industry is
smaller than the CAD/CAM/CAE industry, with total sales estimated
at $1.76 billion in 1999, but it is expected to grow rapidly with total
sales expected to reach $4.4 billion by 2004 (CIMdata, 2000).

The CAD/CAM/CAE and PDM software industries are built around
the software’s capability to store, search, retrieve, copy, filter,
manipulate, view, transmit, and receive digital representations of
product design and operation information. Digitized information is
anything that can be digitized (encoded as a stream of bits).
Information products such as CAD/CAM/CAE software are defined
by unique characteristics:

Z a lack of tangible attributes,

Z association with multiple forms of presentation,

PDM software
supports concurrent
engineering by
managing all of the
product-related
information
generated
throughout the
product life-cycle.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-6

Z the possibility of delivering the product with no direct
contact between the supplier and consumer,

Z protection by copyright laws, and

Z the ease of adding value to the product (Executive Office of
the President, 1998).

The difficulty of potential users determining the precise
characteristics of software a priori makes it an experience good: its
characteristics must be learned through use; they cannot be
determined by simple observation. This characteristic introduces a
source of uncertainty in the purchase decision.

Software is also an investment good. It is used by manufacturers
over a period of time, usually years, and has several features
common to all investment goods (Dixit and Pindyck, 1994):

Z Irreversibility: The up-front costs of product purchase,
evaluation, installation, testing, and worker training required
to use the product are, once incurred, sunk costs that are
unretrievable if the consumer changes her mind regarding
the product’s utility. Furthermore, once users create designs
using the new software, the designs generally do not
translate easily into other design formats, which makes
switching to a different software package additionally costly.

Z Uncertainty: The future market demand for the
manufacturer that will use the software product is unknown
to the consumer. In addition, there is uncertainty over
interest rates and the quality of the software product that the
manufacturer purchases. Prior to purchasing and using the
software, the consumer will have priors on the capability,
usability, performance, reliability, installability,
maintainability, documentation, and availability of the
product but not until it is used will she be able to determine
the accuracy of those priors.

Z Postponability: There is leeway in the timing of most
investment opportunities. Investors can delay their purchase
of the software to gather additional information on the
market conditions and characteristics but at the cost of
foregoing the product’s expected benefits.

 6.2 SOFTWARE DEVELOPER COSTS IN THE
TRANSPORTATION MANUFACTURING
SECTOR
To investigate software testing costs, we conducted interviews with
10 developers of CAD/CAM/CAE and PDM software products.
Companies were typically forthcoming in their discussions of
inadequate software tools and methods. All agreed that improved

Section 6 — Transportation Manufacturing Sector

6-7

infrastructure could reduce testing costs and accelerate the time to
market for their products.

However, not all companies completed the entire survey that was
used to collect information to quantify the costs of an inadequate
software testing infrastructure for CAD/CAM/CAE/PDM developers.
In several instances vendors said that information on testing
expenditures and errors discovered was confidential because they
reflected detailed information about their product development
process. But the most common reason for firms not providing data
was the simple fact that they did not track these metrics and the
data were not available.1

Several companies agreed that tracking metrics targeted in the
survey instrument, such as the types of bugs found, in what stage of
development they were introduced, and where they were found,
would be very useful for developing better testing methods and
guidelines. One software tester said that statistics on where errors
are introduced and where they are found is “exactly the type of
information they need to improve testing efficiency.” However,
typically time and resource constraints prevented them from
tracking this information. Companies indicated that in the current
environment, software testing is still more of an art than a science,
and testing methods and resource are allocated based on the expert
judgment of senior staff.

Error-tracking procedures and the resulting resource estimates
would be particularly useful in the initial product development
planning stages. Firms indicated that a lack of detailed timelines
based on accurate estimates of testing needs frequently leads to
limited resources in the early stages of development, resulting in
errors propagating through the R&D process and not found until the
later stages of commercialization. Respondents agreed that finding
the errors early in the development process greatly lowered the
average cost of bugs and errors. Most also indicated that the lack of
historic tracking data and inadequate tools and testing methods,
such as standard protocols approved by management, available test
cases, and conformance specification, limited their ability to obtain

1In the absence of actual data on errors in the software development process,

vendors were asked to estimate the distributions of where errors were found and
introduced. However, in almost all instances respondents were uncomfortable
speculating about their error distributions and declined to do so.

Companies
indicated that in the
current
environment,
software testing is
still more of an art
than a science, and
testing methods and
resource are
allocated based on
the expert judgment
of senior staff.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-8

sufficient testing resources (from management) and to leverage these
resources efficiency.

The remainder of this subsection quantifies the cost savings due to
finding bugs and errors closer to when they are introduced based on
four completed interviews with three CAD/CAD/CAE/PDM vendors.
We used the empirical results from the developer surveys to
quantify the economic impacts for the counterfactual scenarios
described below.

 6.2.1 Estimation Approach

To estimate the costs associated with an inadequate infrastructure,
we made two key assumptions/clarifications to make the analysis
tractable:

Z The same number of bugs still occurs regardless of the
infrastructure used or the quality of that infrastructure (i.e.,
bugs are attributed to human error and will continue to
occur).

Z An improved infrastructure does not change where bugs are
introduced because this again is assumed to be a function of
human error.

With these assumptions in mind, the primary impact of an improved
infrastructure is to lower the cost of testing and fixing bugs and
errors and find the bugs closer to the time they were introduced.

Developers were asked questions to support the evaluation of two
counterfactual scenarios for which economic impacts are estimated.
The first scenario estimates the cost savings developers would
realize if all bugs and error were found in the same development
stage that they were introduced. This is referred to as the cost of an
inadequate infrastructure for software testing. In addition to finding
all errors sooner, this scenario includes the impact an improved
software testing infrastructure has on lowering the costs of finding
and repairing bugs and errors that are introduced and found in the
same stage.

The second scenario reflects that it may not be possible to develop a
testing infrastructure that would support “perfect” software testing
and that some errors are still likely be found in later development
stages. This is referred to as an “feasible” infrastructure for software
testing. To define this scenario, we asked software testers how the
distribution of where errors are found as a function of where errors

Section 6 — Transportation Manufacturing Sector

6-9

are introduced would change with enhanced testing tools and
methods. The costs are then treated as a function of the time it
takes to find and fix them and how much sooner the bugs that are
introduced are found.

 6.2.2 Survey Findings

The software developer survey instrument is presented in
Appendix C. We contacted developers by telephone and asked
them to complete the questionnaire as part of an informal interview.
Four developers of CAD/CAM/CAE and PDM software products
completed substantial portions of the entire survey. The remaining
six developers returned partially completed surveys due to the
confidentiality and lack of data tracking systems discussed above.

As part of the survey, developers were asked to estimate the current
distribution of bugs (where they are introduced and where they are
found), the time required to fix a bug given the stage where it was
found, and the stage where it was introduced. In the final sections
of the survey developers were then asked their expectations of how
an improved infrastructure would affect these distributions and
costs.

Table 6-2 presents the first key pieces of information needed to
calculate the impact estimates of an inadequate infrastructure for
software testing. The table shows the distribution of where software
bugs are found and their introduction point. For example,
40 percent of bugs are found in the coding/unit testing stage. Of the
bugs found in this stage, one-fifth (8 percent of 40) were introduced
in the requirements stage and the other four-fifths (32 percent of 40)
were introduced in the coding/unit testing stage.

As shown in Table 6-2, over 80 percent of errors are introduced in
the coding/unit testing stage, but well over half of these errors are
not found until downstream in the development process.2

2Note that we are investigating only bugs and errors introduced in the software

product development process. Errors introduced during beta testing or
implementation are not included in the distributions in Table 6-2. However,
developers said that it is often difficult for the testers and software engineers to
determine where the bug was introduced by the user or as part of the
development process.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-10

Table 6-2. Distribution of Bugs Found Based on Introduction Point
The diagonal elements in bold represent the occurrences where software errors are found in the same development stage
where they are introduced. Occurrences to the right of the bold diagonal indicate errors found “downstream” in the
product development process.

Stage Found

Stage Introduced Requirements
Coding/Unit

Testing Integration
Beta

Testing
Post-product

Release
Row

Percentage

Requirements 5.0% 8.0% 2.3% 0.2% 0.2% 15.6%

Coding/unit testing NA 32.0% 40.5% 4.5% 4.5% 81.5%

Integration NA NA 2.3% 0.4% 0.4% 3.0%

Column
percentage

5.0% 40.0% 45.0% 5.0% 5.0% 100.0%

NA = Not applicable because a bug cannot be found before it is introduced.

Once the distribution of bugs is determined, the next step is to
determine the costs of fixing a bug based on the point of
introduction. As discussed above, the costs of fixing a bug are
greater the farther away from the point of introduction that the bug
is found. This occurs for several reasons. First, it is more difficult to
find a bug the farther away from the point of introduction. Second,
more code has to be rewritten the farther away from the point of
introduction that the bug is found.

Table 6-3 shows resources (costs) in terms of the average number of
tester hours required to investigate and fix a bug based on the
survey responses.

Table 6-3. Hours to Fix Bug Based on Introduction Point
For errors introduced in the coding/unit testing stage, respondents indicated that it was twice as costly to fix the error if it
was not found until the integration phase and five times as costly if it was not detected until post-product release.

Stage Found

Stage Introduced Requirements
Coding/Unit

Testing Integration Beta Testing
Post-product

Release

Requirements 2 4 6 8 10

Coding/unit testing NA 2 4 6 10

Integration NA NA 4 8 16

NA = Not applicable because a bug cannot be found before it is introduced.

Section 6 — Transportation Manufacturing Sector

6-11

Using the distribution of bugs (introduced and found) in Table 6-2
and the hours to fixed each type of bug in Table 6-3, we calculated
the average hours per bug as a function of where the bug was found
(see Table 6-4). For example, on average a bug found in
coding/unit testing takes 2.4 hours to fix, whereas an average bug
found in post-product release takes 13.1 hours to fix. In addition,
using the distribution of where bugs are found we calculated that
the weighted average time to investigate and fix a bug is 3.9 hours.
The average is relatively small because 85 percent of the errors are
found during the coding and integration stages of development, and
relatively few are found in beta testing and post-product release.

Table 6-4. Time to Fix a Bug Based on Discovery Point
Respondents indicated that 45 percent of errors are found in the integration stage of development and it takes an average
of 4.1 hours to correct the errors found in this stage of development.

Location Hours
Distribution of Where

Bugs are Founda Weighted Average Hours

Requirements 2.0 5%

Coding/unit testing 2.4 40%

Integration 4.1 45%

Beta testing 6.2 5%

Post-product release 13.1 5%

Total 3.9

aFrom bottom row in Table 6-2.

Based on the cost-per-bug calculations presented above, we
estimated the national costs of an inadequate infrastructure for
software testing for each of the two counterfactual scenarios
described in Section 6.2.1. For the first testing scenario, all bugs are
found in the stage where they are introduced. For the “feasible”
scenario, more bugs are found closer to the stage they were
introduced because of improved testing methods and tools. The
distributions of where bugs are found associated with each
counterfactual scenario are shown in Table 6-5, along with the
current distribution copied from Table 6-4.

The current distribution reflects where bugs are discovered under
the existing inadequate infrastructure for software testing. The
second column shows the distribution if all bugs are discovered in

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-12

Table 6-5. Distribution of Bugs Based on Infrastructure
Finding errors earlier leads to a decrease in the total cost of finding and fixing errors.

Location
Current

Infrastructure
All Bugs Found in Same

Stage Introduced
Feasible Infrastructure

Improvements

Requirements 5% 15.6% 5%

Coding/unit testing 40% 81.5% 60%

Integration 45% 3.0% 30%

Beta testing 5% 0 3%

Post-product release 5% 0 2%

Average hours per average bug 3.9 2.4 3.2

Percentage reduction from current
infrastructure

 38.3% 16.9%

the development stage where they occur. Note that this distribution
is simply the row percentage shown in Table 6-2. The “feasible”
infrastructure is based on survey data. Respondents were asked
what the distribution of the discovery of bugs would look like with
better tools. Under this scenario, some of the bugs are found sooner
in the production process.

As shown in Table 6-5 both testing scenarios shift the distribution of
when bugs are found toward the early stages of development. The
next to last row of Table 6-5 gives the weighted average number of
hours required to find and fix an average bug under each scenario.
This average was calculated by multiplying the distribution of bug
discovery by the average number of hours spent finding and fixing a
bug, as presented in Table 6-4.

The final row gives the percentage change in total time spent per
bug for each of the scenarios relative to the baseline scenario. This
can be interpreted as the percentage of testing resources saved as a
result of an improved infrastructure for software testing.

The percentage reduction in testing resources presented in
Table 6-5 results from shifting the distribution of when bugs are
found forward. Software developers were also asked if feasible
infrastructure improvements would decrease the time spent
correcting the error (hours presented in Table 6-4). Most thought
that the hours per bug would decrease; however, they were not able

Section 6 — Transportation Manufacturing Sector

6-13

to quantify this impact. As a result, this potential cost savings is not
included in the following developer impact estimates.

 6.2.3 Cost Impacts Per Employee for Software Developers

Once the average percentage change in testing resources was
determined, we normalized cost impacts by company employee to
develop a cost-per-employee metric associated with an inadequate
infrastructure. We then used the cost per employee, in conjunction
with total industry employment, to estimate the total cost impact on
CAD/CAM/CAE and PDM software developers.

A breakdown of testing costs based on information collected during
developer surveys is presented in Table 6-6. The second column
provides current labor and capital expenses for software testing for a
typical company of 10,000 employees. The third and fourth
columns show the cost associated with an inadequate infrastructure
and potential cost reductions associated with feasible
improvements. For a typical company of 10,000 employees the
annual change in testing costs ranged from $9.3 to $21.1 million.

Table 6-6. Developer Testing Costs for a Typical Company of 10,000 Employees

Current
Infrastructure
Testing Costs

The Cost of
Inadequate

Software Testing
Infrastructure

Potential Cost
Reduction from

Feasible Infrastructure
Improvements

Software testers $54,512,640 $20,884,777 $9,190,119

Number of testers 400 153 67

Fully loaded wage rate ($/hour) $67.60 $67.60 $67.60

Hardware for testing $40,000 $15,325 $6,743

External testing services $100,000 $38,312 $16,859

After-sale service costs $545,126 $208,848 $91,901

Total annual testing costs $55,198,234

Annual change in testing costs $21,147,440 $9,305,701

Percentage reduction from current
infrastructure

 38.3% 16.9%

Cost savings as a percentage of sales 1.8% 0.8%

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-14

Labor costs for software testers account for the overwhelming
majority of total testing expenditures. We calculated labor costs for
software testers using company employment (10,000), the average
ratio of testers to total employees (4 percent), and the average fully
loaded wage rate for software testers ($68 per hour). To this,
external testing services, hardware costs, and after-sale service costs
were added to estimate the total testing costs.

The cost associated with an inadequate infrastructure for software
testing is approximately 1.8 percent of the developers’ annual sales
and the feasible cost reductions are 0.8 percent.

 6.2.4 Industry-Level Impact

To extrapolate the cost impacts to reflect all developers of
CAD/CAM/CAE and PDM software, we multiplied the cost per
employee by the total employment of companies supplying software
to the transportation manufacturing sector. Industry employment
was estimated to be approximately 85,000 and is based on the
employment information shown in Table A-3 (CAD/CAM/CAE
developers) and Table A-4 (PDM developers).3

National costs impacts for CAD/CAM/CAE/PDM developers due to
an inadequate software testing infrastructure are $373.1 million (see
Table 6-7). The potential cost reductions from feasible
infrastructure improvements are $157.7 million. These estimates
represent 6.0 percent and 2.5 percent of CAD/CAM/CAE/PDM
software sales, respectively.4

Table 6-7. Annual Impact on U.S. Software Developers of CAD/CAM/CAE/PDM Software

The Cost of Inadequate

Software Testing Infrastructure
Potential Cost Reduction from

Feasible Infrastructure Improvements

Change in cost per employment $4,390 $1,856

Total industry employment 85,000 85,000

Industry-level savings (millions) $373.1 $157.7

3Employment for IBM and Oracle Corporation were not included in the PDM

employment totals because the majority of their operations involve non-PDM
products, and using their total employment would have incorrectly inflated the
impact estimates.

4Based on U.S sales of $6.2 billion in 1997 for CAD/CAM/CAE/PDM software (U.S.
Department of Commerce, 1998).

Section 6 — Transportation Manufacturing Sector

6-15

 6.3 END-USER COSTS IN THE TRANSPORTATION
MANUFACTURING SECTOR
RTI collected data directly from users of CAD/CAM/CAE and PDM
software products to estimate the costs due to an inadequate
infrastructure for software testing. We conducted telephone surveys
of 182 firms in the automotive and aerospace industries. This
subsection provides an overview of the survey process, descriptive
statistics from data collected, and the economic impact estimates of
software errors and bugs for users in the automotive and aerospace
industries.

 6.3.1 Survey Method

For the end-user survey of automotive and aerospace manufacturing
firms, we used a telephone-Internet-telephone method in which the
respondents were recruited via telephone, instructed to complete an
Internet survey, and telephoned again if clarification was needed or
if the respondents did not complete the survey in a timely manner.
The survey was pre-tested by two automotive companies. The
electronic instruments and resulting database were housed on RTI’s
web site within RTI’s firewall to ensure security and confidentiality
of the information provided by respondents.

The final survey instrument is presented in Appendix C. Harris
Interactive recruited the users using scripts prepared by RTI. Up to
eight calls were made to locate the appropriate individual at each
company, recruit participants, and follow up if surveys were not
completed within 2 weeks.

The goal of the survey effort was to capture as large a share of the
impacts as possible while ensuring that our survey population is
representative of the industry as a whole. To this end, the total
sampling points were segmented, by industry, into a census of the
original equipment manufacturers (OEMs), a purposeful sample of
the “largest” software users, and a random sample of “medium to
small” size software users. The sample was divided as follows:
two-thirds surveys for the automotive industry and one-third for the
aerospace industry because of the larger number of firms in the
automotive industry relative to the aerospace industry.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-16

We used the dollar value of sales for each of the companies as the
size metric and stratified the sample into three components for each
industry:

Z We selected the major OEMs from each sector to ensure
representation of the largest firms in the sector. If a random
sample had been used, possibly none of the OEMs would
have been included in the analysis simply because of the
research design.

Z We used a purposeful survey of the 50 largest companies in
automotive manufacturing and the 20 largest in aerospace.
We instructed Harris Interactive to recruit as many of these
large companies as possible to capture as many of the first-
tier suppliers as possible.

Z We then rounded out the survey with a random survey of
approximately mid- to small-sized automotive institutions
and mid- to small-sized aerospace institutions. This group
provided a representative sample of all other suppliers in the
industries.

 6.3.2 Survey Response Rates and Industry Coverage

RTI contacted 752 companies in the automotive industry and 224
aerospace companies for a total of 976 contacts. Out of the 976
companies contacted, appropriate contacts were identified at 644
(68 percent) companies, and slightly over 50 percent of these
contacts agreed to fill out the survey. From the recruited
participants, 179 completed the surveys and returned them to RTI.
Table 6-8 provides a full description of the number of firms
contacted, the recruitment rates, and completion rates of the survey
within each of the two industries.

Table 6-9 shows the extent of industry coverage from the 179
completed surveys based on domestic employment within the
automotive and aerospace industries.5 The automotive industry
includes manufacturers of motor vehicles (NAICS 3361), motor
vehicle bodies and trailers (NAICS 3362), and motor vehicle parts
(NAICS 3363). Based on these NAICS codes, the automotive sector
consists of 8,385 firms with combined revenues of $420.6 billion.
As Table 6-9 shows, the survey conducted by RTI captures slightly
over 33 percent of the total domestic industry employment.

5The ideal weighting mechanism would have been the number of engineers that

use the CAD/CAM/CAE software in each industry. However, these data were
not available, so total employment was chosen as the closest proxy.

Section 6 — Transportation Manufacturing Sector

6-17

Table 6-8. Transportation Equipment Industry Survey Completion Rates

Sample Type
Companies
Contacted

Identified
Appropriate

Contacts

Successful
Recruits

(Recruitment
Rate)

Completed
Surveys

(Completion
Rate per Recruit)

Automotive

OEMs 3 3 1 1

Large institutions 131 108 76 72

Small and medium institutions 618 378 201 74

Aerospace

OEMs 6 6 2 1

Large institutions 48 36 19 17

Small and medium institutions 170 116 68 14

Total 976 644 367 179

Table 6-9. Industry Coverage by Employment

Sample Type

Total Industry
Employmenta
(thousands)

Completed Surveys
Employment
(thousands) Percentage of Industry

Automotive

Small: less than 500b 473.9 16.0 3.4%

Large: greater than 500 1,925.6 775.9 40.3%

Total 2,399.47 791.9 33.0%

Aerospace

Small: less than 500b 66.7 3.8 5.7%

Large: greater than 500 733.4 301.5 41.1%

Total 800.1 305.3 38.2%

aDomestic employment of automotive/aerospace design and manufacturing activities.
bShare of employment at companies with fewer than 500 employees is based on Small Business Administration (SBA)

census.

The aerospace industry includes aerospace product and parts
manufacturers (NAICS 3364). The population consists of 1,810
firms with combined revenues of $25.2 billion. The survey captures
slightly over 38 percent of total industry employment.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-18

The total employment shown in Table 6-9 provides the national-
level weights used to extrapolate the per-employee impact estimates
provided in Section 6.3.4.

 6.3.3 Survey Findings

For the 179 survey respondents in the automotive and aerospace
industry, companies averaged approximately 6,500 employees per
firm with average sales of almost $1.4 billion. Not surprising, the
mean was much higher than the median because of the skewing of
the data by several large OEMs and first-tier suppliers.

Table 6-10 lists the various software products that the survey
respondents reported using for CAD/CAM/CAE or PDM activities.
The most commonly reported software products were AutoCAD,
CATIA, ProEngineers, Unagraphics, and IDEAS. The average life
expectancy for these software products was 7 years, and the
majority of them were installed between 1995 and 2001.

Companies responded that they maintained an average of 67
employees (full-time equivalents [FTEs]) involved in operating and
supporting CAD/CAM/CAE systems and an average of 125
employees supporting PDM systems. However, one of the largest
companies indicated that it had 800 CAD/CAM/CAE staff and 3,000
PDM staff members. These figures include only the engineers using
the CAD/CAM/CAE and PDM software and do not include the
information technology and software support staff who provide
maintenance and upkeep.

Incidence and Costs of Software Errors and Bugs

Several respondents indicated that they conduct all of the job tasks
using the software; hence, when a failure occurs, the potential
ramifications are significant because an entire firm or division might
have to shut down while the problem is remedied.

Approximately 60 percent of the companies providing information
on software errors and bugs indicated that they had experienced
major software errors in the previous year. The remaining
40 percent of the companies said they did not experience any major
software errors over the past year and that minor errors were quickly
corrected with little to no cost.

Section 6 — Transportation Manufacturing Sector

6-19

Table 6-10. Reported Software Products

Software Product Vendor/Provider Frequency

7.0.7 1

Abaqus/STD Hibbit, Karlsson & Sorensen, Inc. 3

ACAD 2

Advantage 1

Alias Wavefront Studio 9.6 Alias Wavefront 1

ANSYS ANSYS, Inc. 1

Anvil Express Manufacturing and Consulting Services, Inc. 2

AutoCAD Autodesk, Inc. 48

Autodesk Inventor Autodesk, Inc. 1

AutoManager Workflow Cyco Software 1

CADDS5 PTC 2

Cadkey Cadkey Corp. 7

Cadra SofTech 1

Cam 1

CATIA Dassault Systemes 33

CENTRA Centra Software 1

Desktop 1

Edge 1

ESPRIT DP Technology Corp. 1

HyperMesh Altair Engineering 1

ICEM/Surf ICEM Technologies 1

IDEAS SDRC 14

Intralink DSQ Software, Ltd. 1

Inventor Autodesk, Inc. 1

IPD IPD Software Systems 1

IronCAD IronCAD 2

LS_DYNA Livermore Software Technology Corp. 1

MARC MARC Analysis Research Co. 1

Master Cam CNC Software, Inc. 4

MathCAD Math Soft Engineering & Education, Inc. 1

Matrix 3

Mechanical Desktop (Autodesk) Autodesk, Inc. 6

Mechanica PTC 1

Medina Debis Systemhaus 1
(continued)

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-20

Table 6.10. Reported Software Products (continued)

Software Product Vendor/Provider Frequency

Metaphase SDRC 1

MicroCADAM MicroCADAM, Inc. 2

MicroStation Bentley Systems, Inc. 1

One 3

Optimation Mentum Group 1

Orcad Cadence Design Systems, Inc. 1

Parametric Technology PTC 1

Patran/Nastran Noran Engineering, Inc. 4

PDGS 4

PRO ENGINEER PTC 29

Pro-Intralink PTC 1

SDRC SDRC 4

Shop Data Systems 1

SmarTeam SmarTeam Design Group 1

Solid 1

Solid Edge UGS 2

SolidWorks UGS 7

STAR-CD CD Adaptco Group 1

SurfCAM Surfware, Inc. 1

UGS UGS 24

VeriBest VeriBest ISD 1

VersaCad Archway Systems, Inc. 1

Visual 1

An unexpected finding was that approximately two-fifths of the
companies reported no major software errors and that minor errors
were quickly corrected with little to no cost. This finding could be
a result of several factors. First, the companies truly did not
encounter any software errors using CAD/CAM/CAE/PDM software.

Second, the companies had software errors but did not recall them
or the respondent was not aware of them. Third, the companies
had errors but did not feel comfortable reviewing this information.
Because of the potential underestimation of the true incidence of
errors, the economic impacts provided below should be considered
a conservative estimate of the total cost of software errors and bugs.

Section 6 — Transportation Manufacturing Sector

6-21

For the respondents that did have errors, they reported an average of
40 major and 70 minor software bugs per year in their
CAD/CAM/CAE or PDM software systems (see Table 6-11). Most
respondents indicated that the software problems they experienced
in 2000 were typical of other years.

Table 6-11. Incidence and Costs of Software Bugs

Firms Experiencing Errors Firms Experiencing No Errors

Impact Categories

Percentage of
Firms Reporting

Errors
Average of Firms

Responding
Percentage of Firms
Reporting No Errors

Number of major errors 61% 39.7 39%

Repair cost per bug (labor hrs) 268.4

Lost data per bug ($) $604,900

Delayed new service
introduction (months)

 1.5

Number of minor errors 78% 70.2 22%

Costs per bug $4,018,588

Typical problems encountered due to bugs were

Z production and shipment delays,

Z system down time,

Z loss of customer confidence,

Z customer dissatisfaction in regards to timing, and

Z lost clients.

Most respondents reported that the software bugs only temporarily
delayed transactions. Five companies indicated that they had lost
reputations and two companies indicated that they lost market share
as a result of a software error. Forty-two respondents said that they
experienced delayed product or service introduction as the result of
a software error. The remaining 20 respondents said that they had
no market share or reputation loss. Thirteen firms reported an
average loss of sales of $105,100 as a result of software errors.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-22

Software Life-Cycle Costs

Companies in the automotive and aerospace industries were asked
about the life-cycle costs of CAD/CAM/CAE and PDM software.
Table 6-12 summarizes the total costs of life-cycle activities,
including software purchase decisions, installation and acceptance
testing, annual maintenance, and redundant system costs. The last
column in Table 6-12 indicates the percentage of these
expenditures that is due to software errors and bugs. This
percentage reflects the average cost savings that a typical firm
would receive if the developer found all software bugs prior to
release of the software product. This percentage reduction
represents an upper bound of the benefits from an improved
software testing infrastructure.

Table 6-12. Average Company-Level Costs�of Search, Installation, and Maintenance
(Life-Cycle Costs)

 Average Cost of Activities ($)
Average Cost Reduction Associated

with Software Errorsa

Purchase decision $511,907 41.7%

Installation and acceptance $163,115 26.7%

Maintenance $77,896 14.4%

Redundant system costs $17,202.6 100%

aReflects percentage of cost savings from eliminating all software bugs and errors.

Purchase Decision

On average, the companies indicated that they spend 4.9 months
and 1,399 staff hours researching new CAD/CAM/CAE or PDM
software packages before they make a purchase decision. This
represents an expenditure of approximately $511,908.

Fifty-eight percent of respondents said that they could reduce their
search costs if they had better information about the quality of the
software products. These respondents indicated they could reduce
search time by approximately 1.5 months and 582 staff hours. This
leads to an average savings of about $218,250 per company.

Installation and Acceptance Testing. Companies on average spend
about 564 in-house staff hours and $8,574 in external consulting
services for installation and acceptance testing, representing about
$63,115 per installation. The level of effort varied greatly, ranging

Section 6 — Transportation Manufacturing Sector

6-23

from 1 to 10,000 hours of staff time. Respondents indicated that
errors encountered during installation were responsible for about
one-fourth of their costs.

Annual Maintenance Costs. Maintenance expenditures on
CAD/CAM/CAE or PDM software also varied greatly, ranging from
$1,250 to $2,600,000 in annual expenditures. Most expenditures
were for standard maintenance contracts with the provider of the
software.

Respondents said that maintenance expenditures could be reduced
by about 14.4 percent if software errors and bugs were eliminated,
reflecting an average cost savings of approximately $10,905 per
year.

Redundant System Costs. Approximately half of the companies
indicated that they maintain redundant backup systems after the
installation of new software. On average these systems were
maintained for about 5.6 months at a cost of $3,972 per month.
Thus, the elimination of bugs would represent a savings of about
$17,203 per new system installed for the 50 percent of the
population that maintains redundant systems.

 6.3.4 Costs of Bugs and Errors Per Employee

Table 6-13 shows the costs of bugs and errors normalized by
company employment for the cost subcomponents discussed above.
Cost-per-employee impacts were calculated individually for large
and small automotive firms and large and small aerospace firms to
allow for variation by size and industry.6

For automotive firms with more than 500 employees, the total cost
of software bugs and errors is $241.1 per employee. Minor and
major errors account for 84 percent of the costs. Additional
installation costs associated with bugs accounted for most of the
remaining impacts.

6Because not all respondents were able to provide information for each cost

subcomponent (e.g., major errors, minor errors, purchase costs), we calculated
an average cost-to-transaction ratio individually for each subcomponent. The
average cost per employee for all subcomponents was then summed to obtain
the total average cost per employee for large and small automotive and
aerospace companies.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-24

Table 6-13. Costs Per Employee

Company Size
(employees)

Major
Errors

Minor
Errors

Purchase
Decision

Costs Due
to Bugs

Installation
Costs Due

to Bugs

Maintenance
Costs Due to

Bugs

Redundant
Systems

Costs Due
to Bugs

Total Cost
Due to Bugs

per
Employee

Automotive

Size 1: fewer
than 500

$1,280.8 $81.9 $1.3 $51.6 $49.9 $0.8 $1,466.1

% of costs 87% 6% 0% 4% 3% 0%

Size 2: greater
than 500

$99.3 $121.0 $0.1 $41.6 $15.8 $0.0 $277.8

% of costs 36% 44% 0% 15% 6% 0%

Aerospace

Size 1: fewer
than 500

$649.9 $0.9 $0.2 $48.1 $1,442.3 $0.0 $2,141.4

% of costs 30% 0% 0% 2% 67% 0%

Size 2: greater
than 500

$85.1 $26.9 $0.1 $13.1 $3.7 $0.1 $128.9

% of costs 66% 21% 0% 10% 3% 0%

For automotive firms with fewer than 500 employees, the total cost
increases to $876.2 per employee. Major errors account for close to
three-fourths of these costs.

Aerospace costs per employee were similar in distribution to the
automotive industry. Major and minor errors accounted for the
large majority of costs for large companies. Small companies had
higher total costs per employee, relative to large companies, with
most of the costs resulting from major errors.

It is of interest to note that major errors have a much larger impact
on smaller firms compared to larger firms. Small automotive firms
have a higher major error-per-employee cost compared to large
firms, and major errors account for a much larger share of total costs
per employee.

The differences in the cost-per-employee estimates for large and
small companies are driven by a couple of factors:

Section 6 — Transportation Manufacturing Sector

6-25

Z Smaller firms are less likely to have the in-house staff to
trouble shoot and correct errors as they occur. As a result,
the error typically affects business operations for a longer
period of time and may not be fully corrected the first time.

Z Large companies get higher priority customer support from
software vendors. It is not unusual for a software vendor to
have two to three support staff predominantly assigned to
their major clients. In contrast, smaller customers typically
receive support through call-in help lines where response
time may not be as fast.

These differences imply that smaller firms are more likely to benefit
from an improved infrastructure for software testing.

Typical Company-Level Impacts

Typical company-level impacts were calculated for representative
firms of various sizes to assess whether estimated costs were
“reasonable.” As Table 6-14 shows, an automotive company that
has 100 employees experiences an economic cost of $87,620 per
year due to software bugs and errors. As a company gets larger, its
total cost attributable to software bugs and errors increases (but not
linearly). For an automotive company that has 10,000 employees,
its total cost attributable to software bugs and errors is just under
$2.5 million per year. These cost calculations, build up from
subcomponent costs per employee, are consistent with “top down”
estimates provided by several companies in the automotive industry.

Table 6-14. Company-Level Costs Associated with Bugs for Hypothetical Transportation
Company at Different Employment Levels

Hypothetical Firm Size
(Employment) Total Company Costs Associated with Software Errors and Bugs

Automotive

100 $146,614

10,000 $2,777,868

Aerospace

100 $214,138

10,000 $1,289,167

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-26

 6.3.5 Partial Reduction of Software Errors

The costs in the previous sections reflect the total cost associated
with software errors. Although Table 6-14 generates an estimate of
the total costs attributable to software bugs for different firm sizes,
there is a difference between the total costs of software bugs and the
amount of that cost that can be eliminated with improved tools. In
addition to the feasibility of eliminating all bugs, there could also be
an increasing marginal cost associated with eliminating bugs from
the software development process.

The survey of CAD/CAM/CAE/PDM software users also investigated
how the cost savings associated with an improved infrastructure for
software testing would change with the partial removal of bugs and
errors. Many of our discussions with industry indicate that it is not
feasible or economical for software developers to produce “bug-
free” software. Thus, respondents were asked what the cost savings
would be if their company encountered a 25, 50, or 75 percent
reduction in software errors.

It was anticipated that the rate at which the cost of bugs decreases
as the number of bugs decreases will not be the same for all of the
cost categories. For example, some cost–bug relationships may be
linear (i.e., a 50 percent reduction in bugs leads to a 50 percent
reduction is costs), and some may be nonlinear (i.e., a 50 percent
reduction in bugs may lead to less than a 50 percent reduction in
costs because even a small number of bugs requires testing, backup
systems, etc.).

Table 6-15 presents respondents’ estimates of the percentage cost
reduction associated with different percentage reductions in bugs
for each of the major cost categories discussed above. For major
and minor software bugs, respondents indicated that the costs
generally decline proportionally as the percentage of bugs is
reduced. This implies that the cost per bug is relatively constant.
These costs may be classified mostly as mitigation costs and are
activities in response to errors.

In comparison, the other categories—purchase decision costs,
installation costs, maintenance costs, and redundant system costs—
are mostly avoidance costs. The benefits from reduced bugs for
these categories are relatively flat until a substantial share (i.e.,

Section 6 — Transportation Manufacturing Sector

6-27

Table 6-15. Cost Reductions as a Function of Bug Reductions

Average Percentage Cost Reduction in CAD/CAM/CAE or PDM

Software for a Given Reduction in Software Bugs

Cost Categories 25% 50% 75%

Major failure costs 18 33 46

Minor failure costs 20 33 48

Purchase decision costs 9 14 20

Installation costs 10 17 23

Maintenance costs 7 11 14

Redundant system costs 4 9 12

75 percent) of the bugs are reduced. In these instances, a small
number of bugs (or threat of bugs leading to failures) still lead to
significant “avoidance” costs.

A 50 percent reduction in bugs and errors is used in the analysis
below to capture the “feasible” testing scenario. This is consistent
with the decrease in the share of errors found in post product
release shown in Table 6-5.7 As presented in Table 6-15, users
indicated that a 50 percent reduction in errors would correspond to
a 33 percent reduction in major and minor failure costs and
between a 9 to 17 percent reduction in purchase, installation,
maintenance, and redundant systems costs.

 6.4 USERS’ INDUSTRY-LEVEL IMPACT
ESTIMATES
Industry-level impacts for the automotive and aerospace industry
were estimated by weighting employment-level impacts provided in
Table 6-9 by the domestic industry employment. As shown in
Table 6-16, the industry-level impacts of an inadequate software
testing infrastructure for the automotive and aerospace industries are
estimated to be $1,467.1 million. Potential cost reductions from
feasible infrastructure improvements are $431.5 million. Small

7Post-product release errors decreased from 5 percent under the current

infrastructure to 2 percent under the improved infrastructure.

The Economic Impacts of Inadequate Infrastructure for Software Testing

6-28

Table 6-16. Annual Impacts’ Weighted Cost Per Deposits and Loans

Company Size in
Transactions

Bug and Error
Costs per
Employee

Weight
(000s

employees)

The Cost of Inadequate
Software Testing

Infrastructure
($millions)

Potential Cost Reduction
from Feasible
Infrastructure

Improvementsa
($millions)

Automotive

Small $1,466.1 474 $694.8 $220.0

Large $277.8 1,926 $534.9 $157.0

Total automotive $1,229.7 $377.0

Aerospace

Small $2,141.4 67 $142.9 $25.5

Large $128.9 733 $94.5 $29.0

Total aerospace $237.4 $54.5

Total $1,467.1 $431.5

aBased on a 50 percent reduction of errors.

companies account for the majority of cost impacts. In both the
automotive and aerospace industries they represent over half of the
costs.

The “feasible” infrastructure cost savings are less than 50 percent of
the total infrastructure costs because there is not a one-to-one
correlation between the share of bugs removed and the percentage
cost reduction. As discussed in the previous section, a 50 percent
reduction in bugs leads to less than a 50 percent reduction in costs.

7-1

 Financial
 7 Services Sector

This section investigates the excess costs incurred by software
developers and users in the financial services sector due to an
inadequate infrastructure for software testing. RTI conducted
several case studies of software developers and an Internet survey of
software users to quantify the cost impacts.

Consistent with the transport ion analysis presented in Section 6,
impact estimates were developed relative to two counterfactual
scenarios. The first scenario investigates the cost reductions if all
bugs and errors could be found in the same development stage in
which they are introduced. This is referred to as the cost of an
inadequate software testing infrastructure. The second scenario
investigates the cost reductions associated with finding an increased
percentage of bugs and errors closer to the development stages
where they are introduced. The second scenario is referred to as
cost reduction from feasible infrastructure improvements.

Table 7-1 presents an overview of the empirical findings. The total
impact on the financial services sector from an inadequate software
testing infrastructure is estimated to be $3.3 billion. The potential
cost reduction from feasible infrastructure improvements is
$1.5 billion. Software developers account for about 75 percent of
the total impact and users account for the remaining 25 percent of
costs.

This section begins with an overview of developers and users of
software in the financial services sector. A more detailed industry
profile is provided in Appendix D. We then present the analysis
approach and survey findings used to estimate cost impacts for

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-2

Table 7-1. Cost Impacts on U.S. Software Developers and Users in the Financial Services
Sector Due to an Inadequate Testing Infrastructure ($ millions)

The Cost of Inadequate Software

Testing Infrastructure

Potential Cost Reduction from
Feasible Infrastructure

Improvements

Software Developers

Router and switch $1,897.9 $975.0

FEDI and clearinghouse $438.8 $225.4

Software Users

Banks and savings institutions $789.3 $244.0

Credit unions $216.5 $68.1

Total Financial Services Sector $3,342.5 $1,512.6

software developers and users in Section 7.2 and Section 7.3,
respectively.

 7.1 OVERVIEW OF THE USE OF
CLEARINGHOUSE SOFTWARE AND ROUTERS
AND SWITCHES IN THE FINANCIAL
SERVICES SECTOR
The financial services sector (NAICS 52) consists of monetary
authorities; credit intermediation, securities and commodity
contracts organizations; and insurance carriers. In 1997 total
revenue for this sector exceeded $2.1 trillion with employment of
approximately 5.8 million.

An increasing share of financial communications are occurring
electronically. In 1999, over $19.5 trillion dollars worth of
transactions occurred electronically, representing a 282 percent
increase since 1989 (NACHA, 2000).

The generic term used to describe the transfer of information
electronically in the financial services sector is Financial Electronic
Data Interchange (FEDI). FEDI transactions not only contain the
information for the transaction that is being processed, but they also
include the transfer of the financial resources. The reconciliation of
accounts requires using a clearinghouse that adds a step to the FEDI

Section 7 — Financial Services Sector

7-3

process that does not exist in generic Electronic Data Interchange
(EDI) transactions.

Computer software and hardware play two important roles in
transferring information in the financial services sector. First, FEDI
and clearinghouse software are used to manage the information
content once it has arrived at its appropriate location. Second,
routers and switches (a combination of software and hardware) are
used to manage the flow of information from one entity to the next
via the Internet and company intranets. This section provides an
overview of electronic transactions in the financial services sector
and describes the software that facilitates the process.

 7.1.1 Overview of Electronic Transactions in the Financial
Services Sector

Financial transaction management is the overarching term used to
describe the flow, monitoring, and control of data across and within
banking institutions. It is defined as the firm’s ability to control and
manage a range of transactions—from foreign exchange to securities
deals—to their reconciliation and successful resolution. Financial
transactions management can be subdivided into three general
activities: financial transactions reconciliation, financial
transactions services, and financial transactions control.

Z Financial Transaction Reconciliation—The financial
transaction reconciliation software allows the automated
reconciliation of payments, securities, and foreign
transactions. A flexible matching algorithm within each
reconciliation module allows users to set up matching
criteria to optimally meet the needs of partner banks or
brokers, which increases matching rates.

Z Financial Transaction Services—Financial transaction
services include on-line transactions, archiving and retrieval
functionality, and other services to aid the end user.

Z Financial Transaction Control—Financial transactions
control is software used to develop profiles and govern
access to all functions. Roles and users can be defined
individually or in groups, and user IDs can be assigned to all
actions, providing a full audit trail. Several institutions can
work with the same system independently of each other, and
firms also have the ability to outsource matching services, if
required.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-4

Firms in the Financial Services Sector

The Census Bureau aggregates firms engaged in financial
transactions into four broad categories by NAICS code.1 Table 7-2
provides establishment, revenue, payroll, and employment
information for each category.

Table 7-2. Characteristics of Firms in the Financial Services Sector, 1997

 Establishments
Revenue
(millions)

Payroll
(millions) Employees

521 Monetary Authorities 42 24,581 903 21,674

522 Credit Intermediation and Related
Activities

166,882 808,810 98,723 2,774,910

523 Securities, Commodity Contracts, and
Other Financial Investments and Related
Activities

54,491 274,986 71,281 706,053

524 Insurance Carriers and Related
Activities

172,299 1,072,784 92,230 2,327,306

Source: 1997 Economic Census, Finance and Insurance Subject Series.

Firms within the Credit Intermediation and Related Activities sector
(522) are the most dependent on software and hardware to support
financial transactions. Sector 522 comprises firms engaged in
financial transactions processing, reserve activities, and
clearinghouse activities. Firms conducting clearinghouse activities
(subsector 52232) are primarily engaged in financial transaction
processing, reserve activities, and liquidity services or other
financial instrument clearinghouse services. Firms in this sector are
engaged in both automated and manual clearinghouse activities. In
1997, the clearinghouse subsector included over 1,200 firms with
over 60,000 employees.

The finance and insurance sector of the economy (sectors 523 and
524) comprises firms whose dominant line of business is either
financial transactions or facilitating those transactions. Transactions
are broadly defined to include the creation, liquidation, or change
of ownership of a financial asset.

1The appendix provides descriptions for each of the NAICS codes in sector 52.

Section 7 — Financial Services Sector

7-5

 7.1.2 Software Used by Financial Services Providers

Two main types of software are used to manage the exchange of
information in the financial services sector: FEDI software and
clearinghouse software. FEDI software manages the flow of
information across firms, and clearinghouse software manages the
flow of funds between financial institutions. Clearinghouse software
balances interfirm transactions such as payrolls, travel and expense
reimbursements, pensions, and dividends. Appendix D provides
details on the characteristics and attributes of these transactions.

Major Producers of FEDI and Clearinghouse Software

When a firm is deciding on what FEDI or clearinghouse software to
implement, it can either develop its own software, have the software
custom built, or purchase a commercial application. Although
some FEDI and clearinghouse software applications are
commercially available, they often have to be adapted and altered
to fit with the firm’s existing legacy system.

The FEDI and clearinghouse software market has a large number of
both large and small producers. The most significant role in the
FEDI and clearinghouse software market is played by the Federal
Reserve. The Federal Reserve Financial Services provides a version
of FEDI (FEDEDI) at no additional cost for use by financial
institutions, service bureaus, or other entities that have an electronic
connection to the Federal Reserve. However, many large banks and
credit unions purchase monolithic or highly customized FEDI and
clearinghouse software specifically designed for their institution.
This provides a niche for companies focused on customized
software services. Other FEDI and clearinghouse software
producers provide more generic, out of the box software. Some of
the companies that play a significant role in this market are Check
Free Corporation, Software Dynamics, Inc., and Fundtech
Corporation.

Impacts of Inadequate Testing

The economic cost associated with inadequate FEDI and
clearinghouse software can be substantial (System Transformation,
2000). In some cases, software failures prevent transactions from
occurring; in other cases, expensive work-arounds for failures need
to be implemented. Examples of the problems and associated costs
resulting from FEDI and clearinghouse software failures include:

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-6

Z data interchange interruptions or errors,

Z credit card processing failure in the banking system, and

Z trading system failure.

 7.1.3 Software Embedded in Hardware Used to Support
Financial Transactions

In addition to software used to support FEDI and clearinghouse
transactions, software is also embedded in hardware that is used to
facilitate the physical transfer of electronic information. The
process of passing information from one user to another is called
routing. The two key pieces of technology involved in routing are
routers and switches, both of which are combination of hardware
and software that manage the flow of information. However, the
software used to manage the flow of information is often inoperable
across firms, routers, and area networks. Different products use
different languages and different algorithms when making decisions
about the passage of information. These differing decision-making
processes create an interoperability problem.

Appendix D describes how information is passed through an
internetwork to get from one user to another, including how
software is used to route information.

Major Producers of Routers and Switches

Four major companies dominate the market for routers that are used
to transfer information: Cisco, Nortel, Lucent, and 3Com. Each
major company uses its proprietary software to write switching and
routing algorithms for use in its routers. Table 7-3 presents a list of
companies and the proprietary software they use.

Table 7-3. Router Market Shares of Major Firms

Company
Number of

Router Types
Total Sales

(millions in 3rd quarter, 1999) Market Share Software Product

Cisco 16 $1,360 72% IOS, ConFig Maker

Nortel 8 $51 3% Preside

Lucent $278 15% Hybrid Access

3Com 5 $196 10% Enterprise OS Software

Source: The Dell’Oro Group. 2001. <www.delloro.com>.

Section 7 — Financial Services Sector

7-7

The measure of the number of router types that each company has is
a broad measure of product categories. Numerous potential
configurations and upgrades are available to the end user within
each broad router type, effectively increasing the number of
available products. We used total sales in the third quarter of 1999
to get a common metric for the relative share of the market for
routers and switches held by each firm.

Current Testing Inefficiencies

The rapid growth in the sales of switches and routers and the
significant technological improvements that have occurred in the
second half of the 1990s have created routers and switches that may
not interoperate. Insufficient testing of the software algorithms used
in operating the routers and switches is contributing to the lack of
interoperability.

Failures in the software used to run internetworks, which can be
attributed to inadequate testing, can cause serious information
delivery problems. Attributes of the software used to run
internetworks that are of concern to developers are connectivity,
reliability, network management, and flexibility. Connectivity is a
challenge because various sites use different types of technology
that may operate at different speeds. Reliability is a concern
because individual users need information from other users in a
timely manner. Network management ensures that centralized
support is available to all users. Flexibility deals with the ability to
adapt, add on to, and improve the network.

Failure on any of these measures leads to several potential impacts,
including the following:

Z decreased speed of information delivery,

Z failure of information delivery,

Z inefficient router algorithms,

Z lack of robust routers,

Z reduced security of Internet and intranet traffic, and

Z inability to run specific programs.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-8

 7.2 SOFTWARE DEVELOPER COSTS IN THE
FINANCIAL SERVICES SECTOR
We conducted interviews with four developers of router and switch,
FEDI, and clearinghouse software. Companies eagerly admitted that
the current set of tools was inadequate for finding all of the bugs
that exist in an efficient manner before a new product is shipped to
a customer. All agreed that an improved testing infrastructure could
reduce testing costs and accelerate the time to market for their
products. Additionally, they said that improved testing products
would decrease the amount of customer support required and
increase the value of the product they produce.

Clearinghouse software developers were the most reluctant to
provide information on their testing procedures or the level of
resources devoted to finding and fixing software errors. In most
instances developers said that information on testing expenditures
and errors discovered were confidential because they reflected
detailed information about their product development process. In
addition, whereas most companies track the number and location of
bugs that emerge, few companies track their expenditures on testing
and system costs.

All companies agreed an improved system for testing was needed
that would be able to track a bug back to the point where it was
introduced and then determine how that bug influenced the rest of
the production process. Respondents said that they knew about
bugs when they emerged but had the most difficulty in tracking
them down to their inception point. Respondents noted that the
technology they were working with lacked the ability to accomplish
this.

Respondents thought that an improved infrastructure would consist
of tools that are able to spot an error as close to when it is
introduced as possible. Their ideal testing infrastructure would
support close to real time testing where testers could remedy
problems that emerge right away rather than waiting until a product
is fully assembled. Respondents also indicated that they would be
willing to purchase and install new products that accomplished this.
They said that they waste valuable resources later in the production
process because of missed software bugs and that any improved
infrastructure would be effective at reducing testing costs. The

Their ideal testing
infrastructure would
support close to real
time testing where
testers could remedy
problems that
emerge right away
rather than waiting
until a product is
fully assembled.

Section 7 — Financial Services Sector

7-9

major benefit that they saw from an improved infrastructure was
direct cost reduction in the development process and a decrease in
post-purchase customer support. An additional benefit that
respondents thought would emerge from an improved testing
infrastructure is increased confidence in the quality of the product
they produce and ship. The major selling characteristic of the
products they create is the certainty of that product to accomplish a
particular task. Because of the real time nature of their products, the
reputational loss can be great.

In addition to FEDI and clearinghouse software developers, we
spoke with three router and switch producers who develop a
significant amount of software that is embedded in the infrastructure
to support financial services transactions. These companies
indicated that testing costs would decrease dramatically if improved
software testing tools could find more bugs prior to product release.
The primary testing need for these companies is the ability to cost-
effectively generate more traffic (e.g., calls per second, requests for
data per second) in a timely manner to simulate realistic operating
scenarios during testing and debugging the traffic levels experienced
at customers’ facilities. This would lead to more bugs being
detected during integration versus at the customer’s site.

Installation support is an important service provided by router and
switch companies. Installation support typically involves having the
developer’s employees at the customer’s site, providing assistance
over the telephone, and remotely manipulating products (using data
communication lines) at the customer’s site. Companies said that
better testing tools and methods used during software development
could reduce installation expenditures by 30 percent.

Forty percent of these companies’ after-sales service costs are
related to bugs found by customers during business operations.2
Developers said that better software testing tools could reduce this
percentage to 10 percent.

The remainder of this subsection quantifies the developer cost
savings due to finding bugs and errors closer to when they are
introduced for the financial services sector based on the empirical
results from the router and switch developer surveys. We used the

2The remaining 60 percent of after-sales service costs are related to user error or

other problems not related to defective software.

Software developers said
that better software testing
tools could reduce after-
sales service costs by
30 percent.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-10

estimated costs per employee as representative of the economic
impact of an inadequate infrastructure for software testing on all
software developers supporting the financial services sector.

 7.2.1 Industry Surveys

As with the surveys of software developers supporting the
transportation sector, in determining the costs associated with an
inadequate infrastructure for the financial services sector we made
two key assumptions:

Z The same number of bugs still occurs regardless of the
infrastructure used or the quality of that infrastructure. Bugs
are attributed to human error and will continue to occur.

Z An improved infrastructure does not change where bugs are
introduced. This again is assumed to be a function of
human error.

Data collection focused on the impact an improved infrastructure
would have on lowering the cost of testing and fixing bugs and
errors and finding the bugs closer to the time they were introduced.

We collected information to support the evaluation of two
counterfactuals scenarios. The first scenario investigates the cost
savings developers would realized if all bugs and errors were found
in the same development stage that they were introduced. The
second scenario investigates the impact of a partial reduction in
software bugs and errors.3

 7.2.2 Survey Findings

The metrics for quantifying the impact of inadequate software
testing methods and tools are discusses in Section 5. Following this
approach, the key pieces of information collected from the surveys
were

Z the current distribution of where bugs are introduced and
found in software,

Z the time required to fix a bug given this distribution, and

Z the expectations of how an improved infrastructure would
testing activities.

To collect the information to estimates cost impacts RTI conducted
on-site, telephone and internet interviews with software testers at
companies that manufacture routers, switches and gateways that

3See Section 6.2.1 for a more detailed discussion of the two counterfactual

scenarios.

Section 7 — Financial Services Sector

7-11

support financial transactions. The questionnaire used to collect the
information is presented in Appendix E.

Based on the survey findings, Table 7-4 shows where software bugs
are found based on the introduction point. For example, about
7 percent of bugs are introduced and found in the requirements
stage. However, 3 percent of bugs are introduced in the
requirements stage and not found until post-product release. As
shown in Table 7-4, 58 percent of errors are introduced in the
coding/unit testing stage with many of these errors not found until
latter stages (integration stage for example).4

Table 7-4. Distribution of Bugs Found Based on Introduction Point

Stage Found

Stage Introduced Requirements
Coding/Unit

Testing Integration
Beta

Testing
Post-product

Release
Row

Percentage

Requirements 6.7% 9.5% 6.1% 5.3% 2.8% 30.3%

Coding/unit testing NA 32.2% 14.3% 6.3% 5.0% 57.8%

Integration NA NA 7.9% 1.8% 2.3% 11.9%

Column
percentage 6.7% 41.7% 28.3% 13.3% 10.0% 100.0%

NA = Not applicable because a bug cannot be found before it is introduced.

Once the distribution of bugs is determined, the next step is to
determine the costs of fixing a bug based on the point of
introduction. As discussed above, the costs of fixing a bug are
greater the farther away from the point of introduction is the point at
which the bug is discovered. This occurs for several reasons. First,
it is more difficult to find a bug the farther away from the point of
introduction. Second, more code has to be rewritten the farther
away from the point of introduction that the bug is found.

4Note that we are investigating only bugs and errors introduced in the software

product development process. Errors introduced during beta testing or
implementation are not included in the distributions in Table 7-4. However,
developers said that it is often difficult for the testers and software engineers to
determine where the user introduced the bug or as part of the development
process.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-12

Table 7-5 shows resources (costs) in terms of the average number of
tester hours required to investigate and fix a bug based on the
survey responses. The first row of Table 7-5 shows that for bugs
introduced in the requirement stage, it is increasing costly to find
and fix them the longer they remain undetected. For example, to
correct a requirements error not found until the post production
stage it is approximately 15 time more costly than if the error would
have been found back in the requirements stage where it was
introduced.

Table 7-5. Hours to Fix Bug based on Introduction Point

Stage Found

Stage Introduced Requirements
Coding/Unit

Testing Integration Beta Testing
Post-product

Release

Requirements 1.2 8.8 14.8 15.0 18.7

Coding/unit testing NA 3.2 9.7 12.2 14.8

Integration NA NA 6.7 12.0 17.3

NA = Not applicable because cannot find a bug before it is introduced

Using the distribution of bugs (introduced and found) in Table 7-4
and the hours to fixed each type of bug in Table 7-5, we are able to
calculate the average hours per bug as a function of where the bug
was found (see Table 7-6). For example, on average a bug found in
coding/unit testing takes 4.9 hours to fix, whereas an average bug
found in post-product release takes 15.3 hours to fix. In addition,
using the distribution of where bugs are found we calculate that the
overall average time to investigate and fix a bug is 17.4 hours.

Based on the cost-per-bug calculations presented above, the
national costs of an inadequate infrastructure for software testing are
estimated for each of the two counterfactual scenarios described in
Section 7.2.1. For the first scenario all bugs are found in the stage
where they are introduced. For the “feasible” scenario, more bugs
are found closer to the stage they were introduced because of
improved testing methods and tools. The distributions of where
bugs are found associated with each counterfactual scenario are
shown in Table 7-7, along with the current distribution copied from
Table 7-6.

Section 7 — Financial Services Sector

7-13

Table 7-6. Time to Fix a Bug Based on Discovery Point

Location Hours
Current Distribution of
Where Bugs are Founda Weighted Average Hours

Requirements 1.2 7%

Coding/unit testing 4.9 42%

Integration 9.5 28%

Beta testing 12.1 13%

Post-product release 15.3 10%

Total 17.4

aFrom bottom row in Table 7-11.

Table 7-7. Shift in the Distribution of Where Bugs are Found Based on Infrastructure

Location
Current

Infrastructure
All Bugs Found in Same

Stage as Introduced
Feasible Infrastructure

Improvements

Requirements 7% 30% 7%

Coding/unit testing 42% 58% 57%

Integration 28% 12% 27%

Beta testing 13% 0% 5%

Post-product release 10% 0% 5%

Average hours per average bug 17.4 8.5 13.3

Percentage reduction from current
infrastructure

 45.6% 24.3%

The current distribution reflects where bugs are discovered under
the existing inadequate infrastructure for software testing. Under
the first scenario, all bugs are discovered in the development stage
where they occur. Note that this distribution is simply the row
percentage shown in Table 7-4. The “feasible” infrastructure
scenario is based on survey data. Respondents were asked what the
distribution of the discovery of bugs would look like with better
tools. Under this scenario, some of the bugs are found sooner in the
production process.

As shown in Table 7-7 both scenarios shift the distribution of when
bugs are found toward the early stages of development. In addition,

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-14

respondents said that with feasible infrastructure improvements it
would take approximate 15 percent less time to fix bugs (holding
the distribution constant) because they would have more
information as to the location of the error in the source code. Both
of these effects are included in the change in the average number of
hours required to find and fix an average bug under each scenario
(next to last row of Table 7-7). For the feasible scenario, the
average time to find and fix a bug dropped from 17.4 to 13.3 hours.
If all bugs are found in the same stage as introduced, the average
time dropped to 8.5 hours.

The final row in Table 7-7 gives the percentage change in total time
spent per bug for each of the scenarios relative to the baseline
scenario. This can be interpreted as the amount of testing resources
saved under the two counterfactual scenarios.

 7.2.3 Cost Impacts Per Employee for Software Developers

Once the average percentage change in testing resource is
determined, we normalized cost impacts by company employee to
develop a cost-per-employee metric associated with an inadequate
infrastructure. We then used the cost per employee used in
conjunction with total industry employment to estimate the total
cost impact on the software developers of FEDI, clearinghouse, and
router and switch software.

Table 7-8 presents a breakdown of testing costs based on
information collected during the case study. The second column
provides current labor and capital expenses for software testing for a
company of 10,000 employees. The third and fourth columns show
the total cost of an inadequate infrastructure and the cost savings
associated with feasible infrastructure improvements. We
calculated the cost savings using the 45.6 percent and 24.3 percent
reductions in testing resources calculated presented in Table 7-7.

Labor costs for software testers account for the overwhelming
majority of total testing expenditures. We calculated labor costs for
software testers using company employment (10,000), the ratio of
testers to total employees (10.5 percent), and the average fully
loaded wage rate for software testers ($68 per hour). To this,
external testing services, hardware costs, and after-sale service costs
were added to estimate the total testing costs.

Section 7 — Financial Services Sector

7-15

Table 7-8. Developer Testing Costs for a Typical Company of 10,000 Employees

Current Testing

Costs

The Cost of
Inadequate Software

Testing
Infrastructure

Potential Cost
Reduction from

Feasible
Infrastructure
Improvements

Software testers $104,400,839 $49,038,698 $25,121,963

Number of testers 766 360 184

Fully loaded wage rate ($/hour) $68 $68 $68

Software and hardware for testing $13,230,335 $5,755,124 $3,271,988

External testing services $3,527,337 $1,858,837 $809,923

After-sale service costs $2,403,556 $1,266,627 $551,888

Total annual testing costs $123,562,900

Annual change in testing costs $57,919,713 $29,756,015

Cost savings as a percentage of sales 1.8% 0.9%

The cost associated with an inadequate infrastructure for software
testing are approximately 2 percent of the developers’ annual sales
and potential cost reductions from feasible improvements are about
1 percent of sales.

 7.2.4 Industry-Level Impacts

To extrapolate the cost impacts to reflect all developers of financial
services software, we multiplied the cost per employee by the total
employment of companies supplying software to this industry
segment. Industry employment for router/switch software producers
and for FEDI/clearinghouse software developers was obtained from
publicly available databases (Standard and Poor's Net Advantage
and Reference USA) and individual company 10K reports.
Table 7-9 shows that the weighted industry-level impacts for an
inadequate software testing infrastructure are approximately
$1.9 billion for router/switch software developers and $0.4 billion
for FEDI/Clearinghouse software developers. The potential cost
reductions from feasible infrastructure improvements are $1.0 and
$0.2 billion, respectively.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-16

Table 7-9. Annual Impact on U.S. Software Developers Supporting the Financial Services
Sector

The Cost of Inadequate Software

Testing Infrastructure

Potential Cost Reduction from
Feasible Infrastructure

Improvements

Routers and Switches Software

Change in cost per employment $5,792 $2,976

Total industry employment 327,676 327,676

Industry-level savings (millions) $1,897.9 $975.0

FEDI and Clearinghouse Software

Change in cost per employment $5,792 $2,976

Total industry employment 75,760 75,760

Industry-level savings (millions) $438.8 $225.4

 7.3 SOFTWARE USER COSTS IN THE FINANCIAL
SERVICES SECTOR
To estimate the costs due to an inadequate testing infrastructure for
software end users, RTI collected data directly from banks and credit
unions that use FEDI and clearinghouse software products. This
subsection presents an overview of the survey process, descriptive
statistics from data collected, and the economic impact estimates of
software errors and bugs for users in the financial services sector.

 7.3.1 Survey Method

The end-user survey employed a telephone-Internet-telephone
survey method in which the respondents were recruited via
telephone, instructed to complete an Internet survey, and
telephoned again if clarification was needed or if the respondents
did not complete the survey in a timely manner. The survey was
pre-tested by the project consultants and two financial service
companies. The electronic instruments and resulting database were
housed on RTI’s web site within RTI’s firewall to ensure security and
confidentiality of the information provided by respondents.

RTI developed the survey instrument and samples. Appendix E
includes the final survey instrument. Harris Interactive recruited the
users using scripts prepared by RTI. Up to eight calls were made to

Section 7 — Financial Services Sector

7-17

locate the appropriate individual at each company, recruit
participants, and follow up if surveys were not completed within
2 weeks.

Thousands of firms may be significantly affected by an inadequate
infrastructure for software testing. The goal of the survey effort was
to capture as large a share of the impacts as possible while ensuring
that our survey population is representative of the industry as a
whole. To this end, the objective of the survey was to complete
interviews with of the 50 “largest” software users and 100 “medium
to small” size software users. Size was defined by either volume of
electronic transactions or by the sum of depository and loan
transactions.5

 7.3.2 Survey Response Rates and Industry Coverage

Over 1,400 end users were contacted to fill out the RTI end-user
survey for the financial services sector. Table 7-10 provides the
number of firms that were contacted and recruited and the number
of completed surveys. For slightly over 50 percent of company
contacts we were able to identify and speak with the individual in
charge of maintaining their FEDI or clearinghouse software. Of
these, 37 percent were successfully recruited to participate in the
survey. One-third of the recruited participants returned completed
survey instruments to RTI.6

5Volume of electronic transactions was the preferred method for identifying “large”

companies because this metric is closely correlated with the impact of
inadequate software testing. The top 50 companies by electronic transaction
volume ($$) were obtained from American Banker.com. For companies where
total electronic transaction volume was not available, we used the sum of
depository and loan transactions obtained from Federal Deposit Insurance
Corporation public filings as the measure to stratify the sample by company
size.

6The relatively low recruitment and completion rates for the survey of companies
in the financial services sector are the result of several issues. First, the direct
impact that software errors have on this sector’s final products and services.
Within the financial services sector, transactions occur in real time. Once a
bug occurs, customers of that particular financial services sector are directly
affected through loss of service. Because software failures are highly
publicized, companies in the financial services sector are reluctant to discuss
these issues, even if the source of the error is inadequate testing by software
vendors. Second, all of the firms in the financial services industry provide
almost identical services. What gives the firm its competitive advantage is not
the activities that it conducts, but rather the software tool it uses to conduct
them. Because the software that they use is so instrumental to defining their
competitive advantage, they are reluctant to discuss any potential failures of
that product.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-18

Table 7-10. Financial Industry Survey Completion Rates

Sample Type
Companies
Contacted

Identified Appropriate
Contact

Successful
Recruits

Completed
Surveys

Financial top tier 40 26 8 2

Financial random 1,375 722 273 96

Total 1,415 758 281 98

We successfully contacted 40 of the 50 largest companies. Out of
the 40 large companies contacted, the appropriate individual was
identified for 26 companies. Of the 26 companies, eight agreed to
fill out the survey and two returned completed surveys.

In addition to the large companies, from a random stratified sample,
we contacted 1,375 medium to small companies. For 722 the
appropriate IT contact was identified. We recruited 273 of these
companies to participate in the study, and 96 completed surveys
were returned to RTI.

Table 7-11 provides information on the extent of the industry
coverage from the survey. The financial services sector population
from which the survey sample was drawn is defined as commercial
banks, saving institutions, credit unions, and other entities included
in NAICS codes 5221. The population consists of 19,308 firms with
a combined depository and loan transaction amount of $8,718
trillion. Approximately 92 percent of those transactions are
associated with commercial banks and saving institutions. This
population excludes firms that solely provide securities brokerage
services, commodity contracts brokerage, and securities commodity
exchanges services.

Industry coverage is determined by comparing by the sum of
depository and loan transactions from surveyed respondents to
industry totals. In addition, the survey respondents and industry are
separated into banks and credit unions. Table 7-11 shows the
coverage of the financial services sector represented by the
completed surveys. Companies completing the survey represent
14 percent of the financial services sector in terms of transaction

Section 7 — Financial Services Sector

7-19

Sample Type

Total Industry
Transactions
($ millions)

Completed Surveys Transactions
($ millions)

(% of industry)

Deposits

Banks 4,244,733 491,348
(12%)

Credit unions 379,200 7,698
(2%)

Loans

Banks 3,793,310.7 754,590
(20%)

Credit unions 301,300 2,258
(1%)

Total transactions 8,718,543.7 1,255,888
(14%)

amounts. The percentage covered is primarily due to the completed
surveys of large banks and savings institutions that account for a
large share of the industry depository and loan transactions.

The sum of depository and loan transactions in Table 7-11 also
provides the appropriate weights to extrapolate the sample
responses to the industry-level impact estimates.

 7.3.3 Survey Findings

Survey respondents have an average employment of 3,970
employees and average sales of approximately $29 million. Most
respondents provide a variety of services. Forty percent of firms
reported providing credit intermediation services; 63 percent
provide securities, commodity contracts, and other financial
services; and 22 percent sell insurance. An additional 33 percent of
firms reported providing other financial services or products.

Table 7-12 lists various software products that the sample
participants reported using for electronic data exchange. The most
commonly reported products were software products provided by
the Federal Reserve Financial Services. The average life expectancy
for these software products was 1.5 years, and the majority of them
were installed between 1983 and 2001. Most users of the software
say that they have been using the same system for 1 to 10 years.

Table 7-11. Industry
Coverage

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-20

Table 7-12. Reported Software Products

Software Product Vendor/Provider Frequency

ACH Federal Reserve Financial Services 2

Bank on It Transact CTX Option 1

Bulkdata Federal Reserve Financial Services 1

CBS Origination Control 1

Digital Insight Digital Insight 2

Digital Unix Compaq 1

ECS 1

EPN PC Aims Electronic Payments Network 1

FEDEDI Federal Reserve Financial Services 11

FEDI Federal Reserve Financial Services 6

Fedline Federal Reserve Financial Services 14

FedPlu$ Fundtech Corporation 1

FiServ Galaxy 2000 Technical Programming Services Inc. 2

Fundtech Fundtech Corporation 2

GMI Software GMI Software 1

International Cash Management IBOS 1

ITI Premier Bank Application Software Dynamics, Inc. 3

Jack Henry & Associates Jack Henry & Associates 1

Kirchman Financial Software Kirchman Corporation 1

MISER Miser Software 1

Mercator for EC Mercator 1

Open Solutions Open Solutions, Inc. 1

Modern Banking Systems Modern Banking Systems, Inc. 1

Pay Systems International Credit 1

PEP Check Free Corporation 7

PC AIMS 1

Pershing Net Xchange Pro Advantage Capital Corporation 1

Shazam Vector 1

Sterling Bankers ACH 1

Sterling Commerce Connection SBC Communications 1

Trading Partners 1

Xp Software 1

VISA Direct Exchange Open File Delivery VISA Corporation 1

Federal Reserve FEDI Federal Reserve Financial Services 1

Section 7 — Financial Services Sector

7-21

Most companies responded that they had only two employees (full-
time equivalents [FTEs]) involved in operating and supporting FEDI
transactions and eight FTEs supporting clearinghouse transactions.
However, one of the largest companies indicated that they had five
FEDI staff and 200 clearinghouse staff supporting electronic
transactions. Almost all of respondents said that their information
reflected FEDI and clearinghouse transaction activity for the entire
company.

Incidence and Costs of Software Errors and Bugs

Approximately two-thirds of the companies providing information
on software errors and bugs indicated that they had experienced
major software errors in the previous year. The remaining one-third
of the companies said they did not experience any major software
errors over the past year and that minor errors were quickly
corrected at little to no cost.

For the respondents that did have major errors, they reported an
average of 40 major and 49 minor software bugs per year in their
FEDI or clearinghouse software systems (see Table 7-13).
Approximately 16 percent of those bugs were attributed to router
and switch problems, and 48 percent were attributed to transaction
software problems. The source of the remaining 36 percent of
errors was unknown. All members of the sample reported that the
software problems they experienced in 2000 were typical of other
years.

Table 7-13. Incidence and Costs of Software Errors

Firms Experiencing Errors

Impact Categories
Percent of Firms

Reporting
Average of Firms
Reporting Errors

Percentage of Firms
With No Errors

Number of major errors 61% 40 39%

 Repair cost per error (labor hrs) 18.4 hour

 Lost data per error ($) $1,425

 Delayed new service
introduction (months)

 1.5 months

Number of minor errors 71% 49.4 29%

 Costs per error $3,292.9

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-22

Typical problems encountered due to bugs were

Z increased person-hours used to correct posting errors,

Z temporary shut down leading to lost transactions, and

Z delay of transaction processing.

Most respondents reported that the software errors only temporarily
delayed transactions. One respondent reported transactions being
shut down for 30 to 60 minutes. Approximately 15 percent of
respondent companies indicated that they had lost reputation as a
result of a software error, 5 percent reported lost market share, and
10 percent said that they experienced delayed product or service
introduction. The other respondents said that they had no market
share or reputation loss.

For the respondents who did have major software errors, they
estimated that an average of 18.4 labor hours is spent to repair each
error or bug. In addition, several firms indicated that they had lost
information as a result of software errors and that the average value
of information loss was about $1,425 per software error.

Eight-two percent of minor errors experienced by the companies
increased operating costs as a result of developing patches and
work-arounds for their software. On average, companies spend
approximately $3,293 per year on solutions for minor errors.
However, responses varied greatly with one respondent saying that
minor errors cost his company over $12,000 per year.

Software Life-Cycle Costs

Respondents were asked about the life-cycle costs of FEDI and
clearinghouse software. Table 7-14 presents the total costs of life-
cycle activities, including software purchase decisions, installation
and acceptance testing, annual maintenance, and redundant system
costs. The last column in Table 7-14 indicates the percentage of
these expenditures that are due to software errors and bugs. This
percentage reflects the average cost savings that a typical firm
would receive if all software bugs were found by the developer
prior to release of the software product. This percentage reduction
represents an upper bound of the benefits from an improved
software testing infrastructure.

Section 7 — Financial Services Sector

7-23

Table 7-14. Total Costs�of Search, Installation, and Maintenance (Life-Cycle Costs)

Average Annual Cost of

Activities ($)
Average Cost Reduction Associated with

Software Errors (%)a

Purchase decision $481.6 20%

Installation and acceptance $393,500 16%

Maintenance $1,578.3 11%

Redundant system costs $3,466.7 46%

aReflects cost savings from eliminating all software bugs and errors.

Purchase Decision

On average, the companies indicated that they spend approximately
4 months and one to two FTEs researching new FEDI or
clearinghouse software packages before they purchase a package.
For this sample, the average expenditure was $482, which we
calculated by multiplying the cost of each company’s reported FTEs
by the amount of time the company reported expending for
purchasing new FEDI or clearinghouse software times an hourly rate
of $75 per hour.

Sixty-seven percent of respondents said that they could reduce their
search costs if they had better information about the quality of the
software products. These respondents indicated they could reduce
search time by approximately 1 month, reflecting an average
savings of about 20 percent, or $12,000 per company for this
percentage of the population.

Installation and Acceptance Testing. Companies on average spend
about 65 hours per month for 2 months on installation and
acceptance testing, representing about $393,500 per installation.
The level of effort varied greatly, ranging from 1 to 480 hours of staff
time.

Respondents said that about 16 percent of installation costs were
associated with software errors and bugs. This reflects an average
savings of about $62,960 per firm. Two respondents said that they
used external consultants for installation and acceptance testing.

Annual Maintenance Costs. Maintenance expenditures on FEDI
and clearinghouse software averaged $1,578 per year. Most

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-24

expenditures were for standard maintenance contracts with the
provider of the software.

Respondents said that maintenance expenditures could be reduced
by about 11 percent if software errors and bugs were eliminated,
reflecting an average cost savings of approximately $174 per year.

Redundant System Costs. Approximately half of the companies
indicated that they maintain redundant backup systems after
installing new software. On average these systems were maintained
about 3 months at a cost of $400 per month. Thus, the elimination
of bugs would represent a savings of about $1,595 per new system
installed for the 50 percent of the population maintaining redundant
systems.

 7.3.4 Software User Costs Per Transaction

The total costs of software bugs and errors for a firm is the sum of
the mitigation costs associated with major and minor errors when
they occur (Table 7-13) and the avoidance costs incurred
throughout the life-cycle of the software product (Table 7-14). We
divided total firm cost by firm transactions to get a cost per
transaction metric that we later used to weight the impact estimates.

We developed separate impacts per deposit/loan transaction
estimates for banks and credit unions. Banks and savings
institutions are more likely to be diversified, engaging in many
different business activities and hence may have low cost-to-sales
and cost-to-employee ratios. In contrast, credit unions tend to be
smaller companies where software costs are likely to be a much
larger share of their deposit/loan transactions. Stratifying the
population and using separate company-type cost-to-transaction
ratios provide a more accurate estimate of national impacts

Table 7-15 presents costs-to-transactions ratios for subcomponents
for both banks and credit unions. Because not all respondents were
able to provide information for each subcomponent (e.g., major
errors, minor errors, purchase costs) an average costs-to-transaction
ratio was calculated individually for each subcomponent. The
average cost-to-transaction ratios for all subcomponents were then
summed to obtain the total average cost-to-transaction ratio for each
company type. In addition to giving the dollar cost per impact
subcategory, we also present the percentage distribution of costs. It

Separate impact estimates
per deposit/loan were
developed for banks and
credit unions.

Section 7 — Financial Services Sector

7-25

is of interest to note that the costs of an inadequate infrastructure are
distributed across numerous types of bugs.

Table 7-15 shows that the major error subcategory represents the
largest share of total costs associated with software bugs and errors.
This subcategory includes labor expenditures to fix major errors and
the value of information lost as a result of major errors. The average
cost per million dollars in transactions is $55 for major errors and
$2 for minor errors. The second and third largest impact
subcategories are additional expenditures (due to bugs) for software
purchase decisions and installation costs associated with bugs.

Table 7-15. Software Bug and Error Costs Per Million Dollars of Deposits and Loans

Major
Errors

Minor
Errors

Purchase
Decision

Costs Due
to Bugs

Installation
Costs Due

to Bugs

Maintenance
Costs Due to

Bugs

Redundant
Systems

Costs Due
to Bugs

Total Cost
Due to
Bugs

Banks and
savings
institutions

$54.66 $2.13 $12.14 $28.73 $0.43 $0.11 $98.20

Percentage of
costs

55.7% 2.2% 12.4% 29.3% 0.4% 0.1% 100.0%

Credit unions $282.93 $7.43 $16.51 $10.71 $0.43 $0.11 $318.11

Percentage of
costs

88.9% 2.3% 5.2% 3.4% 0.1% 0.0% 100.0%

Table 7-16 illustrates the costs associated with software bugs of
representative banks and credit unions of various sizes. The table
indicates that the costs are significant. For a bank that has $100
million in transactions, it experiences an economic cost of $10,000
per year due to software bugs and errors. It is interesting to note
that companies with less than $100 million dollars in depository
and loan transactions are affected proportionally much more than
companies with larger transaction amounts. For a bank with
transactions of $10 billion, its total cost attributable to software bugs
and errors is just under $1 million per year.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-26

Table 7-16. Company Costs Associated with Bugs for Hypothetical Company Sizes

Hypothetical Firm Size
(millions of deposits and loans) Total Company Costs Associated with Software Errors and Bugs

Banks and Savings Institutions

$100 $9,820

$10,000 $982,003

Credit Unions

$100 $31,811

$10,000 $3,181,141

Based on interviews with industry experts, we believe the increasing
proportional impact for smaller companies is due two factors:

Z Smaller firms are less likely to have the in-house capabilities
to trouble shoot and correct errors as they occur. As a
result, the error typically affects business operations for a
longer period of time and may not be fully corrected the first
time.

Z Large companies get higher priority customer support from
software vendors. It is not unusual for a software vendor to
have two to three support staff permanently assigned to their
major clients. In contrast, smaller customers typically
receive support through call-in help lines where response
time may not be as fast.

 7.3.5 Partial Reduction of Software Errors

The costs in the previous sections reflect the total cost associated
with software errors and reflects an infrastructure where all bugs and
errors are found and corrected prior to product release. However,
our discussions with industry indicated that it is not feasible or
economical for software developers to produce “bug-free” software.

To estimate the impact of an improved testing infrastructure on end
users, as part of the end-user survey we also investigated how the
costs associated with bugs and errors in FEDI and clearinghouse
software would change if the number of bugs and errors embedded
in these software products were partially reduced. To this end,
respondents were asked what the cost savings would be if their
company encountered a 25, 50, or 75 percent reduction in software
errors.

Section 7 — Financial Services Sector

7-27

It was anticipated that the rate at which the cost of bugs decreases
as the number of bugs decreases will not be the same for all of the
cost categories. For example, some cost–bug relationships may be
linear (i.e., a 50 percent reduction in bugs leads to a 50 percent
reduction is costs), and some may be nonlinear (i.e., a 50 percent
reduction in bugs may lead to less than a 50 percent reduction in
costs because even a small number of bugs requires testing, backup,
systems, etc.).

Table 7-17 presents respondents’ estimates of the percentage cost
reduction associated with different percentage reductions in bugs
for each of the major cost categories discussed above. Table 7-17
indicates that a 25 percent reduction in errors would lead to a
17 percent reduction in major failure costs; 9 percent reduction in
minor failure costs; and corresponding reductions in purchase,
installation, maintenance, and redundant systems costs.

Table 7-17. Cost Reductions as a Function of Error Reductions
This table shows the average percentage reduction in costs for a given percent reduction in software errors. The rate at
which costs decrease (as errors decrease) varies for different types of software costs.

Cost Categories 25% Reduction in Errors 50% 75%

Major failure costs 17 32 46

Minor failure costs 9 19 36

Purchase decision costs 26 28 32

Installation costs 29 31 35

Maintenance costs 30 32 32

Redundant system costs 19 19 25

For major and minor software bugs, respondents indicated that the
costs generally decline proportionally as the percentage of bugs is
reduced. This implies that the cost per bug is relatively constant.
These costs may be classified mostly as mitigation costs and are
activities in response to errors.

In comparison, the other categories—purchase decisions,
installation costs, maintenance costs, and redundant system costs—
are mostly avoidance costs. The benefits from reduced bugs for
these categories are relatively flat until a substantial share (i.e.,
75 percent) of the bugs are reduced. In these instances, a small

A 50 percent reduction in
errors was used in the
improved scenario.

The Economic Impacts of Inadequate Infrastructure for Software Testing

7-28

number of bugs (or threat of bugs leading to failures) still lead to
significant “avoidance” costs. This indicates that companies would
continue to experience these costs even though the quality of the
software product that they are producing is improving. In other
words, these fixed costs may continue to exist until software quality
nears the point of zero errors.

Based on the developer case study, we estimate an improved
infrastructure would lead to a 50 percent reduction in errors found
in the post-product release stage. The 50 percent reduction
estimate, along with the relationship between percentage error
reduction and cost reduction presented in Table 7-17, is used to
calculate cost saving for the users’ “feasible” infrastructure scenario
presented below.

 7.3.6 Users’ Industry-Level Impact Estimates

We weighted cost per transaction impact estimates to obtain the
industry-level economic impact of an inadequate software testing
infrastructure for the financial services sector. We normalized and
weighted the economic impact estimates by company depository
and loan transaction data because the costs of errors and bugs are a
function of the volume of transactions; this method leads to an
estimate that reflects the total transactions within the industry.

Multiplying the weight by the cost per transaction generates the
total costs attributable to software bugs. As shown in Table 7-18,
the total cost attributable to software bugs using this approach is
$1 billion. The potential cost reduction from feasible infrastructure
improvements is $312 million. Banks account for over 80 percent
of the total impacts in both scenarios.

Table 7-18. Annual Impacts’ Weighted Cost Per Deposits and Loans

Company Size
in Transactions

Bug and Error
Costs per

$Million of
Transactions

Weight
($Millions)a

The Cost of
Inadequate Software

Testing
Infrastructure

Potential Cost
Reduction from

Feasible Infrastructure
Improvementsb

Banks $98.20 $8,038,044 $789,338,629 $244,027,852

Credit unions $318.11 $680,500 $216,476,621 $68,083,419

Total $8,718,544 $1,005,815,250 $312,111,271

aTotal deposits and loans in financial services sector.
bBased on a 50 percent reduction of errors.

Section 7 — Financial Services Sector

7-29

The “feasible” infrastructure cost savings are less than 50 percent of
the total infrastructure cost because there is not a one-to-one
correlation between the share of bugs removed and the percentage
cost reduction. As discussed in the previous section, a 50 percent
reduction in bugs leads to less than a 50 percent reduction in costs.

The impact estimates presented in Table 7-18 are conservative
estimates because they only include the avoidance and mitigation
costs for financial service companies. These estimates do not
include the delay costs imposed on the consumers of financial
services due to system downtime or costs associated with errors in
financial transactions.

8-1

 National Impact
 8 Estimates

The analysis presented in the previous sections generated estimates
of the costs of an inadequate software testing infrastructure for
software developers and users in two representative sectors of the
economy: transportation equipment manufacturing and financial
services. This section extrapolates the per-employee costs for these
two sectors to other manufacturing and service sectors to develop
an approximate estimate of the economic impacts of an inadequate
infrastructure for software testing for the total U.S. economy.

Table 8-1 shows that the national cost estimate of an inadequate
infrastructure for software testing is $59.5 billion. The potential cost
reduction from feasible infrastructure improvements is $22.2 billion.
This represents about 0.6 to 0.2 percent of the U.S.’s $10 trillion
dollar gross domestic product (GDP). Software developers
accounted for about 40 percent of impacts, and software users
accounted for the remaining 60 percent.

Table 8-1. National Economic Impact Estimates

The Cost of Inadequate
Software Testing Infrastructure

(billions)

Potential Cost Reduction from
Feasible Infrastructure Improvements

(billions)

Software developers $21.2 $10.6

Software users $38.3 $11.7

Total $59.5 $22.2

The Economic Impacts of Inadequate Infrastructure for Software Testing

8-2

This section begins with a review of the per-employee impact
estimates for the transportation equipment manufacturing and
financial service sectors.1 Section 8.1 and Section 8.2 present the
per employee cost metrics for software developers and software
users that were estimated through the industry surveys. Section 8.3
uses these impact metrics to extrapolate the survey findings to other
industries to get an approximate measure of the total economic
costs of software bugs and errors. The limitations of this approach
are discussed in Section 8.4.

 8.1 PER-EMPLOYEE TESTING COSTS:
SOFTWARE DEVELOPERS
To extrapolate cost impact estimates obtained from the developer
surveys to national estimates, a proper weighting mechanism is
needed. Typically weighting procedures are conducted using either
employment or sales. For software testing, RTI elected to weight the
results by an employee metric—specifically the number of software
testers.

Results are not weighted by sales because of the economics of
software production. Software is a high-fixed cost, low (near zero)
marginal cost industry. Software sales can often be large when very
little effort is involved in the testing process. Alternatively, for some
software products a significant amount of testing may have
occurred, but sales could be limited because of the stage in the
product life-cycle.

The total number of computer programmers and computer software
engineers is published by the Bureau of Labor Statistics (BLS) and is
listed in Table 8-2. A portion of these programmers and software
engineers are engaged in testing activities. The BLS categories listed
in Table 8-2 are used to estimate the total number of FTEs engaged
in testing and debugging activities. Based on interviews with
industry, we estimate that approximately 10 percent of computer
programmers’ and 35 percent of computer software engineers’ time
is spent debugging and correcting errors. This yields a total of

1Note that in Section 6 impacts for the financial services sector were weighted by

transactions. However, transactions is not an appropriate weight for leveraging
the impact estimates from this sector to other service sectors in the economy.
For this reason, impacts per employee are calculated in this section and used to
develop national service-sector impacts.

Section 8 — National Impact Estimates

8-3

Table 8-2. FTEs Engaged in Software Testing (2000)

BLS Categories
National

Employment
Percentage

Involved in Testing
Number of

FTEs

Computer programmers 585,000 10% 58,500

Computer software engineers: applications 380,000 35% 133,000

Computer software engineers: systems software 317,000 35% 110,950

National total 1,282,000 302,450

302,450 FTEs engaged in testing and debugging activities and
represents approximately one-fourth of all computer programmers
and software engineers.

Based on the findings from the software developers’ surveys
presented in Section 6 and Section 7, total testing costs per software
tester are about $138,000 for CAD/CAM/CAE/PDM software
developers and $161,000 for FEDI/clearinghouse/router/switch
developers.2 These costs include testing labor, hardware, external
testing services, and related after-sales services. The labor costs are
based on the average computer software engineers’ fully loaded
annual wage obtained from the BLS (2002). As shown in Table 8-3,
the cost of an inadequate infrastructure is $53,000 and $76,000 per
tester for the transportation and financial services sectors. This
represents the reduced level of testing resources if all errors were
found in the stage they were introduced. Similarly, the potential
cost reductions from feasible infrastructure improvements are
$23,000 and $38,000 per tester for the transportation and financial
services sectors.

Because the BLS does not break out tester employment by industry
sector, we used a weighted average of the automotive/aerospace
and financial services cost savings in conjunction with national
tester employment to calculate cost savings presented in Table 8-3.
The weight is based on the total employment of the manufacturing
and service sectors. The weighted average cost of an inadequate

2The cost per employee estimates are based on the survey findings that are

presented in Section 6 and Section 7 and are calculated as total testing costs
(including labor, software, hardware, etc.) divided by the number of FTE testers.

The Economic Impacts of Inadequate Infrastructure for Software Testing

8-4

Table 8-3. Software Developer Costs Per Tester

Sector/Cost Category Cost Per Tester

The Cost of Inadequate
Software Testing

Infrastructure

Potential Cost Reduction
from Feasible Infrastructure

Improvements

Transportation

Labor expenditures $136,282 $52,212 $22,975

External testing services $100 $38 $17

Hardware $250 $96 $42

After-sales services $1,363 $522 $230

Total $137,996 $52,869 $23,264

Financial Services

Labor expenditures $136,282 $64,014 $32,793

External testing services $17,270 $7,513 $4,271

Hardware $4,604 $2,426 $1,057

After-sales services $3,138 $1,653 $720

Total $161,295 $75,607 $38,843

Weighted Average Cost per Tester $155,493 $69,945 $34,964

infrastructure is $70,000 per tester and the weighted average cost
reduction from feasible improvements is $35,000 per tester.

 8.2 PER-EMPLOYEE COSTS: SOFTWARE USERS
As with the software developers, a proper weighting method is
needed to extrapolate the impacts generated in Section 6 and
Section 7 to national-level user cost impacts. Similar to above, we
used employment as the weight to estimates national costs
attributable to an inadequate infrastructure for software testing.

Ideally the number of employees involved with operating and
maintaining software products would be used as the weighting
metric. However, because computer use increasingly cuts across all
aspects of business operations, estimating a total FTE for computer
user and support is difficult. For this reason total employment in the
service and manufacturing sectors was used as the weighting
metrics. This information is readily available from BLS and is
presented in Table 8-4 (BLS, 2002). Software companies have been

Section 8 — National Impact Estimates

8-5

Table 8-4. National Employment in the Service and Manufacturing Sectors

Employment

(millions)

Service sectors: include services; retail trade; finance, insurance, and real estate;
and wholesale trade

74.1

Manufacturing: includes manufacturing and construction 25.0

Note: Excluded are the government, transportation and utilities, and mining sectors (27.2 million) because their
computer use (intensity of use) was deemed significantly different from either the manufacturing or service sectors’
use. Also, excluded are computer programmers and software engineers (1.3 million) because their impacts are
captured under developer costs.

Source: U.S. Department of Labor, Bureau of Labor Statistics (BLS). 2002. Occupational Outlook Handbook, 2002-03
Edition. Available at <http://www.bls.gov/oco/home.htm>.

excluded from the service sector employment because they are
weighted separately.

Table 8-5 provides the per-employee cost metrics derived from the
survey findings presented in Section 6 and Section 7. The third and
fifth columns of Table 8-5 replicate the total user cost impacts for
the automotive/aerospace sectors and the financial services sector.
The sector-level impacts are then divided by their associated sector
employment to develop cost impacts per employee.

Table 8-5. Per-Employee Cost Metrics

The Cost of Inadequate
Software Testing

Infrastructure

Potential Cost Reduction
from Feasible Infrastructure

Improvements

Number of
Employees
(thousands)

Sector Costs
(millions)

Cost per
Employee

Sector Costs
(millions)

Cost per
Employee

Automotive and aerospace 3,199.6 $1,467.1 $459 $431.5 $135

Financial services 2,774.9 $1,005.8 $362 $312.1 $112

 8.4 NATIONAL IMPACT ESTIMATES
To estimate the national cost of an inadequate infrastructure for
software testing, the per-employee cost metrics for the financial
services and transportation sectors are weighted to calculate the
total costs for the U.S. manufacturing and service sectors.

The Economic Impacts of Inadequate Infrastructure for Software Testing

8-6

Table 8-6. National Impact Estimates

The Cost of Inadequate

Software Testing Infrastructure

Potential Cost Reduction from
Feasible Infrastructure

Improvementsa

Number of
Testers/Employees

(millions) Cost per
Total Cost
(millions) Cost per

Total Cost
(millions)

Software developers 0.302 $69,945 $21,155 $34,964 $10,575

Software users

Manufacturing 25.0 $459 $11,463 $135 $3,375

Service sector 74.1 $362 $26,858 $112 $8,299

Total $59,477 $22,249

aBased on a 50 percent reduction of errors.

As shown in Table 8-6, the national impact estimate from an
inadequate infrastructure for software testing is $59 billion and the
potential cost reduction from feasible improvements is $22 billion.
Software users account for a larger share of total inadequate
infrastructure costs (64 percent) compared to “feasible” cost
reductions (52 percent) because a large portion of users’ costs are
due to avoidance activities. Whereas mitigation activities decrease
proportionally to the decrease in the number of bugs and errors,
avoidance costs (such as redundant systems and investigation of
purchase decisions) are likely to persist even if only a few errors are
expected.

For software developers, the feasible cost savings are approximately
50 percent of the total inadequate infrastructure costs. This reflects
a more proportional decrease in testing effort as testing resources
and tools improve.

 8.5 LIMITATIONS AND CAVEATS
We want to emphasis that because the national impact estimates
presented in this section were developed from interviews with two
sectors (transportation equipment manufacturers and financial
service providers) representing 5 percent of the U.S. economy, these
estimates should be considered approximations only. They are
presented primarily to illustrate the magnitude of potential national
impacts.

Section 8 — National Impact Estimates

8-7

The following factors should be considered when interpreting the
national estimates:

Z The two industry sectors selected may not be representative
of all the industries included in the manufacturing and
service sectors. User costs per employee are likely to vary
by industry. Thus, the user cost estimates should be
considered to have a relatively high degree of uncertainty.
For example, if costs per employee are greater in the
automotive/aerospace and financial services sectors than the
national averages, this would lead to an overestimate of the
user impacts.

Z Cost per software tester are more likely to be relatively
constant across software companies serving different
industries. Thus, we are more confident in the national
impact estimates for software developers. And because
tester costs represent between one-third to one-half the total
national costs, this supports the robustness of our results.

Z Several user sectors of the economy were excluded from the
national employment figures used to weight impact
estimates. In particular, we excluded the government sector
with 19.9 million employees, which would lead to an
underestimate of national costs.

Z Quantifying the impact of inadequate testing on mission
critical software was beyond the scope of this report.
Mission critical software refers to software where there is
extremely high cost to failure, such as loss of life. Including
software failures associated with airbags or antilock brakes
would increase the national impact estimates.

Z Finally, the costs of software errors and bugs to residential
households is not included in the national cost estimates. As
the use of computers in residential households to facilitate
transactions and provide services and entertainment
increases, software bugs and errors will increasingly affect
household production and leisure. Whereas these software
problems do not directly affect economic metrics such as
GDP, they do affect social welfare and continue to limit the
adoption of new computer applications.

R-1

 References

AmericanBanker.com. 1999. <http://www.americanbanker.com/
PSUser/ABO_Display.htm?type=RankingBanks&
master=1999/Holding/ACHYE1999.html>.

Andersson, M., and J. Bergstrand. 1995. “Formalizing Use Cases
with Message Sequence Charts.” Unpublished Master’s
thesis. Lund Institute of Technology, Lund, Sweden.

Apfelbaum, L., and J. Doyle. 1997. “Model Based Testing.”
Presented at the Software Quality Week Conference, May.

Bank for International Settlements (BIS). 2000. Statistics on
Payment Systems in the Group of Ten Countries. February.

Barron, Cheryll Aimee. December 6, 2000. “High Tech’s
Missionaries of Sloppiness.” <http://www.salon.com/tech/
feature/2000/12/06/bad_companies/print.html>.

Baziuk, W. 1995. “BNR/NORTEL Path to Improve Product Quality,
Reliability, and Customer Satisfaction.” Presented at the
Sixth International Symposium on Software Reliability
Engineering, Toulouse, France, October.

Beizer, B. 1984. Software System Testing and Quality Assurance.
New York: Van Nostrand Reinhold Company, Inc.

Beizer, B. 1990. Software Testing Techniques. Boston:
International Thomson Computer Press.

Bentley Systems Incorporated. Corporate Backgrounder obtained
November 1999. <http://www.bentley.com/bentley/
backgrnd.htm>.

Besanko, David, David Dranove, and Mark Shanley. 1996. The
Economics of Strategy. New York: John Wiley & Sons.

Black, B.E. 2002. “Automatic Test Generation from Formal
Specifications.” <http://hissa.nist.gov/~Black/
FTG/autotest.html>.

The Economic Impacts of Inadequate Infrastructure for Software Testing

R-2

Boehm, B.W. 1976. “Software Engineering.” IEEE Transactions on
Computer SE-1(4):1226-1241.

Boehm, B.W. 1978. Characteristics of Software Quality. New
York: American Elsevier.

Booker, E. 1999. “In Focus: Enterprise Application
Integration Middleware Apps Scale Firewalls.”
Internetweek 765.

Carnegie Mellon Software Engineering Institute. Capability Maturity
Model for Software (SW-CMM).
<http://www.sei.cmu.edu/cmm/>. Last modified April 24,
2002.

Census. 2000. 1997 Finance and Insurance Economic Census.

CIMdata. 2000. <http://www.cimdata.com/PR000307B.htm>.

Cisco Systems. Cisco 2001 Annual Report. 2001.
<www.cisco.com/warp/public/749/ar2001/online/financial_r
eview/mda.html>.

Clarke, R. 1998. Electronic Data Interchange (EDI): An
Introduction. <http://www.anu.edu.au/pepple/
Roger.Clarke/EC/EDIIntro.html>.

Cohen, D.M., S.R. Dalal, J. Parelius, and G.C. Patton. 1996. “The
Combinatorial Design Approach to Automatic Test
Generation.” IEEE Software 13(5).

Daratech, Inc. 1999. CAD/CAM/CAE Market Trends and Statistics,
Vol. 1. Cambridge, MA.

The Dell’Oro Group. 2001. <www.delloro.com>.

Dixit, Avinash K., and Robert S. Pindyck. 1994. Investment under
Uncertainty. Princeton, New Jersey: Princeton University
Press.

Economist. May 20, 2000. Survey: Online Finance, Paying
Respects. <http://www.economist.com/
displayStory.cfm?Story_ID=3009189>.

EDI Aware. 1994. The ABC of EDI.
<http://www.edi.wales.org/feature4.htm>.

Executive Office of the President, OMB, 1998. North American
Industry Classification System, United States, 1997.
Lanham, MD: Bernan Press.

Freeman, Chris, and Luc Soete. 1999. The Economics of Industrial
Innovation, 3rd edition. London: Cassell.

References

R-3

Gallagher, L. 1999. Conformance Testing of Object-Oriented
Components Specified by State/Transition Classes.
<ftp://xsum/sdct.itl.nist.gov/sysm/NISTIR6592.pdf>.

Gascoigne, Bill. 1995. ”PDM: The Essential Technology for
Concurrent Engineering.” <http://www.PDMIC.com/
articles/index.html>.

Hailpern, B., and P. Santhanam. 2002. “Software Debugging,
Testing, and Verification.” IBM Systems Journal 41(1).

International Business Machines (IBM). 1998. Annual Report:
Management Discussion. <<http://www.ibm.com/
annualreport/1998/discussion/ibm98armd04.html>.

IDC. 2000. Gigabit Router, Switch Purchases Soar During 1Q00.
<http://www.idc.com/communications/press/pr/
CM061200PR.stm>.

InformationWeek.com. 2002. “New Consortium to Target Software
Quality.” May 16, 2002.

Institute of Electrical and Electronics Engineers (IEEE). 1988. “IEEE
Guide for the Use of IEEE Standard Dictionary of Measures
to Produce Reliable Software.” New York: Institute of
Electrical and Electronics Engineers.

Institute of Electrical and Electronics Engineers (IEEE). 1996. “IEEE
Software Engineering Collection: Standard Dictionary of
Measures to Produce Reliable Software (IEEE Computer
Society Document).” New York: Institute of Electrical and
Electronics Engineers, Inc.

Institute of Electrical and Electronics Engineers (IEEE). 1998. “IEEE
Standard for Software Quality Metrics Methodology.” New
York: Institute of Electrical and Electronics Engineers, Inc.

Institute of Electrical and Electronics Engineers/American National
Standards Institute (IEEE/ANSI). 1993. “Software
Reliability.” Washington, DC: American Institute of
Aeronautics and Astronautics.

ISO-9126 International Organization for Standardization. 1991.
Information Technology Software Product
Evaluation Quality Characteristics and Guidelines for their
Use. Geneva, Switzerland: International Organization for
Standardization.

ITToolbox. 1999. “ITToolbox Knowledge Bank Forums. RE: SAP
4.5B Test Scripts.” <http://www.sapassist.com/forum/
message.asp?i=3346&mo=&yr=&h1=306&h2=355>.

Jones, C. 1997. Software Quality-Analysis and Guidelines for
Success. Boston: International Thompson Computer Press.

The Economic Impacts of Inadequate Infrastructure for Software Testing

R-4

Just, Richard E., Darrell L. Hueth, and Andrew Schmitz. 1982.
Applied Welfare Economics and Public Policy. Englewood
Cliffs, NJ: Prentice-Hall, Inc.

Kit, E. 1995. Software Testing in the Real World: Improving the
Process. Reading, MA: ACM Press Addison Wesley
Longman, Inc.

Liebowitz, Stan J., and Stephen E. Margolis. 1999. “Causes and
Consequences of Market Leadership in Application
Software.” Paper presented at the conference Competition
and Innovation in the Personal Computer Industry. April 24,
1999.

The MacNeal-Schwendler Corporation. 1998. Annual Report.
<http://www.mscsoftware.com/ir/annual.html>.

McCabe, T., and A. Watson. December 1994. “Software
Complexity.” Cross talk, Journal of Defense Software
Engineering 7(12):5-9.

McCall, J., P. Richards, and G. Walters. 1977. Factors in Software
Quality, NTIS AD-A049-014, 015, 055. November.

Mentor Graphics Corporation. 1998. Annual Report.
<http://www.mentorg.com/investor_relations/
MentorAnnual.pdf>.

Michel, R. 1998. “Putting NT to the Test.” Manufacturing Systems
16(3):A18-A20.

Myers, G.J. 1979. The Art of Software Testing. London: John
Wiley & Sons.

NACHA: The Electronic Payment Association. 2000.
<www.nacha.org>.

NASA IV&V Center, Fairmount, West Virginia. 2000.

National Institute of Standards and Technology (NIST). 1997.
Metrology for Information Technology (IT).
<http://www.nist.gov/itl/lab/nistirs/ir6025.htm>.

National Science Foundation (NSF). 1999. Research and
Development in Industry: 1997.

Offlutt, R.J., and R. Jeffery. 1997. “Establishing Software
Measurement Programs.” IEEE Software 14(2):45-53.

P.C. Webopaedia. 1996. <http://webopedia.internet.com>.

Parametric Technology Corporation. 1998. Annual Report.
<http://www.ptc.com/company/pmtc/1998/index.htm> As
obtained October 1999.

References

R-5

Perry, W.E. 1995. Effective Methods for Software Testing. New
York: John Wiley & Sons, Inc.

Pressman, R.S. 1992. Software Engineering: A Practitioner’s
Approach, Third Edition. New York: McGraw-Hill.

Pro/ENGINEER. 1999. <http://www.ptc.com/proe/
overview/index.html>.

Product Data Management Information Center (PDMIC).
<http://www.pdmic.com>. As obtained on March 13, 2000.

Rivers, A.T., and M.A. Vouk. 1998. “Resource, Constrained Non-
operational Testing of Software.” Presented at the Ninth
International Symposium on Software Reliability
Engineering, Paderborn, Germany, November 4-7.

Robinson, William, Gurumurthy Kalyanaram, and Glen L. Urban.
1994. “First-Mover Advantages from Pioneering New
Markets: A Survey of Empirical Evidence.” Review of
Industrial Organization 9(1):1-23.

Shea, Billie. July 3, 2000. “Software Testing Gets New Respect.”
InformationWeek.

Sullivan, Bob. 1999. “Online Banking Systems Crash.”
MSNBC.com. <http://www.zdnet.com/zdnn/stories/news/
0%2C4586%2C2249362%2 C00.html?chkpt=zdnnsmsa>.

System Transformation. 2000. Contingency Planning
Methodology. Appendix D: Contingency Planning Option.
<http://www.systemtransformation.com/cpgappdxd.htm>.

Tai, K.C., and R.H. Carver. 1995. “A Specification-Based
Methodology for Testing Concurrent Programs.” In 1995
Europe Software Engineering Conference, Lecture Notes in
Computer Science, W. Schafer and P. Botella, eds., pp.
154-172.

Tassey, G. 1997. The Economics of R&D Policy. Westport, CT:
Quorum Books.

U.S. Census Bureau. 1999av. “Automobile Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3361a.pdf>.

U.S. Census Bureau. 1999aw. “Light Truck and Utility Vehicle
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3361b.pdf>.

The Economic Impacts of Inadequate Infrastructure for Software Testing

R-6

U.S. Census Bureau. 1999ax. “Heavy Duty Truck Manufacturing”
from Manufacturing—Industry Series, 1997 Economic
Census.
<http://www.census.gov/prod/ec97/97m3361c.pdf>.

U.S. Census Bureau. 1999ay. “Motor Vehicle Body
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3362a.pdf>.

U.S. Census Bureau. 1999az. “Truck Trailer Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3362b.pdf>.

U.S. Census Bureau. 1999ba. “Motor Home Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3362c.pdf>.

U.S. Census Bureau. 1999bc. “Travel Trailer & Camper
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3362d.pdf>.

U.S. Census Bureau. 1999bd. “Carburetor, Piston, Piston Ring &
Valve Manufacturing” from Manufacturing—Industry Series,
1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363a.pdf>.

U.S. Census Bureau. 1999be. “Gasoline Engine & Engine Parts
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363b.pdf>.

U.S. Census Bureau. 1999bf. “Vehicular Lighting Equipment
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363c.pdf>.

U.S. Census Bureau. 1999bg. “Other Motor Vehicle Electrical &
Electronic Equipment Manufacturing” from Manufacturing—
Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363d.pdf>.

U.S. Census Bureau. 1999bh. “Motor Vehicle Steering &
Suspension Component Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363e.pdf>.

References

R-7

U.S. Census Bureau. 1999bi. “Motor Vehicle Brake System
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363f.pdf>.

U.S. Census Bureau. 1999bj. “Motor Vehicle Transmission &
Power Train Parts Manufacturing” from Manufacturing—
Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363g.pdf>.

U.S. Census Bureau. 1999bk. “Motor Vehicle Seating and Interior
Trim Manufacturing ” from Manufacturing—Industry Series,
1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3363h.pdf>.

U.S. Census Bureau. 1999bl. “Motor Vehicle Metal Stamping”
from Manufacturing—Industry Series, 1997 Economic
Census.
<http://www.census.gov/prod/ec97/97m3363i.pdf>.

U.S. Census Bureau. 1999bm. “Motor Vehicle Air-Conditioning
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363j.pdf>.

U.S. Census Bureau. 1999bn. “All Other Motor Vehicle Parts
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3363k.pdf>.

U.S. Census Bureau. 1999bo. “Aircraft Manufacturing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3364a.pdf>.

U.S. Census Bureau. 1999bp. “Aircraft Engine & Engine Parts
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3364b.pdf>.

U.S. Census Bureau. 1999bq. “Railroad Rolling Stock
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3365a.pdf>.

U.S. Census Bureau. 1999br. “Ship Building and Repairing” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3366a.pdf>.

U.S. Census Bureau. 1999bs. “Boat Building” from
Manufacturing—Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3366b.pdf>.

The Economic Impacts of Inadequate Infrastructure for Software Testing

R-8

U.S. Census Bureau. 1999bt. “Motorcycle, Bicycle & Parts
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3369a.pdf>.

U.S. Census Bureau. 1999bu. “Military Armored Vehicle, Tank &
Tank Component Manufacturing” from Manufacturing—
Industry Series, 1997 Economic Census.
<http://www.census.gov/prod/ec97/97m3369b.pdf>.

U.S. Census Bureau. 1999bv. “All Other Transportation Equipment
Manufacturing” from Manufacturing—Industry Series, 1997
Economic Census.
<http://www.census.gov/prod/ec97/97m3369c.pdf>.

U.S. Census Bureau. December 1999bx. “1997 Economic Census,
Professional, Scientific, and Technical Services.”
Geographic Area Series.

U.S. Department of Commerce, International Trade Administration.
1998. U.S. Industry & Trade Outlook ’98. New York:
McGraw-Hill Companies.

U.S. Department of Commerce, Economics and Statistics
Administration, U.S. Census Bureau. February 2002.
Annual Survey of Manufacturers: Statistics for Industry
Groups and Industries: 2000. MOO(AS)-1.

U.S. Department of Labor, Bureau of Labor Statistics (BLS). 2002.
Occupational Outlook Handbook, 2002-03 Edition.
Available at <http://www.bls.gov/oco/home.htm>.

Unigraphics Solutions Incorporated website.
<http://www.ug.eds.com>.

Visio Corporation. 1998. Annual Report.
<http://www.visio.com/files/ar98/Visar98.pdf>.

Voas, J.M., and M. Friedman. 1995. Software Assessment:
Reliability, Safety, and Testability. New York: Wiley &
Sons, Inc.

Voas, J.M. 1998. Software Fault Injection Inoculating Programs
Against Errors. New York: John Wiley & Sons, Inc.

Vouk, M.A. 1992. “Using Reliability Models During Testing with
Non-Operational Profiles.” Presented at the Second
Workshop on Issues in Software Reliability Estimation,
Livingston, NJ, October 12-13.

Washington Technology. 1998. Selected Security Events in the
1990s. <http://wtonline.com/vol13_no18/
special_report/277-1.html>.

References

R-9

Wilson, R.C. 1995. UNIX Test Tools and Benchmarks. New
Jersey: Prentice Hall, Inc.

A-1

 Appendix A:
 Glossary of Testing
 Stages and Tools

 A.1 GENERAL TESTING STAGES
Subroutine/Unit Testing. This stage includes subroutine and unit
testing. Software developers perform subroutine testing, the lowest
form of testing, as they write the program. Programmers test a
completed subroutine to see if it performs as expected. Unit testing
is the testing of a complete module or small program that will
normally range from perhaps 100 to 1,000 source lines of code.
Although unit testing may often be performed informally, it is the
stage where test planning and test case construction begins.

New Function Testing. Developers use this stage to validate new
features that are being added to a software package. Often used in
conjunction with regression testing, new function testing is
commonly used when existing applications are being updated or
modified.

Regression Testing. Regression testing is used to ensure that
existing software functions of the product have not been
accidentally damaged as an unintended by-product of adding new
software features. As software evolves, regression testing becomes
one of the most important and extensive forms of testing because
the library of available test cases from prior releases continues to
grow.

Integration Testing. This stage focuses on testing groups of
modules, programs, applications, or systems that developers
combine to form a larger system. Integration testing focuses on

The Economic Impacts of Inadequate Infrastructure for Software Testing

A-2

testing for interoperability among the integrated elements of the
software product.

System Testing. This stage involves testing the system as a whole.
System testing is typically performed by the software developer’s test
personnel and is usually the last form of internal testing performed
by the software developer before customers get involved with field
testing (beta testing).

 A.2 SPECIALIZED TESTING STAGES
Stress, Capacity, or Load Testing. These stages judge the ability of
an application or system to function when near or beyond the
boundaries of its specified capabilities or requirements in terms of
the volume of information used. The stress, load, or capacity testing
stage is often considered synonymous with the performance testing
stage. Stress testing attempts to break the system by overloading it
with large volumes. It is usually performed by the software
developer after, or in conjunction with, integration or system
testing. Typically stress testing cannot be performed earlier because
the full application is usually necessary. Although the following
specialized testing stages are not considered stress testing, they also
test how the system will perform under adverse conditions.

Error-Handling/Survivability Testing. This stage assesses the
software product’s ability to properly process incorrect transactions
and survive from reasonably expected (or unexpected) error
conditions.

Recovery Testing. This stage assesses the software product’s ability
to restart operations after integrity of the application has been lost.

Security Testing. Security testing is used to evaluate whether a
software product can adequately prevent improper access to
information. Security testing is usually performed before and after
the product has been released by testing personnel or by highly
specialized consultants employed by the user (Perry, 1995).

Performance Testing. This stage is used to determine whether an
application can meet its performance goals (Jones, 1997). Typically
the performance testing stage is executed by the software developer
during, or in conjunction with, system testing. Benchmarks are
standards against which other measurements may be referred and

Appendix A — Glossary of Testing Stages and Tools

A-3

are used to provide competitive analysis information that marketing
and sales personnel can use to give consumers measures of the
software’s quality relative to other products (Wilson, 1995).
Customers use marketing benchmarks to compare performance
prior to purchase, whereas system architects and designers use
technical benchmarks to characterize performance prior to
manufacturing (Wilson, 1995).

Platform Testing Stage. Sometimes known as the compatibility
testing stage, platform testing evaluates the software’s ability to
operate on multiple hardware platforms or multiple operating
systems or to interface with multiple software products (Jones,
1997).

Viral Protection Testing Stage. Major commercial software
developers typically conduct viral protection testing to ensure that
master copies of software packages do not contain viruses (Jones,
1997).

 A.3 USER-INVOLVED TESTING STAGES
Usability Testing. Also known as the human factors testing, this
stage is conducted to identify operations that will be difficult or
inconvenient for users. Usability testing is generally performed
before beta testing. It involves observing actual clients who use the
software product under controlled or instrumented conditions.
Usability testing is common for large commercial software
developers (Jones, 1997).

Field or Beta Testing. This stage is an external test involving
customers. Beta testing usually occurs after system testing. External
beta testing and internal usability testing may occur concurrently.
Beta testing may involve special agreements with clients to avoid
the risk of lawsuits if the software product has serious problems
(Jones, 1997). The next two testing activities are associated with, or
have similar goals as, field testing.

Lab or Alpha Testing. These activities are typically used when
special laboratories are involved to house complex new
hardware/software products that prospective customers will test.
Customers test these products under controlled conditions prior to
having the software system installed at their own premises.
Software developers who build complex software systems primarily

The Economic Impacts of Inadequate Infrastructure for Software Testing

A-4

use lab testing. In these cases typical beta testing is infeasible
because of hardware or software constraints.

Acceptance Testing. This process is used to determine whether a
product satisfies predefined acceptance criteria. It is a combination
of other types of tests to demonstrate that the product meets user
requirements. Customer acceptance testing is commonly performed
for contract software and for large systems such as PDM software
systems, but it is rarely used in high-volume commercial “shrink
wrapped” software products. Sometimes, alpha and beta testing are
considered a part of acceptance testing (Jones, 1997; Kit, 1995).

 A.4 TEST DESIGN AND DEVELOPMENT TOOLS
Data Dictionary Tools. These tools are documentation tools for
recording data elements and the attributes of the data elements.
Under some implementations, they can produce test data to validate
the system’s data edits.

Executable Specification Tools. These tools provide a high-level
interpretation of the system specifications to create response test
data. Interpretation of expected software products requires system
specifications to be written in a special high-level language so that
those specifications can be compiled into a testable program.

Exhaustive Path-Based Tools. The purpose of these tools is to
attempt to create a test transaction for every possible condition and
every path in the program.

Volume Testing Tools. Volume testing tools identify system
restrictions (e.g., internal table size) and then create a large volume
of transactions designed to exceed those limits. Thus, volume
generators facilitate the creation of specific types of test data to test
predetermined system limits to verify how the system functions
when those limits are reached or exceeded (Perry, 1995).

Requirements-Based Test Design. These tools facilitate a highly
disciplined approach based on cause–effect graph theory to design
test cases that will help ensure that the implemented system meets
the formally specified requirements.

Appendix A — Glossary of Testing Stages and Tools

A-5

 A.5 TEST EXECUTION AND EVALUATION TOOLS
Capture/Playback Tools. These tools capture user operations
including keystrokes, mouse activity, and display output. These
captured tests, including the output that has been validated by the
tester, form a baseline for future testing of product changes. The
tool can then automatically play back the previously captured tests
whenever needed and validate the results by comparing them to the
previously saved baseline. This frees the tester from having to
manually re-run tests over and over again when fixes,
enhancements, or other changes are made to the product (Kit,
1995).

Test Harnesses and Drivers Tools. Used for performance testing,
these tools invoke a program under test, provide test inputs, control
and monitor execution, and report test results.

Evaluation tools, also referred to as analysis tools, focus on
confirming, examining, and checking results to verify whether a
condition has or has not occurred. These include the following
tools.

Memory Testing Tools. These provide the ability to check for
memory problems, such as overwriting and/or overreading array
bounds, memory allocated but not freed, and reading and using
uninitialized memory. Errors can be identified before they become
evident in production and can cause serious problems. Detailed
diagnostic messages are provided to allow errors to be tracked and
eliminated. Memory testing tools are also known as bounds-
checkers, memory testers, run-time error detectors, or leak
detectors.

Instrumentation Tools. These measure the functioning of a system
structure by using counters and other monitoring instruments.

Snapshot Monitoring Tools. These show the content of computer
storage at predetermined points during processing. These tools print
the status of computer memory at predetermined points during
processing when specific instructions are executed, or when data
with specific attributes are processed.

System Log Reporting Tools. These tools provide an audit trail of
monitored events occurring in the environmental area controlled by

The Economic Impacts of Inadequate Infrastructure for Software Testing

A-6

system software. The information can be used for analysis purposes
to determine how well the system performed.

Coverage Analysis Tools. These tools use mathematical
relationships to demonstrate what percentage of the software
product the testing process has covered. The resulting qualitative
metric is used for predicting the effectiveness of the test process.
This tool informs testers about which parts of the product have been
tested and which parts have not.

Mapping Tools. They analyze which parts of a computer program
are exercised during the test and the frequency of execution of each
statement or routine in a program. Mapping tools can be used to
detect system flaws, determine how much of a program is executed
during testing, and identify areas where more efficient code may
reduce execution time.

Simulation tools are also used to test execution. Simulation tools
take the place of software or hardware that interacts with the
software to be tested. Sometimes they are the only practical method
available for certain tests, like when software interfaces with
uncontrollable or unavailable hardware devices. These include the
following tools.

Disaster Testing Tools. These tools emulate operational and/or
system failures to determine if the software product can survive
or be correctly recovered after the failure.

Modeling Tools. Modeling tools simulate the functioning of the
software system and/or its environment to determine how
efficiently the proposed system solution will achieve the system
objectives.

Symbolic Execution Tools. These tools are used to identify
processing paths by testing the programs with symbolic rather
than actual test data. The symbolic execution results in an
expression that can be used to evaluate the completeness of the
programming logic. It is a technique that does not require test
data.

System Exercisers. These tools stress or load subsystem
components or physical devices by focusing on consuming
critical system resources such as peripherals, memory, and CPU.

Appendix A — Glossary of Testing Stages and Tools

A-7

For example, multiuser resource exercisers simulate full or
maximum workload for several users (Wilson, 1995).

 A.6 ACCOMPANYING AND SUPPORT TOOLS
Code Comprehension Tools. These tools help us understand
unfamiliar code. They improve understanding of dependencies,
trace program logic, view graphical representations of the program,
and identify areas that should receive special attention, such as
areas to inspect.

Flowchart Tools. Flowchart tools are used to graphically represent
the system and/or program flow to evaluate the completeness of the
requirements, design, or program specifications.

Syntax and Semantic Analysis Tools. These tools perform extensive
error checking to find errors that a compiler would miss, and they
are sometimes used to flag potential defects before or during formal
testing.

Problem Management Tools. Problem management tools are
sometimes called defect tracking tools, bug management tools, and
incident control systems and are used to record, track, and generally
assist with the management of defects and enhancements
throughout the life cycle of software products. These include
system control audit databases, scoring databases, and configuration
management tools.

B-1

 Appendix B:
 CAD/CAM/CAE/PDM
 Use and
 Development in the
 Transportation
 Sector

The appendix provides background on the users of
CAD/CAM/CAE/PDM software in the transportation sector and the
vendors that supply the software systems.

 B.1 TRANSPORTATION EQUIPMENT
MANUFACTURERS (SECTOR 336)
Establishments in this sector of the economy manufacture motor
vehicles, ships, aircraft, railroad cars and locomotives, and other
transportation equipment. An estimated 13,206 establishments in
the U.S. produce transportation equipment. Their products include
the following:

Z motor vehicles (sector 3361) (e.g., complete automobiles
and light duty motor vehicles [i.e., body and chassis or
unibody], chassis);

Z motor vehicle body and trailer manufacturing (sector 3362)
(e.g., motor vehicle bodies and cabs; truck, automobile, and
utility trailers, truck trailer chassis, detachable trailer bodies
and chassis);

Z motor vehicle parts (sector 3363) (e.g., new and rebuilt
motor vehicle gasoline engines, engine parts; vehicular
lighting equipment; motor vehicle electrical and electronic

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-2

equipment; motor vehicle steering mechanisms and
suspension components; motor vehicle brake systems and
related components; motor vehicle transmission and power
train parts; motor vehicle seating, seats, seat frames, seat
belts, and interior trimmings; motor vehicle fenders, tops,
body parts, exterior trim and molding; other motor vehicle
parts and accessories);

Z aerospace products and parts (sector 3364) (e.g., aerospace
engines, propulsion units, auxiliary equipment and parts,
prototypes of aerospace parts, converted aircraft, restored
aircraft or propulsion systems);

Z railroad rolling stock (sector 3365) (e.g., new and rebuilt
locomotives, locomotive frames and parts; railroad, street
and rapid transit cars and car equipment; rail layers, ballast
distributors, rail tamping equipment, and other railway track
maintenance equipment);

Z ship and boat building (sector 3366) (e.g., new and rebuilt
barges, cargo ships, drilling and production platforms,
passenger ships, submarines, dinghies [except inflatable
rubber], motorboats, rowboats, sailboats, yachts); and

Z other transportation equipment (sector 3369) (e.g.,
motorcycles, bicycles, metal tricycles, complete military
armored vehicles, tanks, self-propelled weapons, vehicles
pulled by draft animals, and other transportation equipment
not classified in sectors 3361-3366).

In such a broad sector, many factors affect industry trends and the
need for product innovation. This section highlights trends in two
sectors of the transportation equipment industry: motor vehicles
and aerospace.

In the motor vehicle industry, more open trading policies and
economies of scale make it efficient to use the same underpinnings,
engines, and transmissions on different vehicle models produced in
various parts of the world. In addition, the globalization of the
industry means that the U.S. is competing with more recently
industrialized nations that may have newer equipment and face a
lower-paid labor force and less government regulation. The U.S.
motor vehicle industry needs improved design technology to
facilitate better communication between the parts producers and
assemblers located in different parts of the world, to speed up the
design process and to increase overall productivity (U.S.
Department of Commerce, 1998).

Growth of the U.S. aerospace industry is currently affected by
constrained defense spending, foreign competition, investment in

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-3

research and development, increased productivity, and
technological innovation. For the civil aircraft industry, the
importance of exports requires the expansion of foreign markets for
future growth. At the same time, competition from foreign suppliers
will challenge the U.S. aerospace industry’s global market share.
Foreign research and development spending on aerospace
technology is often supported by government policies. However,
the recent GATT Aircraft Agreement should limit government
intervention in the civil aircraft industry, placing the U.S. on more
even footing with newer, foreign aircraft industries (U.S. Department
of Commerce, 1998).

Manufacturers of transportation equipment spent more than $718
million on software and data processing services in 1997 (U.S.
Census Bureau, 1999av through 1999bv) (24 six-digit sectors
reporting out of 30). Computer-aided design (CAD) and mechanical
computer-aided engineering (CAE) software is vital to this industry
as manufacturers are attempting to meet demand for state-of-the-art
design in record time. Auto manufacturers, for example, desire to
shorten the product design process to as little as 24 months (U.S.
Department of Commerce, 1998). CAD/CAE software allows quick
design, quick design adjustments, simulation without prototype
production, and easy transmission of product design information to
every member of the product development team. Manufacturers of
the Boeing 777 used CATIA in their design process and found the
inherent software capabilities to be very important in letting the
design and build teams see how all components and systems of the
aircraft fit and work together before manufacturing began (U.S.
Department of Commerce, 1998).

Figures B-1a, b, and c provide examples of the ability of CAD and
CAE software to enhance the design process for automobiles. The
figures are CAD visualizations of “the Rocket,” designed by George
Balaschak for a customer to display at the Geneva Auto Show.
Balaschak’s three-dimensional Pro/ENGINEER software from
Parametric Technology Corporation created the transparent and
cutaway models in Figure B-1a as well the model for the body
molds as shown in Figures B-1b and c.

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-4

Source: Pro/Engineer. 1999. <http://www.ptc.com/proe/overview/index.html>.

Source: Pro/Engineer. 1999. <http://www.ptc.com/proe/overview/index.html>.

Source: Pro/Engineer. 1999. <http://www.ptc.com/proe/overview/index.html>.

Figure B-1a. Transparent
and Cutaway Views of
the Solid Model
Pro/ENGINEER provides three-
dimensional visualization of
“the Rocket” design.

Figure B-1b. The Shaded
Model of the Mold Used
to Fabricate the Engine
Hood Panel
Pro/ENGINEER aided Mr.
Balaschak in designing body
molds.

Figure B-1c. The Main
Body Mold Was Machined
in Four Sections and
Then Assembled
This view shows three of the
mold sections.

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-5

 B.2 CAD/CAM/CAE AND PDM SOFTWARE
PRODUCTS AND THEIR CHARACTERISTICS
Software provides the instructions that lead computer hardware to
perform desired processes. It is the interface between computer
users and computer processors and peripheral equipment. Software
has a higher degree of specificity than the hardware on which it is
run. That is, while software is written to perform a specific task or
closely related set of tasks, the computer may be able to perform a
wide variety of tasks depending on the software employed.

There are two broad forms of software: systems software and
applications software. Systems software controls, manages, and
monitors computer resources and organizes data. Operating
systems, compilers and interpreters, communications software, and
database management systems are all types of systems software.
Applications software instructs computers in performing more
specific tasks such as word processing, graphic design, and
accounting functions (Freeman and Luc Soete, 1999).

CAD/CAM/CAE and PDM software are types of packaged
applications software used to perform complex design and
engineering functions. CAD/CAM/CAE software is a point tool in
the product development cycle. PDM is a life-cycle software tool
that manages the flow of information and data from one point tool
to another point tool.

 B.2.1 CAD/CAM/CAE Software Products

CAD, CAM, and CAE refer to functions that a computer and
peripheral equipment may perform for a user with the aid of
application software.

CAD software functions enable users to design products and
structures with the aid of computer hardware and peripherals more
efficiently than with traditional drafting technologies. The user
creates a computer image of a two-dimensional or three-
dimensional design using a light pen, mouse, or tablet connected to
a workstation or personal computer. The design can be easily
modified. It can be viewed on a high-quality graphics monitor from
any angle and at various levels of detail, allowing the user to readily
explore its physical features. Designers can use CAD software to

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-6

integrate drawings in such a way that adjusting one component
alters every attached component as necessary.

CAM software functions allow a manufacturer to automate
production processes. CAM software includes programs that create
instructions for manufacturing equipment that produces the design.
In addition, the software provides instructions to other computers
performing real-time control of processes, in using robots to
assemble products, and in providing materials requirements
associated with a product design (P.C. Webopaedia, 1996).

CAE software functions allow users to conduct engineering analyses
of designs produced using CAD applications to determine whether a
product will function as desired. The engineering analysis may
involve simulating the eventual operating conditions and
performance of a designed product or structure. Or users can
analyze the relationships between design components.

Until the mid-1980s, CAD/CAM/CAE software was available only
on computers constructed especially to perform the complex and
specific design, engineering, and manufacturing functions a firm
might need (P.C. Webopaedia, 1996). Now, the software is also
sold for use on personal computers and more general-purpose
workstations.

A small number of software packages dominate the market for
CAD/CAM/CAE software. Each of the leading software packages
stores product designs in a unique file format. These software
packages can be called software design platforms. Some software
design platforms include translation programs that convert a file into
a new format to be used with a different software package.
However, all translations are somewhat imperfect. As a result,
smaller software developers who wish to meet the unique demands
for product “add-ons” or “plug-ins” usually license design formats
from leading software design platform developers to ensure
compatibility.

The presence of a few dominant software applications could be
explained by one of two phenomena: “lock-in,” as a result of
switching costs, and quality domination, as a result of “instant
scalability.” Lock-in occurs when software users continue to use an
inferior product because of the high, up-front cost of switching to a
superior one. Switching costs arise when learning is involved, as

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-7

there is with all experience goods, and when that learning is not
costlessly transferable to the alternative product. These costs may
also exist because of network externalities. This phenomenon arises
when incumbent users of a product receive welfare increases when
additional consumers purchase the commodity. For example, as
more firms use a particular piece of software, the firm that
developed this software has an incentive to improve this product.
These improvements accrue to the newly adopting firms as well as
the incumbent users. Buyer switching costs can be an important
source of competitive advantage enjoyed by “early movers”—firms
that are first to market with a new product or design. “Lock-in” may
be present in the CAD/CAM/CAE industry for several reasons:

Z A firm using the same CAD/CAM/CAE design platform on
multiple machines will find it costly to add a new type of
software with a file format incompatible with the old
software and its file formats.

Z A firm that has used one software package consistently for
years will lose the benefits of training and experience
specific to that software package.

Z By changing the CAD/CAM/CAE design platform, firms may
lose complete or partial access to their historical data files.

Z Already established CAD/CAM/CAE design platforms are
likely to be complemented by a larger array of add-on
software packages than are newly available software design
platform.

In contrast with the lock-in explanation for the limited number of
CAD/CAM/CAE software products and few new market entrants, it is
possible that markets are, in fact, dominated by the highest-quality
software applications. Quality domination is an especially pertinent
theory in examining software market domination because software
production benefits from instant scalability—extra copies of
software applications can be copied quickly and cheaply with the
aid of relatively inexpensive CD-ROM duplicators (Liebowitz and
Margolis, 1999). Because of the ease of reproducing software
products, a high-quality product can quickly take over the market
since its production can easily be scaled up to meet demand.
Liebowitz and Margolis find that case studies and empirical research
support the explanation of quality domination rather than lock-in in
the market for software applications.

Table B-1 identifies the dominant CAD/CAM/CAE software design
platforms and describes how they are used in industry. The table

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-8

Table B-1. Dominant CAD/CAM/CAE Software Products
Several companies produce CAD/CAM/CAE software design platforms.

Product Name Product Description Sources

Bravo Mechanical design software with solid, surface,
wireframe, piping, HVAC, sheet metal, 2D and 3D
modeling capabilities. Features top-down design
and numerical control capabilities for
manufacturing

http://www.ug.eds.com/products/
bravo/introduction.html

CADKEY 3D, 2D, solids and surface modeling. Designs
created with other platforms imported as
“geometry” so that they can be manipulated as if
created in CADKEY.

http://www.cadkey.com/products/
index.html – CADKEY 98
brochure in Adobe Acrobat format

CATIAa Includes solid, hybrid and sheet metal part design
capabilities. Allows creation and modification of
mechanical and freeform surfaces. Integrates
electrical product design information with
mechanical design. Allows simulation.

http://www.catia.ibm.com/catv5/
newv5r3.html

Formality Allows integrated circuit designers to compare a
design at any stage of the design process with the
original design to check for functional equivalence.

http://www.sec.gov/Archives/
edgar/data/883241/0000891618-
98-005466.txt

HLDA Plus Allows integrated circuit designers to translate a
graphic design into a textual hardware design
language. Then, the software allows for simulation
and verification of the design.

http://www.sec.gov/Archives/
edgar/data/925072/0001047469-
99-009976.txt

Helixa Mid-range surface and solid modeling package
using a kernel modeler and constraint manager.
Includes a suite of geometric editing tools for
creating and modifying models, investigating
design alternatives, determining interferences and
clearances and calculating mass properties.

http://www.microcadam.com/
product/pages/hds.html

I-DEAS Mechanical design software specifically for users
needing solid modeling technology.

http://www.sec.gov/Archives/
edgar/data/820235/0000906318-
99-000032.txt

IntelliCAD 2D design and drafting software that is highly (but
not perfectly) compatible with the AutoCAD file
format. Works with add-ons designed for
AutoCAD.

http://www.visio.com/company/
indepth.html

IronCAD Provides mechanical engineers with solid modeling
capabilities and easy manipulation of 3D objects.
Facilitates design modification at all stages of the
design process.

http://www.ironcad.com/

Mechanical Desktop Provides solid modeling, surface modeling, 2D
design/drafting and bidirectional associative
drafting capabilities. Translates Desktop files for
exchange with other design systems and produces
a bill of materials.

http://www.sec.gov/Archives/
edgar/data/769397/0000929624-
99-000172.txt

(continued)

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-9

Table B-1. Dominant CAD/CAM/CAE Software Products (continued)

Product Name Product Description Sources

Microstation
Modelera

Facilitates solid, surface, and detailed modeling
using a Windows interface. Includes a 3D parts
library and translators to enable designers to
exchange data with users of different design
systems.

http://www.phillynews.com/
inquirer/99/Oct/11/business/
BENT11.html

Parasolid A solid modeling technology designed to be
portable and used with multiple design systems.

http://www.ugsolutions.com/
products/parasolid/

Pro/ENGINEER Facilitates design of detailed solid and sheet metal
components. Aids in building assemblies.
Produces fully documented production drawings
and photorealistic images of designed product.

http://www.ptc.com/proe/
overview/index.html

Seamless® Co-
Verification
Environment (CVE)

Detects errors in hardware/software interfaces in
embedded systems before prototype fabrication.

http://www.mentorg.com/
press_release/jan00/
seamless_pr.html

Solid Edge Mechanical design and drafting software with 2D
and 3D capabilities. Uses unique STREAM
technology to improve speed, effectiveness, and
usability of the software.

http://www.solid-edge.com/
prodinfo/v7/

SolidDesigner Facilitates dynamic modeling (computer reshaping
of design components when one reference
component is changed). Allows freeform and solid
modeling. Provides accessories to aid team design.

http://www.hp.com/pressrel/
dec95/05dec95a.html

SolidWorksa 3D product design software that functions on a
Windows platform. Features wide range of
interoperability with other mechanical design
formats.

http://www.solidworks.com/html/
Company/cprofile.cfm

SpeedSim Integrated circuit simulation software. Uses cycle-
based technology to reduce the time requirements
for simulation.

http://www.sec.gov/Archives/
edgar/data/914252/0001012870-
99-001140.txt

Think3 A mid-range product providing solids modeling
and advanced surfacing capabilities. Facilitates the
conversion of 2D designs into 3D design using
wireframe modeling. For Windows®95 or NT®.

http://www.think3.com/content/
docs.content.specs.html

Unigraphics
(UG/Solid Modeling,
UG/CamBase, etc.)

Full range of design capabilities, including freeform
modeling. Available modules provide advance
graphics display, a part library system, a mold
wizard, assistance in building numerical control
machines, and more.

http://ugsolutions.com/products/
unigraphics/cad

Vectorworks
(formerly MiniCAD)

2D and 3D design capabilities. Includes a
database spreadsheet function, report generation,
and customizable programmability.

http://www.sec.gov/Archives/
edgar/data/819005/0000819005-
99-000003.txt

aProduct developed by a foreign software developer.

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-10

also describes a few of the dominant electronic design automation
software packages used for electronic design, verification, and
simulation.

 B.2.2 PDM Software Products

Traditional approaches to engineering are linear. Each project has a
set of specific tasks, performed by different groups, in a specific
order that must be accomplished before the project can be
completed. The product development cycle is envisioned as a
series of independent sequential steps that starts at the generation of
the product design and proceeds in an orderly manner to the
finished product. Information is passed from one stage to the next
with minimal feedback. This model is referred to as serial
engineering. However, this model is not completely accurate. In
reality, changes and updates are made to each part of the
development cycle that affect the other phases. If the product
development process is linear, then the changes would only affect
downstream phases. But modern production processes are not
linear; changes are made to product designs after they have passed
through each stage (Gascoigne, 1995).

Serial engineering is poorly equipped to handle this dynamic
process because, as a project advances, engineering changes pose
greater and greater expenses in the form of time delays and cost
increases. Design changes force the whole project back to the
planning phase for modification. Each of the design steps must then
be repeated, resulting in additional effort and increased time to
market.

The modern approach, concurrent engineering, addresses this
problem. Instead of a serial development process, engineers from
all stages of the development and production processes can work
on the project at the same time. Changes at any stage in the
production process are addressed immediately and are incorporated
into the production process. Feedback loops occur as soon as the
change is made, and all phases in the product development cycle
adjust. This approach decreases the time to market of new
products, reduces development time and costs, and improves
product quality (Gascoigne, 1995).

While product development speed can increase and costs decrease
with concurrent engineering, a problem develops. In serial

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-11

engineering, each unit works on its part of the project in isolation.
Once the unit is finished, it is passed on to the next unit. The
passage of information is orderly. In concurrent engineering,
multiple units are working on the project at the same time, and it is
difficult to pass information from one group to the next in an orderly
manner. Monitoring who made changes, incorporating the changes
into the product, and updating the changes are paramount activities
in exploiting the potential of concurrent engineering. PDM supports
these activities. It can be divided in two components: data
management and process management.

Data Management

As engineering work has become reliant on CAD/CAM/CAE, greater
volumes of data are being produced. As more data are generated,
searching data to find specific pieces of information becomes
increasingly costly. Independent of changes dictated by the shift to
concurrent engineering, the shear increase in the volume of data
that is generated by shifting to computer-aided production
techniques necessitated a change in the way data are handled and
manipulated. Data management in PDM is concerned with
monitoring and controlling the information generated in
CAD/CAM/CAE. It is the aspect of the production process that is
concerned with how individual users manipulate the data on which
they are currently working. Data management is static in that it
monitors the data at a particular point in time, but it does not
monitor how it is being changed or altered through time.

PDM can manage all of the product-related information generated
throughout the product life-cycle. PDM creates a master document
that can be logged out and held in a secure location. Other
engineers working on the project can access a duplicate copy that
they can use in their work. Whenever changes are made to the
master copy, all users are notified and the copy that they are using
is updated to reflect any changes. PDM tools focus on automating
existing processes and managing electronic documentation, files,
and images. PDM is used almost exclusively in CAD/CAM/CAE
systems.

Data management in PDM monitors both the attributes of the files
as they change through time as well as the documentary information
associated with any changes. Monitoring is widely defined and

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-12

includes classification of components in the design, classification of
the documents that have been produced, the structure of the
product being produced, and a system for querying the data.

Process Management

Process management systems encompass three functions:

Z managing data when someone is working on it (work
management),

Z managing the flow of data between two people (workflow
management), and

Z tracking the changes to the data (work history management)
(PDMIC, 2000).

Process management is the dynamic aspect of PDM—it is
concerned with the movement and transformations of data as it
moves from one user to another.

Engineers and developers are constantly changing and updating the
product throughout the production process. Work management
within PDM monitors and tracks the changes made to the data. It
organizes the information and implications for other parts of the
production process that are created by changes that one engineer
makes to the product in different areas. Work management tracks
every footstep, and the implications from those footsteps, that the
engineer makes in the production process.

Workflow management focuses on the movement of information
across units within an organization. How information is passed
back and forth between the units is the realm of workflow
management. Workflow management bundles the project in logical
units, often called packets, of information that allow each unit to
work on the appropriate sections. When changes are made to each
packet, information is then sent to all of the other units that need to
know about the change. Workflow management tracks the changes
that are made that determine what group or units need to see the
data after a change has been made.

Work history management tracks all of the changes that have been
made by individual units or departments and how those changes
have affected other units or departments. It captures and records
the entire history of the project and all of the team members of the
project. Work history management can then be used for auditing

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-13

the production process as well as evaluating specific units with the
production process.

Benefits from PDM

The most frequently cited benefit of PDM is reduction in time to
market for new products. The time reduction from PDM occurs in
several ways. First, the time to perform the overall task is decreased
because data are made available as soon as they are needed.
Second, because of concurrent engineering, bottlenecks do not
develop in the production process because no queue exists in the
project development process. Third, the feedback from changes is
almost immediate, and all units know they are working on the latest
version of the product this decreases the amount of time spent on
corrections and reworking. Improved feedback loops have an
additional advantage: by ensuring that all employees are working
on the most recent version of the project and making changes
available immediately, the risk of failure is also reduced. However,
care still must be exercised. Just because the data are the most
recent version does not mean the data are correct.

In addition, PDM has the potential to generate other benefits.
Because PDM reduces the amount of time spent searching for
documents, checking the freshness of each document, and
reworking existing products, engineers are able to spend more time
on designing products and developing new and innovative ideas.
Historically, over 25 percent of a designer’s effort is consumed by
reworking or searching for documentation. PDM has the potential
to substantially reduce this percentage (PDMIC, 2000).

Another benefit from PDM is its ability to leverage knowledge from
other products. Many problems already have a solution; it is a
question of finding rather than rediscovering it. In the traditional
approach to product development, it was often easier to reinvent an
existing process or idea rather than track down an existing solution.
Because PDM organizes existing knowledge and allows for easy
searches of that knowledge, existing solutions will be easier to find; a
shift from customized production to component production occurs.

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-14

 B.3 THE DEVELOPMENT AND DEVELOPERS OF
CAD/CAM/CAE AND PDM SOFTWARE
Two major groups of firms are involved in the development of
CAD/CAM/CAE and PDM products, the developers of the software
product and the testers of the software product.

 B.3.1 Software Publishers (Sector 5112)

Software publishers produce and distribute software of all types.
Our focus is on the subset of the industry that produces the
CAD/CAM/CAE and PDM software products described in
Section 6.2.

CAD/CAM/CAE Firms

CAD/CAM/CAE software developers include many establishments;
however, about 20 firms dominate the market. These well-known
software developers include those that produce the design platforms
for CAD/CAE software and the most respected EDA software
developers. Testing services may be provided by the developer or
contracted for from specialized suppliers in the computer systems
design and related services sector.

Table B-2 lists the U.S. developers of the most widely used
CAD/CAE design platforms as well as the prominent EDA software
developers. In some cases, the current owner of the proprietary
rights to a software package is not the original owner. However,
because the owners of the proprietary rights develop upgrades and
new releases of the original software package, they are designated
as developers in Table B-2. Developers who concentrate only on
AEC or GIS software are not listed because they are outside the
scope of this study. In most cases, data in the table come directly
from annual reports filed with the Securities Exchange Commission.
Where this is not the case, the data source is noted. The table
includes revenues, costs, and employment, with specific
information on R&D expenses.

As noted previously, development is large cost factor in the
production of software. Table B-2 shows that 7 to 35 percent of the
total costs of CAD/CAM/CAE software developers were for R&D.
Information on R&D spending for other industries in recent years
shows such spending to be proportionately higher in the software

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-15

Table B-2. Developers of CAD/CAM/CAE Software, 1997
CAD/CAM/CAE software developers spend a larger percentage of their total revenues on R&D than do other U.S.
industries.

Costs ($thousands)
Employment
(thousands)

Company
Total Revenues
($thousands)a Totalb R&Dc

R&D Costs
as a Share of
Total Costs Total R&D

R&D
Employment
as a Share
of Total

Employment

i2 Technologies (formerly
Aspect Development)

$1,126,000 5,653 1,875 33%

Autodesk $632,358 $541,964 $122,432 23% 2,470

Avant! Corporation $227,141 $179,441 $56,785 32% 822 404 49%

Cadkey Corporationd NA

Bentley Systems, Inc.e $175,000 960

Cadence Design Systems,
Inc.

$1,216,070 $829,800 $179,400 22% 4,200 1,300 31%

Hewlett-Packard (owner of
CoCreate)

$47,061,000 $43,220,000 $3,355,000 8%

IKOS Systems Inc. $40,893 $64,250 $14,400 22% 256 100 39%

Intergraph $1,032,790 $1,131,000 $83,786 7% 6,700

International Business
Machines—Software
Segmentf

$11,841,715 $7,365,275 $731,670 10%

International
Microcomputer Software

$62,472 $55,315 $8,600 16% 338 115 34%

MacNeal Schwendlerg $125,397 $135,438 $13,666 10% 745

Mentor Graphicsh $490,393 $332,712 $117,853 35% 2,600

OrCAD $47,652 $45,446 $11,508 25% 261 101 39%

Parametric Technologiesi $1,018,000 $732,960 $91,620 13% 4,911 958 20%

Quickturn $104,109 $147,939 $23,425 16% 383 129 34%

Structural Dynamics
Research Corporation

$403,025 $357,360 $64,182 18% 2,366 644 27%

Summit Design Inc.! $31,439 $36,687 $7,749 21% 178 106 60%

Synopsys, Inc. $717,940 $598,823 $154,400 26% 2,592

Unigraphicsj $403,571 $406,116 $103,017 25% 2,200

Visiok $100,775 $75,684 $16,124 21% 355 140 39%

Wind River Systems Inc. $129,400 $92,311 $17,638 19% 598 181 30%

aIncludes data from subsidiaries and revenues from hardware sales, where applicable.
bIncludes costs of revenue and operating expenses; taxes and interest income excluded; acquired technology and

merger expenses not included unless considered as part of research and development expenses in the annual report.

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-16

Table B-2. Developers of CAD/CAM/CAE Software (continued)

cR&D expenditures may or may not include capitalization, depending on how the figure was presented on the balance
sheet of the annual report.

dRevenue and cost information not available. Cadkey is a private corporation.
eSource: Bentley Systems Incorporated. Corporate Backgrounder obtained November 1999.

<http://www.bentley.com/bentley/backgrnd.htm>.
fSource: International Business Machines. 1998. Annual Report.

<http://www.ibm.com/annualreportt/1998/discussion/ibm98armd04.html>.
gSource: The MacNeal Schwendler Corporation. 1998. Annual Report.

<http://www.mscsoftware.com/ir/annual.html>.
hSource: Mentor Graphics Corporation. 1998. Annual Report.

<http://www.mentorg.com/investor_relations/MentorAnnual.pdf>.
iSource: Parametric Technology Corporation. 1998. Annual Report.

<http://www.ptc.com/company/pmtc/1998/index.htm>. As obtained October 1999.
jSource: Unigraphics Solutions Incorporated website. <http://www.ug.eds.com>.
kSource: 10K report and Visio Corporation. 1998. Annual Report. <http://www.visio.com/files/ar98/Visar98.pdf>.

Source: National Science Foundation. 1999. Research and Development in Industry: 1997.

industry than in other sectors of the economy. For example, R&D
spending was only 2.9 percent of the net sales of all industries in
1997 (National Science Foundation [NSF], 1999). The service
industry, of which the software industry is a part, spent 8.6 percent
of its net sales on R&D in 1997, still well below the average R&D
expenditures of CAD/CAM/CAE industry leaders listed in Table B-2
(NSF, 1999). In fact, the computer and data processing services
industry, a more specific industry group including software
developers, spent a larger proportion of its net sales on R&D
(13.3 percent) than did any other industry group surveyed by the
NSF in 1995. The above data actually underestimate the differences
in R&D spending between the CAD/CAM/CAE industry and other
industries, because the NSF data are based on net revenues (gross
revenues minus operating expenses, cost of revenue and taxes),
which are smaller than gross revenues. If the NSF percentages were
based on total revenues, they would be even smaller.

Appendix A provides additional information for the software
developers included in Table B-2 as well as several hundred others.
The appendix includes a partial list of developers of less well-known
design CAD/CAE platforms and accessory software products as well as
some EDA software developers that produce a smaller range of
products than the often-cited developers listed in Table B-2. The
software developers in the appendix constitute the population of
software developers to be surveyed as part of this project.

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-17

PDM Firms

PDM systems emerged in the early 1980s when software and
engineering companies originally developed in-house PDM
projects. These firms realized that paper-based systems to monitor
the flow of data were becoming increasingly unwieldy and
uncontrollable. During the late 1980s, some of these companies
started to market their internally developed PDM systems to other
organizations. The initial products were large databases that
engineers could search to find documents. Because most of the
software firms that developed the original PDM products were in
the CAD/CAM/CAE business, they focused their efforts on
developing PDM systems for their existing customers.

The early PDM systems’ main focus was on monitoring and
controlling engineering data after the point of initial development to
the end of the manufacturing process. Although PDM first focused
on managing the manufacturing process, during the early 1990s it
was also used to monitor activities farther upstream in the product
cycle. During the product inception stage, PDM is now used to
track the data generated by engineers. In the later half of the 1990s,
business operations became more interrelated, and PDM systems
are now used to manage CAD/CAM/CAE systems as well as other
engineering and business programs. The recent innovations have
transformed PDM from a database application to an entire workflow
management system.

Numerous firms sell or provide PDM services. Some encompass the
entire PDM product cycle by developing, selling, installing, and
supporting a specific product. Other firms only engage in specific
parts of the production process. Table B-3 lists the categories of
firms engaged in PDM and describes their activities.

Over 50 domestic and 25 international firms produce PDM
products. Table B-4a provides the relative market shares for the
eight largest PDM software and services vendors. Table B-4b
provides sales and employment information on the domestic PDM
product vendors.

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-18

Table B-3. Categories of Firms Engaged in PDM

Firm Type Description of Activities

PDM Product Vendors Encompasses the whole organization by providing complete
document management from planning to manufacturing

Document and Image Management
Product Vendors

View, mark-up, plot, print, and convert document formats

PDM Support Product Vendors Implementation, installation, training, modification, and
conversion services and system consulting

Value-Added Resellers Sale and installation of existing PDM products

System Integrators Provides technical assistance, consulting, training and
software design, integration, and development

Consultants Design and develop customized applications to support
customer-specific requirements

Source: Product Data Management Information Center. <http://www.pdmic.com>. As obtained on March 13, 2000.

Table B-4a. Market Shares for the Eight Largest PDM Software and Services Vendors

Company Market Share (%)

i2 Technologies (formerly Aspect Development) 8

Documentation 7

Engineering Animation Inc. 6

IBM/Enovia 5

MatrixOne 5

Parametric Technology Corporation 4

Structural Dynamics Research Corporation/Metaphase 3

UGS, Inc. 3

Source: CIMdata. 2000. <http://www.cimdata.com/PR000307B.htm>.

Table B-4b. Developers of PDM Software, 2000

Company Sales Employment
Accel Technologies, Inc. 11 60
Agile Software Corp. 16.8 156
Applicon 135.5 200
Autodesk Inc. 740.2 2,716
Auto-trol Centura 2000 8.7 177
BaanCompany 736 5,101

(continued)

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-19

Table B-4b. Developers of PDM Software, 2000 (continued)

Company Sales Employment
CACI-Federal, Inc. 441.7 4,228
Think3, Inc. 32.03 250
Ceimis Enterprises, Inc. 2.5 25
CMstat Corporation 2.5 25
CoCreate (subsidiary of Agilent Technologies 8 70
CONCENTRA 100 450
Concurrent Systems, Inc. NA NA
Configuration Data Services 2.5 15
ConsenSys Software Corporation 7.5 50
Custom Programming Unlimited 2 30
DataWorks Corporation 25.9 300
Eignor & Partner, Inc. 19 95
Engineering Animation Inc. 70.7 957
Enovia Corp. 12 90
Formation Systems Inc. 10.9 85
FORMTEK, Inc. A Lockheed Martin Co. 22 150
Gerber Information Systems NA NA
i2 Technologies (formerly Aspect Development) 1,126.3 6,000
IBM 8,093 316,303
IDFM, Inc. 6 43
Ingenuus Corporation 7.5 95
Innovative Data Concepts, Inc. NA NA
InSight NA NA
Integrated Support Systems, Inc. 9.2 35
Integrated Systems Technologies, Inc NA NA
IntegWare NA NA
Intergraph Corporation 690.5 4,600
Intergraph Electronics Corporation NA NA
Interleaf, Inc. 45.2 338
Kruise Inc. NA NA
Matrix One NA NA
MERANT - PVCS 400 2,000
Mesa Systems Guild, Inc. 2 35
Metaphase Technology 403 2,500
Modultek Inc. NA NA
Mystic Management Systems, Inc. 2 9
NEC Systems, Inc. NA NA
NetIDEAS, Inc. NA NA
Network Imaging Systems Corp NA NA
NovaSoft Systems, Inc. NA NA
Open Text Corp. 112.9 408
Oracle Corporation 8827 43800

(continued)

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-20

Table B-4b. Developers of PDM Software, 2000 (continued)

Company Sales Employment
Parametric Technology Corporation 1057.6 4998
Parametric Technology Corporation 928.4 4725
Prefered Technology Corp. NA NA
PROCAD, Inc. NA NA
SDRC 2 9
Sherpa Corporation NA NA
Structural Dynamics Research Corporation/Metaphase 340.8 1637
The Business Process Performance Co. NA NA
TMSSequoia 5 46
Unigraphics Solutions 400 2200
Waware Systems NA NA
Workgroup Technology, Inc. 8.6 110
Metaphase Technology 403 2500
Modultek Inc. NA NA
Mystic Management Systems, Inc. 2 9
NEC Systems, Inc. NA NA
NetIDEAS, Inc. NA NA
Network Imaging Systems Corp NA NA
NovaSoft Systems, Inc. NA NA
Open Text Corp. 112.9 408
Oracle Corporation 8827 43800
Parametric Technology Corporation 1057.6 4998
Prefered Technology Corp. NA NA
PROCAD, Inc. NA NA
SDRC 2 9
Sherpa Corporation NA NA
Structural Dynamics Research Corporation/Metaphase 340.8 1637
The Business Process Performance Co. NA NA
TMSSequoia 5 46
Unigraphics Solutions 400 2200
Waware Systems NA NA
Workgroup Technology, Inc. 8.6 110
Prefered Technology Corp. NA NA
PROCAD, Inc. NA NA
SDRC 2 9
Sherpa Corporation NA NA
Structural Dynamics Research Corporation/Metaphase 340.8 1637
The Business Process Performance Co. NA NA

Source: Standard and Poor’s Net Advantage ; Reference USA; Hoovers Online, http://www.hoovers.com

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-21

 B.3.2 Computer Systems Design and Related Services
(Sector 5415)

Establishments in this sector are affiliated with the CAD/CAM/CAE
and PDM industry in two important ways: as suppliers of testing
services to software developers and users and as service providers
aiding CAD/CAM/CAE and PDM software in computer systems
integration, software installation, and custom programming.

Table B-5 presents current information on the number of
establishments providing computer system design and related
services. CAD/CAM/CAE and PDM software developers and service
providers are a subset of the population listed in Table B-5.

Table B-5. Industry Profile for Computer Systems Design and Related Services, 1997

NAICS
Code Description

Number of
Establishments

Value of
Shipments or

Receipts
(thousands)

Number of
Employees

5415 Computer systems design and related
services

72,278 108,967,614 764,659

541511 Custom computer programming services 31,624 38,300,515 318,198

541512 Computer systems design services 30,804 51,212,916 337,526

5415121 Computer systems integrators 10,571 35,270,055 207,741

5415122 Computer systems consultants (except
systems integrators)

20,233 15,942,861 129,785

541513 Computer facilities management services 1,445 15,114,194 71,821

541519 Other computer related services 8,405 4,339,989 37,114

Source: U.S. Census Bureau. December 1999bx. “1997 Economic Census, Professional, Scientific, and Technical
Services.” Geographic Area Series.

 B.4 PRODUCTION AND CONSUMPTION OF
CAD/CAM/CAE AND PDM SOFTWARE
PRODUCTS
The world market for CAD/CAM/CAE software is about $8.0 billion
annually. U.S. manufacturers purchased approximately $2.5 billion
of CAD/CAM/CAE software in 1997. U.S. software developers sold
twice that amount throughout the world in 1997.

 B.4.1 Production

The U.S. supplies the majority of the CAD/CAM/CAE software sold
on the world market, although U.S. suppliers do compete with

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-22

developers in Japan, Asian-Pacific countries, and Europe. In 1997,
U.S. software developers sold about $5.4 billion worth of the almost
$8.0 billion worth of CAD/CAM/CAE software sold in the world.
Figure B-2 shows the relative world market shares of other world
regions. Japan and Asian-Pacific countries supply 20 percent of the
world’s CAD/CAM/CAE software. Europe supplies 10 percent (U.S.
Department of Commerce, 1998).

United States
68%

Japan/Asia
20%

Europe
10%

Rest of World
2%

Source: U.S. Department of Commerce. 1998. U.S. Industry & Trade Outlook
‘98. New York: McGraw-Hill.

 B.4.2 Consumption

Although the U.S. supplies 68 percent of the world’s
CAD/CAM/CAE software, world demand for the software is more
evenly distributed. Because of this, more than 36 percent of the
1997 revenues of U.S. CAD/CAM/CAE suppliers were derived from
overseas sales. Figure B-3 shows the relative consumption of the
software throughout several regions of the world. U.S.
manufacturers accounted for 32 percent ($2.5 billion) of the world
demand for the software. European manufacturers purchased nearly
the same amount of software in 1997, accounting for another
31 percent of the world demand. Japanese manufacturers
accounted for nearly $2.0 billion (25 percent) of the demand (U.S.
Department of Commerce, 1998).

Figure B-2. The
Producers of
CAD/CAM/CAE Software,
1997
The U.S. produces the majority
of CAD/CAM/CAE software on
the world market.

Appendix B — CAD/CAM/CAE/PDM Use and Development in the Transportation Sector

B-23

United States
32%

North America
3%

Europe
31%

Asia/Pacific
5%

Japan
25%

Rest of World
5%

Total Sales = $8.0 billion

Source: U.S. Department of Commerce, 1998, U.S. Industry & Trade Outlook
‘98. New York: McGraw-Hill.

Compared to CAD/CAM/CAE, a larger share of PDM system
consumption is in North America. Figure B-4 shows the relative
amount of consumption of PDM by geographic region in 1999.
Based on estimated total sales of $1.76 billion, this implies that
North America purchased over $800 million of PDM products,
Europe purchased over $600 million worth of PDM products, and
the Asia-Pacific region purchased under $250 million worth
(CIMdata, 2000).

Figure B-3. The
Consumption of
CAD/CAM/CAE Software,
1997
U.S. manufacturers purchase
half as much CAD/CAM/CAE
software as is sold by U.S.
software developers.

The Economic Impacts of Inadequate Infrastructure for Software Testing

B-24

United States
47%

Asia Pacific
14%

Europe
38%

Rest of World
1%

Total Sales = $1.76 billion

Source: CIMdata. 2000. <http://www.cimdata.com/PR000307B.htm>

Figure B-4. Regional
Distribution of PDM
Revenues, 1999

Appendix C:
CAD/CAM/CAE/PDM
Developers and Users
Survey Instruments

C-1

Survey of CAD/CAM/CAE and PMD Software Developers

Being conducted by
Research Triangle Institute

On behalf of

National Institute of Standards and Technology

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-2

OMB NO: 0693-0031 Expires 10/31/2002

This survey is authorized under Executive Order 12862, “Setting Customer Service Standards.”
Your response is voluntary and all data collected will be considered confidential. Public
reportings for this collection of information is estimated to average 25 minutes per response,
including the time of reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this estimate or any other aspects of this collection of information, including
suggestions for reducing the length of this questionnaire, to the National Institute of Standards and
Technology, 100 Bureau Drive, Stop 3220, Gaithersburg, MD, 20899-3220 and the Office of
Management and Budget Information and Regulatory Affairs, Office of Management and Budget,
Washington, DC 20503.

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-3

Introduction
As part of a research study for the National Institute of Standards and Technology (NIST),
Research Triangle Institute (RTI) is conducting a survey of CAD/CAM/CAE and PDM software
developers. The purpose of this survey is to learn about the incidence and cost of software bugs
and errors to software developers and users.

The National Institute of Standards and Technology (NIST) is a non-regulatory federal agency
within the Commerce Department’s Technology Administration. NIST’s mission is to promote
economic growth by working with industry to develop and apply technology, measurements, and
standards. NIST carries out its mission through four interwoven programs: NIST Laboratories,
Baldridge National Quality Program, Manufacturing Extension Partnership, and Advanced
Technology Program. See http://www.nist.gov for more information about NIST’s work.

Our study would greatly benefit from your insights and experience. The findings from the study
will be used to assist NIST to identify and prioritize technical infrastructure needs in the area of
software testing. In addition, your company could benefit from identifying and quantifying basic
software testing inadequacies. All participants will receive a copy of the final report.

Your participation is voluntary, and your responses will be kept strictly confidential. Please note
that questions regarding the number and type of software bugs will only be used to estimate the
cost of software errors for the entire industry and will not be available to the public or shared with
other survey participants. Only aggregate results will be included in the final report.

The survey will take about 25 minutes to complete. Please answer all questions as they pertain to
your firm. Please answer each question by checking the appropriate answer(s) or providing your
answer in the designated space.

If you have any questions as you complete the survey, please contact Michelle Bullock at
(919) 485-5599 or bullock@rti.org.

Thank you in advance for your participation.

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-4

1. Background Information

1.1 Please type your name, company name, and e-mail address on the lines below.

Name: ___

Company: __

E-mail: ___

1.2 What types of software products are developed at your company? (Check all that apply.)

1. CAD

2. CAE

3. CAM

4. PDM

5. Other (Specify): __

1.3 What share of products can be classified as CAD/CAM/CAE or PDM software?

___________________ %

1.4 Please choose the North American Industry Classification System (NAICS) code(s) under
which your company is classified.

1. 541511—Custom computer software analysis and design services

2. 511210—Packaged computer software publisher

3. 541519—Computer software installation services

4. Other (Specify): __

1.5 What was the approximate total number of employees employed by your company in
2000? (Report a range of employees if necessary.)

1.6 What was the approximate value of total revenues (sales) reported by your company in
2000? (Report a range of sales if necessary.)

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-5

2. Expenditures on Software
Testing

For the purpose of this survey, software testing is defined as:
The process of exercising a product to identify differences between expected and actual results
and performance. Typically testing is bottom-up: unit test, integrate test and finally system test.
NOTE: This does not include software development.

2.1 What were the total number of full-time equivalent (FTE) employees for your company in
2000 who were involved in software testing and error correction? If you can’t answer this
question for your entire company directly, take the total number of full-time equivalent
(FTE) employees for your group/organization who were involved in software testing and
error correction. Then multiply that number by the number of groups/organizations in
your company that are involved in software testing and error correction. Please
breakdown the total number according to the employee category.

Employee Category
Number of FTE Employees Involved in
Software Testing and Error Correction

Software Engineers/Programmers

Software Engineers/Testers/QA Engineers

Other: (Specify) ______________________

2.2 Did your company purchase testing software in 2000?

_____ Yes

_____ No (Go to Question 2.4)

2.3 Please complete the following table based on testing software purchases that were made
in 2000.

Software Name
Annual Expenditures for Test

Software1 Type of Testing Conducted2

Notes:
1. If Test Software was developed In-house, then estimate yearly internal expenditures, budget, or

number of FTE employees engaged in development and maintenance of the test software.
2. Choose all of the following types of testing that apply: a) Conformance to Specifications (also

called Functional Verification Testing), b) Interoperability Testing, or c) Performance Testing (also
called System Testing).

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-6

2.4 Did your company purchase hardware to support software testing in 2000?

_____ Yes

_____ No (Go to Question 2.6)

2.5 Please complete the following table based on testing hardware purchases that were made
in 2000.

Hardware Name
Cost of

Hardware

Was the
Hardware
Leased?

Expected Useful
Life of the
Hardware

Type of Testing
Conducted3

Notes:
3. Choose all of the following types of testing that apply: a) Conformance to Specifications, b)

Interoperability Testing, or c) Performance Testing.

2.6 Did your company contract for external testing services in 2000?

_____ Yes

_____ No (Go to Section 3)

2.7 How much did your company pay for external testing services in 2000 (expressed in
dollars or as the number of Full Time Equivalent employees)? If you can’t answer this
question for your entire company directly, take what your group/organization paid for
external testing services in 2000. Then multiply that number by the number of
groups/organizations in your company that contracted for external testing services in
2000.

$ ____________________

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-7

3. Incidence of Software Bugs and
Errors

In this section of the survey, we segment the software development process into five stages and
investigate

• where errors are introduced and

• where bugs are typically detected.

Software bugs and errors can be generally divided into three broad categories; design,
implementation and delivery errors. Design bugs are flaws in the underlying design of the
software architecture typically resulting in redesign. Implementation and delivery bugs are errors
in the way the programmer tries to achieve the design during coding. For the purpose of this
survey, we are limiting our definition of a software bug to implementation and delivery coding
errors.

The five stages of the development process are

• requirements gathering and analysis/architectural design,

• coding/unit testing,

• integration and component/RAISE (Reliability, Availability, Install Serviceability, and Ease
of Use) system testing,

• early customer feedback/beta test programs, and

• post-product release (found by customer after purchase or acceptance).

For the following questions, please consider a representative new CAD, CAM, CAE, or PDM
development project or new version.

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-8

3.1 Bugs are found throughout the software development process. Bugs are detected
internally through formal testing and externally by users during beta testing and business
operations. In the table below, please identify the stages in which bugs are typically
found. Please list either the number of bugs typically detected (per development project
or lines of code) or the distribution (percentage) of bugs detected across the five stages.

Stages of Development
Number of Bugs Detected

at Each Stage or
Distribution of Bugs

Detected Across Stages

Requirements gathering and
analysis/ architectural design

_____%

Coding/unit testing _____%

Integration and
component/RAISE system testing

_____%

Early customer feedback/beta
test programs

_____%

Post-product release _____%

 per project

 per _____ lines of code

 Total = 100%

3.2 Errors can be introduced into software at various stages in the development process. For
bugs found during the coding/unit testing phase, in what stage was the error likely to be
introduced (i.e., where was the source of the error)? Please indicate the probability of the
error being introduced during the following stages.

_____% requirements gathering and analysis/architectural design

_____% coding/unit testing

100% Total

3.3 For bugs found during the integration and component testing phase, in what stage was the
error likely to be introduced?

_____% requirements gathering and analysis/architectural design

_____% coding/unit testing

_____% integration and component

100% Total

3.4 For bugs found during beta testing, in what stage was the error likely to be introduced?

_____% requirements gathering and analysis/architectural design

_____% coding/unit testing

_____% integration and component

100% Total

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-9

3.5 For bugs found by customers during the post-product release phase, in what stage was the
error likely to be introduced?

_____% requirements gathering and analysis/architectural design

_____% coding/unit testing

_____% integration and component

100% Total

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-10

4. The Cost of Fixing Bugs
In this section, we investigate the costs of locating the source of bugs and correcting the errors
(referred to as fixing or repairing bugs). We are primarily interested in how these costs vary with
respect to where the error was introduced and at what stage in the software development process
the bug is detected.

4.1 The severity and, hence, the cost of fixing a given bug may depend on what stage the bug
was introduced into the software. In the table below, provide the average cost of fixing
bugs (in terms of labor hours) that are introduced during the three main development
stages presented in Section 3. For this cost table, assume that the bug is detected in the
same stage that it was introduced.

Stage the Bug was Introduced
Average Number of Hours to Correct an
Error Introduced and Found in this Stage

Requirements gathering and analysis/
architectural design __________ hours

Coding/unit testing __________ hours

Integration and component/RAISE system testing __________ hours

4.2 It is widely assumed that bugs caught later in the software development process are more
expensive to repair. In the following table, please indicate how much more expensive it is
to repair a bug created in the requirements gathering and analysis/architectural design
stage if it is not detected until later in the software development process (i.e., Not detected
until coding, integration, beta testing, or post-product release). Provide your answer in
terms of how many times more expensive it is to repair the bug in later stages compared to
detecting and repairing it during the stage in which it was introduced.

Stage Where Errors Introduced in
Requirements Gathering and Analysis/

Architectural Design Stage are Detected

How Many More Times as Costly is it to
Repair a Bug if it is Detected After the

Stage it is Introduced

Requirements gathering and analysis/
architectural design Stage bug is introduced

Coding/unit testing _____ times as costly to repair

Integration and component/RAISE system testing _____ times as costly to repair

Early customer feedback/beta test programs _____ times as costly to repair

Post-product release _____ times as costly to repair

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-11

4.3 Now consider bugs introduced during the coding stage. How much more costly is it to
repair these bugs if they are detected in later stages?

Stage Where Errors Introduced in
Coding Stage are Detected

How Many More Times as Costly is it to
Repair a Bug if it is Detected After the

Stage it is Introduced

Coding/unit testing Stage bug is introduced

Integration and component/RAISE system testing _____ times as costly to repair

Early customer feedback/beta test programs _____ times as costly to repair

Post-product release _____ times as costly to repair

4.4 Finally, consider bugs introduced during the integration stage. How much more costly is
it to repair these bugs if they are detected in later stages?

Stage Where Error Introduced in
Integration Stage are Detected

How Many More Times as Costly is it to
Repair a Bug if it is Detected After the

Stage it is Introduced

Integration and component/RAISE system testing Stage bug is introduced

Early customer feedback/beta test programs _____ times as costly to repair

Post-product release _____ times as costly to repair

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-12

5. A World with Improved Testing
Resources

NIST is interested in estimating the costs of inadequate software testing tools and resources to U.S.
companies.

5.1 Please describe the shortcomings of the testing software (testware) and processes you
currently use to detect and fix bugs in your software products.
For example:

• Testware products are not as compatible with our software development environment
as we had expected.

• Testware products assume a software development process that is different than the
one we use.

5.2 What improvements would you like to see in software testing programs and procedures?
For example:

• What are there capabilities you would like to see that are not available in current
testware?

• Could testware products function better if there were fewer user interface or
interoperability problems?

For the questions below, please consider how the distribution of where bugs are detected and the
cost of repairing bugs would change if the improved testing procedures and tools you described
above were available. (Even if you were not able to describe all the software testing
improvements you would like to see in Questions 7.1 through 7.4, feel free to broadly envision a
world with an enhanced software testing infrastructure when answering the questions below.)

Note: We are assuming that the number of bugs introduced during the software development
process remains unchanged—only the developer’s ability to detect and fix bugs is changed in our
hypothetical new and improved world.

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-13

5.3 In a world with improved software testing tools, how would the distribution of where
(when) bugs are detected change?

5.3a In the table below, we have repeated your response to Question 3.1. Please
indicate how this distribution you provided would change in a world with
improved software testing tools.

 Current World
(your response to 3.1)

World with improved
Testing Tools

Stages of Development
Number of Bugs

Detected Total
Number of Bugs

Detected Total
Requirements gathering
and analysis/
architectural design

_____% _____%
Coding/unit testing _____% _____%
Integration and
component/RAISE system
testing

_____% _____%
Early customer
feedback/beta test
programs

_____% _____%
Post-product release _____% _____%
 per project

 per _____

lines of code

Total =
100%

 per project

 per _____
lines of code

Total =
100%

5.4 How would the cost of repairing bugs change with improved software testing tools?

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-14

5.4a In the table below, we have repeated your response to Question 4.1. Please
indicate how the number of labor hours would change with improved tools for
locating and repairing bugs.

Stage the Bug was Introduced

Current Labor
Hours to Fix
Average Bug

(your response to
Question 4.1)

World with
Improved Testing

Tools

Requirements gathering and analysis/
architectural design _______ hours _______ hours

Coding/unit testing _______ hours _______ hours

Integration and component/RAISE system
testing _______ hours _______ hours

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-15

6. Time to Market

6.1 For a representative new CAD/CAM/CAE or PDM product or new version developed by
your company, what average production time to market? If you can’t answer this question
for your entire company directly, use the average time to market for a representative new
CAD/CAM/CAE or PDM product or new version developed by your group/organization.

________________ years

6.2 If no testing activities were needed (i.e., no error detection and repair), how long would it
take for a typical project to progress from inception to completion?

________________ years

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-16

7. Customer Service Cost

7.1 Does your company typically provide installation assistance for your CAD/CAM/CAE or
PDM software products?

_____ Yes

_____ No (Go to Question 6.5)

7.2 Please describe the type of installation assistance your company provides.

7.3 What were your total installation costs (annual expenditures) in 2000?

$ ____________

7.4 What percentage of your installation costs are due to bugs or errors found during
installation?

______________ percent

7.5 Does your company provide long-term service contracts or other types of after-sales
customer service?

_____ Yes

_____ No (Go to Section 7)

7.6 Please describe the type of after-sales service your company provides.

7.7 What were your total after-sales service costs (annual expenditures) in 2000?

$ ____________

7.8 What percentage of your after-sales service costs are related to bugs or errors found by
customers during business operations?

______________ percent

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-17

7.9 In a world with improved software testing tools, how much could your customer
installation expenditures be reduced?

______________ percent

7.10 In a world with improved software testing tools, how much could your other after-sales
customer service costs be reduced?

______________ percent

7.11 What percentage of this potential improvement do you expect can come from internal or
vender-supplied software testing capability over the next five years?

_____________ percent

8. Comments

8.1 Please provide any additional comments that would be helpful in evaluating how
improved testing tools would impact your company’s software development costs and
product quality.

We thank you for your participation.

Please indicate below if you would like to receive a copy of the final report.

_____ Yes, please send a copy

_____ No

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-19

Survey of CAD/CAM/CAE and PDM Software Users

Being conducted by

Research Triangle Institute

On behalf of
National Institute of Standards and Technology

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-20

OMB NO: 0693-0031 Expires 10/31/2002

This survey is authorized under Executive Order 12862, “Setting Customer Service Standards.”
Your response is voluntary and all data collected will be considered confidential. Public
reportings for this collection of information is estimated to average 20 minutes per response,
including the time of reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this estimate or any other aspects of this collection of information, including
suggestions for reducing the length of this questionnaire, to the National Institute of Standards and
Technology, 100 Bureau Drive, Stop 3220, Gaithersburg, MD, 20899-3220 and the Office of
Management and Budget Information and Regulatory Affairs, Office of Management and Budget,
Washington, DC 20503.

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-21

Introduction
As part of a research study for the National Institute of Standards and Technology (NIST),
Research Triangle Institute (RTI) is conducting a survey of transportation manufacturing
companies that use CAD/CAD/CAE and PDM software. The purpose of this survey is to learn
about the incidence and cost of software bugs and errors to software users.

The National Institute of Standards and Technology (NIST) is a non-regulatory federal agency
within the Commerce Department’s Technology Administration. NIST’s mission is to promote
economic growth by working with industry to develop and apply technology, measurements, and
standards. NIST carries out its mission through four interwoven programs: NIST Laboratories,
Baldridge National Quality Program, Manufacturing Extension Partnership, and Advanced
Technology Program. See http://www.nist.gov for more information about NIST’s work.

Our study would greatly benefit from your insights and experience. The findings from the study
will be used to assist NIST to identify and prioritize technical infrastructure needs in the area of
software testing. In addition, your company could benefit from identifying and quantifying how
software bugs and errors affect companies in the financial service sector. All participants will
receive a copy of the final report.

Your participation is voluntary, and your responses will be kept strictly confidential. Please note
that questions regarding the type and cost of software bugs will only be used to estimate the
aggregate impacts for the entire industry, and individual responses will not be available to the
public or shared with other survey participants. Only aggregate industry-level results will be
included in the final report.

Your establishment was randomly selected to participate in this survey. The survey will take
about 30 minutes to complete. Please answer all questions as they pertain to your firm by
checking the appropriate box(es) or providing text in the designated space.

If you have any questions as you complete the survey, please contact Michelle Bullock at
(919) 485-5599.

Thank you in advance for your participation.

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-22

1. Background Information

1.1 Please type your name, company name, and e-mail address on the lines below.

Name: ___

Company: __

E-mail: ___

1.2 What types of products or subcomponents of products are produced by your company?
(Circle all that apply.)

1. Automotive

2. Aerospace

3. Shipping

4. Rail

5. Other (Specify): __

1.3 Please fill in the North American Industry Classification System (NAICS) code(s) under
which this establishment is classified.

NAICS Code(s)

1.4 What was the approximate total number of employees employed by your company in
2000? (Report a range of employees if necessary.)

1.5 What was the approximate value of total revenues (sales) reported by your company in
2000?

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-23

2. The Use of CAD/CAM/CAE and
PDM Software

2.1 In the table below, please list the CAD/CAM/CAE and PDM software your company
currently maintains and indicate when it was installed and what you project to be its
remaining life expectancy?

Name of Software Product (all versions) Year Installed
Number of Years Expected To

Remain in Operation

Example: CATIA Example: 1996 Example: 10 more years

2.2 What were the total number of (full-time equivalent [FTE]) employees in 2000 involved in
operating and supporting the software listed in Table 2.1?

Type of Activity
Number of
Employees

CAD/CAM/CAE

PDM

Please Read Before Continuing!

In Sections 2 through 5, we ask about the incidence and cost of FEDI and clearinghouse software
bugs and errors at this establishment. Personnel responsible for monitoring and maintaining FEDI
and clearinghouse software at this establishment should be able to provide the best answers to
these questions. If necessary, please share your password with colleagues at your company and
ask them to complete the appropriate sections.

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-24

3. Incidence and Costs of Software
Bugs and Errors

This section focuses on the software bugs and errors your company encounters in the
CAD/CAM/CAE and PDM systems you employ and how they affect your business operations.

3.1 Does the information you are providing reflect all the CAD/CAM/CAE and PDM systems at
your company?

 _____ yes

 _____ no: what percentage of your company’s systems are represented in your
 responses? _____%

3.2 What types of problems does your company encounter due to bugs and errors in
CAD/CAM/CAE and PDM software (do not include short comings in basic product design
and functionality)?

3.3 Software bugs can lead to either major problems (manual re-entry of data or design faults)
or minor problems (requiring a slight correction to files being transferred). In 2000, how
many major and minor software bugs or errors did your company encounter in your
software?

_______________ major

_______________ minor

3.4 For what percentage of those bugs or errors were the source of the problems found and
fixed through code modification and patches?

_______________ % found and fixed

_______________ % not fixed

100% total

3.5 Was 2000 a typical year for software problems, or has your company been making an
above average number of software upgrades, potentially leading to an uncharacteristically
large number of software problems?

_____ typical year

_____ unusual year with _____% more software/system improvement projects than usual

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-25

3.6 For the typical major error that you had in 2000, what was the impact on your company’s
business operations?

1. _____% lead to design faults that were detected downstream or after product release

2. _____% lead to design time and cost increases

_____ months delay

_____ % cost increase

3. Other impact: please explain ___

3.7 Did your company experience any repair costs associated with the software failure, such
as time to re-enter lost data or repair data archives?

1. _____ No

2. _____ Yes: ________ labor hours spent on repair

 ________ value of lost information

 ________ other repair or damage costs,

 please explain ___

3.8 Do you think your company experienced any long-run competitive effects from the
software failure(s), such as lost reputation or lost market share?

Yes/no: lost reputation

Yes/no: lost market share

Yes/no: Delayed product getting to market by _____ months, leading to lost sales of _____ $/month

_____ other impacts

3.9 For minor software bugs in your CAD/CAM/CAE or PDM software, did these result in
increased operating costs or decreased efficiency?

_____ No (Go to Section 4)

_____ Yes: please explain __________________________________

3.9a Are these one-time expenditures due to developing patches and work arounds or
are they ongoing problems affecting efficiency?

 _____ one-time costs

 _____ ongoing costs

3.9b Approximately what are these annual expenditures?

 $_____________

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-26

4. Software Life-Cycle Costs
Associated with Bugs and Errors

In this section, we investigate how software bugs and errors affect the life-cycle costs of
purchasing and operating CAD/CAM/CAE and PDM software.

The Purchase Decision

4.1 How much time and resources are spent researching a new CAD/CAM/CAE and PDM
software package before a purchase decision is made?

_____ calendar time (months)

_____ labor expenditures (number of or fraction of FTEs)

4.2 Could the search time and resources have been reduced if you had better information
about the quality of the software products you were comparing?

_____ Yes: What would be the change in

 _____ fewer months

 _____ fewer number of FTEs

4.3 Because of potential software bugs and errors, do you typically delay purchasing new
versions of CAD/CAM/CAE and PDM software?

_____Yes: What is the typical delay? _____ months

_____ No

Software Installation and Acceptance

4.4 What was the average time it took for installation and acceptance testing for your
CAD/CAM/CAE and PDM software?

______________ months

4.5 What parties were involved in the installation and
performance testing of your CAD/CAM/CAE and PDM
software, and what was the share of effort/expenditures?

_____% software developers

_____% your company

_____% third-party integrator (consultant)

100%

Acceptance testing is the
process of determining
whether software
determines predefined
acceptance criteria.

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-27

4.6 What were your company’s own expenditures on installing and performing acceptance
testing of CAD/CAM/CAE and PDM software in 2000?

______ total labor hours

4.7 How much did your company spend on external consulting services for installation and
acceptance testing services of CAD/CAM/CAE and PDM software in 2000?

$ ____________________

4.8 If the software you purchased contained fewer bugs and errors, how much would your
labor and external consulting expenditures for installation and acceptance testing have
been reduced?

______________ percent

Maintenance Costs

4.9 How much money did your company spend on maintenance
contracts for CAD/CAM/CAE and PDM software in 2000?

$____________________

4.10 In 2000, how much money did your company spend on
CAD/CAM/CAE and PDM software upgrades and
maintenance that were not covered by a maintenance
contract?

$____________________

4.11 What percentage of maintenance costs were associated with bugs and errors embedded in
the software?

______________ percent

Redundant System Costs

4.12 After installation and acceptance, did your company maintain redundant backup systems
for some period of time in case the new software failed?

_____Yes

How long did you maintain the backup system? _____ months

What was (is) the estimated cost of maintaining these systems? __________ $/month

_____ No

Maintenance contracts
include any agreements
with outside agencies that
those agencies will perform
periodic checks of system
integrity and/or provide
free upgrades and/or
correct errors in installed
software. Contracts may
include training and
technical support.

The Economic Impacts of Inadequate Infrastructure for Software Testing

C-28

5. The Impact of Reducing the
Number of Software Bugs and
Errors

In this section, we investigate how the costs associated with bugs and errors in CAD/CAM/CAE
and PDM would change if the number of bugs and errors embedded in these software products
were partially reduced. Our discussions with industry indicate that it is not feasible or
economical for software developers to produce “bug-free” software. However, NIST is interested
in knowing what the cost savings would be if your company encountered a 25, 50, 75, or 90
percent reduction in software errors.

We anticipate that the rate at which the cost of bugs decreases as the number of bugs decreases
will not be the same for all of the cost categories that have been discussed previously in the
survey. For example, some cost-bug relationships may be linear (i.e., a 50 percent reduction in
bugs leads to a 50 percent reduction is costs), and some may be nonlinear (i.e., a 50 percent
reduction in bugs may lead to less than a 50 percent reduction in costs because even a small
number of bugs requires testing, backup, systems, etc.).

5.1 In the table below, please estimate the percentage cost reduction associated with different
percentage reductions in bugs for each of the major cost categories discussed earlier in the
survey. Two examples are provided. In Example A, costs decline proportionally as the
number of bugs are reduced. In Example B, costs do not decline proportionally, and a
90 percent reduction in bugs does not eliminate over half of the costs because other
normal costs may be associated with maintenance or installation.

Cost Reductions as a Function of Bug Reductions

Cost Categories
Percentage Reduction in Bugs or Errors in

FEDI and Clearinghouse Software

 25% 50% 75% 90%

Example A (linear) 25% 50% 75% 90%

Example B (nonlinear) 10% 15% 40% 45%

Major failure costs

Minor failure costs

Purchase decision costs

Installation costs

Maintenance costs

Redundant system costs

Appendix C — CAD/CAM/CAE/PDM Developers and Users Survey Instruments

C-29

6. Comments

6.1 Please provide any additional comments that would help us evaluate the cost of
CAD/CAM/CAE or PDM software bugs and errors to your company.

We thank you for your participation.

Please indicate below if you would like to receive a copy of the final report.

_____ Yes, please send a copy

_____ No

D-1

 Appendix D:
 Financial Services
 Software Use and
 Development

More and more communications are occurring electronically.
Shipping orders, messages, and other notifications are now
completed with minimal paper documentation. This is especially
true of financial transactions. In 1999, over $19.5 trillion dollars
worth of transactions occurred electronically, representing a
282 percent increase since 1989 (NACHA, 2000).

The generic term used to describe the transfer of information
electronically is Electronic Data Interchange (EDI). EDI is the
process of exchanging documents in a standardized format directly
from a database in one agency to a database in a separate agency.
EDI can potentially cover most exchanges that are made with paper-
based communication, such as placing orders with suppliers and
carrying out financial transactions.

The internal structure of the message distinguishes EDI for other
forms of electronic communication (such as e-mail). E-mail
messages are written in a free format and are not intended to be
processed in any systematic and repeated manner when they are
received. The goal of EDI is to have the data within the message
processed automatically (i.e., without user intervention) when the
message is received. To accomplish this goal, EDI messages must
have an internal structure and content that must be adhered to for
the data within the message to be transferred from one party to
another. Even though EDI has a well-defined basic structure

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-2

established by standards such as ANSI X.12, it allows for significant
flexibility in its application. For this reason, several industries have
established their own EDI application protocols with additional
specifications to support unique industry requirements.

Financial Electronic Data Interchange (FEDI) is the process of
electronically transferring data from one user to another. The
process of transferring financial data electronically is more
complicated than most other forms of electronic communication.
FEDI transactions in the financial services sector not only must
contain the information for the transaction that is being processed,
but must also include the transfer of the financial resources. The
reconciliation of accounts requires the use of a clearinghouse that
adds a step to the FEDI process that does not exist in traditional EDI
transactions.

Computer software and hardware play two important roles in the
transfer of information in the financial services sectors. First, FEDI
and clearinghouse software are used to manage the information
content once it has arrived at its appropriate location. Second,
routers and switches (a combination of software and hardware) are
used to manage the flow of information from one entity to the next
via the Internet and company intranets.

This Appendix is divided into three sections. The first section
provides background on the role of software and hardware in
financial transactions. The second section focuses on the FEDI and
clearinghouse software used to conduct the financial transactions.
The third section of this deliverable focuses on the routers and
switches used in the transfer of that information.

 D.1 OVERVIEW OF ELECTRONIC TRANSACTIONS
IN THE FINANCIAL SERVICES SECTOR
Financial transaction management is the overarching term used to
describe the flow, monitoring, and control of data across and within
banking institutions. It is defined as the firm’s ability to control and
manage a range of transactions—from foreign exchange to securities
deals—from their input through to their reconciliation and
successful resolution. Financial transactions management can be
subdivided into three general activities: financial transactions

Appendix D — Financial Services Software Use and Development

D-3

reconciliation, financial transactions services, and financial
transactions control.

Z Financial Transaction Reconciliation—The financial
transaction reconciliation software allows the automated
reconciliation of payments, securities, and foreign
transactions. A flexible matching algorithm within each
reconciliation module allows users to set up matching
criteria to optimally meet the needs of partner banks or
brokers, which increases matching rates.

Z Financial Transaction Services—Financial transaction
services include on-line transactions, archiving and retrieval
functionality, and other services to aid the end user.

Z Financial Transaction Control—Financial transactions
control is software used to develop profiles and govern
access to all functions. Roles and users can be defined
individually or in groups, and user IDs can be assigned to all
actions, providing a full audit trail. Several institutions can
work with the same system independently of each other, and
firms also have the ability to outsource matching services, if
required.

Starting in the mid-1970s, the first major use of EDIs was for direct
deposits of payrolls. Paper financial transactions were growing at a
rate of more than one billion per year. Banks and other financial
institutions realized that they needed to develop a more efficient
way of managing the flow of information that was being created.
Automated clearinghouses were developed in response to this
realization. In 1975, the Social Security Administration established
the option of direct deposit for recipients to boost the use of
electronic transactions. With close to half of all recipients receiving
benefits electronically in 1988, the Social Security Administration
was far ahead of the private sector, where only 11 percent of all
employees were paid electronically.

 D.1.1 Characteristics of Electronic Transactions

Electronic payments include all financial transactions that are made
electronically without the use checks, sharedrafts, or other paper
documents. Direct deposit of payroll checks, automated payments,
PC banking, and debit card transactions are the most common forms
of electronic payments. More recently, benefits payments,
annuities, dividends, and Internet transactions are being conducted
electronically.

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-4

While these transactions have been increasing dramatically in the
past 10 years, the process of conducting the transaction has
remained relatively constant. All financial transactions involve an
originating entity, the group making the payment, and a receiving
entity (the group receiving the payment). The originating entity
starts the transaction by querying the recipient agency about
purchase of a specific product or service. Once an agreed-upon
price and quantity are reached, an order is processed and the
product is delivered from the recipient to the originator. However,
the originator and recipient only exchange information and the
product; there is no direct financial exchange. Rather, the
originator contacts the Originating Financial Depository Institution
(OFDI). The OFDI works within the clearinghouse system to
transfer funds from the originating entity’s account to an account in
a Receiving Financial Depository Institution (RFDI) where the
recipient has an account. The process is depicted in Figure D-1.

Figure D-1. Electronic Transactions in the Financial Services Sector

ODFI RDFI

Originator Recipient

INFORMATION/$

INFORMATION/PRODUCT

INFORMATIONINFORMATION

For the information that is passed to be interpretable, all parties in
the transaction must be able to understand and transfer that
information. To understand the information that is being passed, a
common set of standards is needed to define the information,
software is needed to interpret and manage the information, and an
infrastructure is needed to send and receive the information (Clarke,
1998).

Appendix D — Financial Services Software Use and Development

D-5

Z Standards define the structure of how the information is
passed between entities. The standard needs to be an
unambiguous method of presenting the informational
content of the data that are being passed. The standards
dictate what information is included in the message and the
ordering of that information. Without agreed-upon
standards, it is not possible to efficiently communicate the
information. The standards can either be agreed upon
between parties when the transactions or negotiation costs
are low, or they can be set by a third party when those costs
are high.

 The standard consists of the syntax that will be used in the
message, the message design rules, the ordering of
directories within the message, and the message itself.
Three different standards are commonly used with the EDI
world. ANSI X.12 is the dominant standard in North
America, Australia, and New Zealand, while parts of Europe
currently use UNTDI. TRADACOMS is the most widely
used standard and has the most international appeal.1
However, some firms and industries have developed their
own standards that may or may not be based on any of the
three most commonly used standards.

Z Data management and translation software is needed to
manage the flow of information and to translate messages
once they are put into an agreed-upon standard. The
software manages five specific activities that occur within
the FEDI process:

1. extracting data from a specific computer application
within the computer system,

2. translating the data into a transmittable format,

3. transmitting the data within a message to the receiving
firm,

4. interpreting the message and the data by the receiving
entity, and

5. loading information into a specific computer application
within the receiving entity’s computer system.

Z Communications infrastructure is the physical technology that
will actually pass the information from one entity to another.
Originally, the infrastructure was electronic data tapes or
diskettes that were sent from one firm to another. This approach
was replaced by the development of closed networks that
participating firms could use to transmit information.2 More
recently, the communications medium has become the Internet

1ANSI is the American National Standards Institute, UNTDI is the United Nations

Trade Date Interchange Standard, and EDIFACT is the EDI for Administration,
Commerce, and Transportation.

2These closed networks are often referred to as value-added networks (VAN).

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-6

and the routers and switches that manage the flow of
information in the infrastructure.

 D.1.2 Volume of Electronic Transactions

The amount of electronic transactions has increased dramatically in
the last 10 years. Table D-1 shows the inflation-adjusted growth in
the total dollar value of transactions that are conducted
electronically through FEDI mechanisms. In 1999, 77 percent of
social security recipients received electronic payments and
96 percent of government employees were paid electronically.
While government use has been growing slowly over the last 5
years, with annual growth rates of 3 to 8 percent, commercial use of
electronic transactions has increased dramatically during that same
time with annual growth rates consistently over 15 percent
(NACHA, 2000). In 1999, approximately half of all private sector
employees were paid electronically (NACHA, 2000).3

In the United States, the two entities that have emerged to perform
the greatest amount of automated clearinghouse transactions are the
Federal Reserve and the Network of Automated Clearing Houses
(ACH). The ACH is a nationwide private network governed by a set
of operating rules that controls the transfer of electronic funds
between depository financial institutions.

Not only is the dollar value of transactions increasing, so is the
number of transactions. In 1989, 1.3 billion transactions were
conducted electronically; by 1999, 6.2 billion electronic
transactions passed through clearinghouses. Although the Federal
Reserve dominates the number of transactions that take place, it has
recently become less prominent. In 1994, the Federal Reserve
accounted for 82 percent of the total number of transactions that
were processed electronically; by 1998, that number fell to under
70 percent (BIS, 2000).

A continuing trend is that the average dollar value per transaction
has been decreasing while the total value and volume of
transactions have been increasing. This trend is due to the
decreased cost of electronic transactions and the increased public
awareness and acceptance of these systems. In 1989, the inflation-

3Part of the explanation of increased use of EDI has been attributed to the

aggressive marketing campaign by the Social Security Administration that has
featured Gavin McLeod and Ricardo Monteban.

Appendix D — Financial Services Software Use and Development

D-7

T
a

b
le

 D
-1

.
 E

x
te

n
t

o
f

E
le

c
tr

o
n

ic
 M

a
rk

e
t

19

90

19
91

19

92

19
93

19

94

19
95

19

96

19
97

19

98

19
99

20

00

To
ta

l A
C

H
 v

ol
um

e
(m

ill
io

ns
)

1,
54

9
1,

96
4

2,
20

6
2,

55
9

2,
93

3
3,

40
7

3,
92

9
4,

54
9

5,
34

4
6,

12
2

6,
88

2

%

 in
cr

ea
se

16

.4

26
.8

14

.8

16
.0

14

.6

16
.2

15

.3

15
.8

17

.5

14
.6

12

.4

D
ol

la
r

va
lu

e
(tr

ill
io

ns
)

$6
.1

$6

.9

$7
.8

0
$8

.8

$1
0.

1
$1

1.
1

$1
2.

1
$1

4.
0

$1
8.

1
$1

9.
1

$2
0.

3

C
om

m
er

ci
al

 (m
ill

io
ns

)
1,

03
0

1,
19

3
1,

37
5

1,
60

3
1,

87
9

2,
21

1
2,

56
6

3,
01

0
3,

52
3

3,
85

8
4,

36
0

%

 in
cr

ea
se

22

.0

15
.8

15

.3

16
.6

17

.2

17
.7

16

.1

17
.3

17

.0

9.
5

13
.0

G
ov

er
nm

en
t (

m
ill

io
ns

)
51

9
52

1
53

1
55

4
57

4
60

1
62

5
67

8
76

4
83

2
84

8

%

 in
cr

ea
se

6.

6
0.

4
1.

9
4.

3
3.

6
4.

8
3.

9
8.

5
12

.7

8.
9

1.
9

O
n-

us
 (m

ill
io

ns
)

25

0
30

0
40

2
48

0
59

5
73

8
86

1
10

57

1,
43

2
1,

67
5

%

 in
cr

ea
se

20

.0

34
.0

19

.4

24
.0

24

.0

16
.7

22

.8

35
.5

16

.9

To
ta

l c
om

m
er

ci
al

 (m
ill

io
ns

)
1,

03
0

1,
44

3
1,

67
5

2,
00

5
2,

35
9

2,
80

6
3,

30
4

3,
87

1
4,

58
0

5,
29

0
6,

03
4

%

 in
cr

ea
se

22

.0

40
.1

16

.1

19
.7

17

.6

19
.0

17

.7

17
.2

18

.3

15
.5

14

.1

N
um

be
r

of
 c

om
pa

ni
es

 u
si

ng

th
e

A
C

H
 n

et
w

or
k

(th
ou

sa
nd

s)

10
0

13
0

15
0

30
0

40
0

50
0

60
0

72
5

2,
00

0
2,

50
0

2,
50

0

%
 g

ov
er

nm
en

t e
m

pl
oy

ee
s

us
in

g
di

re
ct

 d
ep

os
it

75

78

79

82

83

84

91

92

95

97

97

%
 s

oc
ia

l s
ec

ur
ity

 r
ec

ip
ie

nt
s

us
in

g
di

re
ct

 d
ep

os
it

50

51

53

54

58

59

63

69

75

77

78

So
ur

ce
:

N
A

C
H

A
:

Th
e

El
ec

tr
on

ic
 P

ay
m

en
t A

ss
oc

ia
tio

n.
 2

00
1.

 <
ht

tp
://

w
w

w
.n

ac
ha

.o
rg

/n
ew

s/
St

at
s/

A
C

H
_S

ta
tis

tic
s_

Fa
ct

_S
he

et
_2

00
0.

ht
m

>
.

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-8

adjusted average dollar per transaction was just over $5,000. In
1999, the average fell to just over $3,000. This drop shows that an
increasingly large number of lower value transactions are being
conducted electronically, indicating that FEDI is becoming more
involved in the routine and daily operations of financial institutions.

 D.1.3 Firms in the Financial Services Sector

The Census Bureau aggregates firms engaged in financial
transactions into four broad categories by NAICS code.4 Table D-2
provides establishment, revenue, payroll, and employment
information for each category.

Table D-2. Characteristics of Firms in the Financial Services Sector, 1997

 Establishments
Revenue
(millions)

Payroll
(millions) Employees

521 Monetary Authorities 42 24,581 903 21,674

522 Credit Intermediation and Related
Activities

166,882 808,810 98,723 2,774,910

523 Securities, Commodity Contracts, and
Other Financial Investments and Related
Activities

54,491 274,986 71,281 706,053

524 Insurance Carriers and Related
Activities

172,299 1,072,784 92,230 2,327,306

Source: 1997 Economic Census, Finance and Insurance Subject Series.

Firms within the Credit Intermediation and Related Activities sector
(522) are the most dependent on software and hardware to support
financial transactions. Sector 522 comprises firms engaged in
financial transactions processing, reserve activities, and
clearinghouse activities. Firms conducting clearinghouse activities
(subsector 52232) are primarily engaged in financial transaction
processing, reserve activities, and liquidity services or other
financial instrument clearinghouse services. Firms in this sector are
engaged in both automated and manual clearinghouse activities. In
1997, the clearinghouse subsector included over 1,200 firms with
over 60,000 employees.

4The appendix provides descriptions for each of the NAICS codes in sector 52.

Appendix D — Financial Services Software Use and Development

D-9

The finance and insurance sector of the economy (sectors 523 and
524) comprises firms whose dominant line of business is either
financial transactions or facilitating those transactions. Transactions
are broadly defined to include the creation, liquidation, or change
of ownership of a financial asset. Within this broad definition, firms
can be subclassified based on their activities. Three types of broad
activities are used for this subclassification (Census, 2000):

1. Raising funds by taking deposits or issuing securities and in turn
creating liabilities. Firms then use these funds to acquire assets,
make loans, or purchase securities.

2. Pooling risk by underwriting insurance and annuities. Firms
collect fees, insurance premiums, or annuities from engaging in
these contracts.

3. Providing specialized services facilitating or supporting financial
intermediation, insurance, and employee benefit programs.

 D.2 SOFTWARE USED BY FINANCIAL SERVICES
PROVIDERS
There are two main types of software used to facilitate the exchange
of information in the financial services sector: FEDI software and
clearinghouse software. FEDI software manages the flow of
information across firms while clearinghouse software manages the
flow of funds between financial institutions and the clearinghouse.
Figure D-2 builds on Figure D-1 and adds the types of software that
are used within each activity in the financial services sector.

 D.2.1 FEDI Software

Of the three key elements involved in FEDI transactions, the one
that users have the most choice over is the software that they will
use. Standards are often set by third parties or have developed
through time, and the communications infrastructure is commonly
dictated by the level of physical technology capital in the region. In
contrast, there is a wide variety of commercial software available to
support FEDI transactions. Software used in sending FEDI
transactions must be able to extract the needed information from the
appropriate computer application and be able to translate that
information into a transferable document. Software used by the

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-10

Figure D-2. Software Used in Financial Transactions

Automated
Clearing House
(ACH) SoftwareODFI RDFI

Originator Recipient

FEDI
Software

FEDI Software/
ACH Software

FEDI Software/
ACH Software

receiving party must be able to interpret the information that is
shipped and be able to place it into the correct application in an in-
house format.

FEDI Software Attributes

There are few hard and specific rules to be followed when
developing FEDI software. However, like most software products,
some specific attributes are more important than others when
evaluating FEDI software products.

Z Ease of Upgrade. As firms increase the amount of
transactions that are being conducted electronically, there
will be an increased demand for system capacity.
Additionally, technological improvements in the future will
decrease costs of conducting each transaction. Because of
the dynamic changes that are occurring, the ease of upgrade
of the existing package is an important attribute when
evaluating FEDI packages.

Z Interoperability in Connectivity. Most FEDI software
packages are able to connect and transmit information to all
of the other major FEDI software packages. However, for
some software packages, interoperability between systems is
still an issue.

Z Interoperability in Data Standards. No common standard
exists for all EDI users. Consequently, even when
information is successfully passed from one user to another,
it still might be meaningless due to the lack of formatting
and organization within the message. Although some
software may be able to decipher information sent based on

Appendix D — Financial Services Software Use and Development

D-11

multiple standards, there is not one software product that
can decipher and organize all potential standards.

Z Interoperability with Existing Systems. For the EDI system to
increase productivity at the financial institution, it needs to
be able to interoperate with the firm’s current software
system. The cost of integration can be significant for two
reasons. Financial institutions often have programs and
databases that are separated by geography and activity.
Developing EDI systems that can work with all of the legacy
systems is often complex and time consuming. Secondly,
while there is a movement towards real-time systems, a
significant number of legacy systems operate under a batch
system where information may only be updated once a day.
EDI systems operate in real time and must constantly be
updated. Changing the legacy system from a batch to a
continuous process can also be exceptionally costly
(Economist, 2000). Some firms that have adopted EDI
technologies have had such severe interoperability problems
that they would receive orders and information
electronically and then print out hard copies to re-enter
them in the firms’ computer system (EDI Aware, 1994).

Development of FEDI Software

FEDI cannot be undertaken without software. Firms have three
potential ways to acquire FEDI software applications: in-house
development, custom packages, or commercial products.

Z In-House Development. Firms may develop an EDI system
in-house. This approach is potentially effective if the
number of trading partners is limited and if the standards for
communicating across firms are well defined.

 However, this approach often increases the cost of the
software product, as well as development and
implementation time. In-house development requires
additional testing, design, and development that commercial
and custom products may have already overcome. In
addition, upgrades to the product will require additional
development and testing time that would not be experienced
with commercial products.

Z Custom Packages. For very specific or tailored applications,
a firm may wish to contract out the development of their EDI
system. Custom-built solutions are often developed faster
and more efficiently than in-house development, but may be
more costly.

Z Commercial Packages. As EDI activities have become
increasingly common, commercial firms are starting to
develop software products that they can market to firms as
an alternative to custom or in-house solutions. Software
packages range from simple translators that are used on a PC
to sophisticated mainframe packages.

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-12

 Commercial products have several advantages over in-house
or custom packages for three reasons. Most commercial
products will meet any of the commonly agreed-upon
standards. Additionally, commercial packages are often
cheaper than in-house or custom development. Updating
and maintenance are often easier, cheaper, and more
effective when conducted by third-party experts.

 D.2.2 Clearinghouse Software

Applications software used in banks and financial institutions to
support the flow of dollars in the financial transaction management
activities described in Section 1 can be grouped into two software
categories: core accounting software and clearinghouse software.

Core accounting software is intrafirm software used to manage the
flow of information within the financial institution. It is used to
support all financial organization processing and customer
information requirements, including commercial banking and
relationship management, on-line teller and platform, customer
information, universal loans, deposits, safe deposit, general ledger,
item processing, and information storage and retrieval. Core
accounting software has been used in the financial services industry
for decades. Most systems have been in use for several years and
were developed from scratch and currently run on mainframe
systems. The systems have been in existence for so long that most
software bugs that were in the original programming have been
edited or repaired. In addition, new systems are rarely developed;
rather, existing systems are adapted through time.

Banks use clearinghouse software to manage the flow of financial
information. As more transactions are conducted electronically, an
increasing need for interoperability among financial institutions is
required. Clearinghouse software is the interfirm software used to
manage the flow of information across firms. Electronic payments
take the form of payrolls, travel and expense reimbursements,
annuities and pensions, dividends, government payments such as
Social Security and Veterans benefits, bill payments, retail
purchases, Internet purchases, corporate payments and treasury
management, and the provision of foods stamps and other
government cash assistance. Table D-3 gives the amount of
clearinghouse transaction for the top 50 banks in 1999 by dollar
volume.

Appendix D — Financial Services Software Use and Development

D-13

Table D-3. Volume of Clearinghouse Transactions by Bank, 1999

Rank Company Debits Credits Total
Annual
Change

1 Chase Manhattan Corp. 307,993,871 202,367,963 510,361,834 11%

2 Bank One Corp. 258,612,535 151,374,665 409,987,200 28%

3 Wells Fargo & Co. 153,870,924 250,619,653 404,490,577 11%

4 BankAmerica Corp. 105,709,913 222,951,819 328,661,732 10%

5 First Union Corp. 79,504,081 162,264,680 241,768,761 –5%

6 FleetBoston Financial Corp. 31,492,190 109,938,731 141,430,921 64%

7 Wachovia Corp. 70,731,560 62,135,960 132,867,520 133%

8 Northern Trust Corp. 53,258,648 75,173,037 128,431,685 14%

9 KeyCorp 47,453,555 75,116,095 122,569,650 –13%

10 Citicorp 40,839,018 47,171,293 88,010,311 15%

11 PNC Financial Services 23,613,380 62,610,435 86,223,815 17%

12 Mellon Financial Corp. 26,421,087 47,392,024 73,813,111 9%

13 Amsouth Bancorp 55,069,158 14,203,805 69,272,963 215%

14 U.S. Bancorp 18,389,109 42,699,282 61,088,391 –2%

15 SunTrust Banks Inc. 18,932,200 39,674,600 58,606,800 1%

16 Regions Financial Corp 19,620,663 35,737,701 55,358,364 287%

17 National City Corp. 10,545,386 32,616,933 43,162,319 17%

18 EFS National Bank 33,389,224 33%

19 First National of Nebraska 18,804,181 13,067,312 31,871,493 20%

20 ABN Amro North America 16,295,500 15,529,989 31,825,489 37%

21 Harris Bankcorp 12,654,795 17,351,548 30,006,343 –9%

22 State Street Corp. 14,973,357 14,508,704 29,482,061 8%

23 UMB Financial Corp. 16,921,438 11,640,290 28,561,728 9%

24 Firstar Corp 16,242,848 12,143,478 28,386,326 14%

25 Allfirst Financial Inc. 12,177,000 14,147,000 26,374,000 36%

26 Comerica Inc. 5,221,626 15,357,505 20,579,131 33%

27 Michigan National Corp. 8,183,000 11,400,918 19,583,918 21%

28 Marshall & Ilsley Corp. 9,072,805 9,628,490 18,701,295 34%

29 Bank of New York Co. 4,619,452 13,712,305 18,331,757 6%

30 First Tennessee National Corp. 3,621,517 14,552,812 18,174,329 –5%

31 Unionbancal Corp. 5,346,824 10,726,357 16,073,181 30%

32 Fifth Third Bancorp 4,595,033 11,443,865 16,038,898 16%

(continued)

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-14

Table D-3. Volume of Clearinghouse Transactions by Bank, 1999 (continued)

Rank Company Debits Credits Total
Annual
Change

33 Huntington Bancshares 5,168,812 10,440,950 15,609,762 1%

34 Pacific Century Financial Corp. 5,867,095 7,620,753 13,487,848 46%

35 First Security Corp. 5,493,213 7,237,901 12,731,114 7%

36 Mercantile Bancorp. 6,235,884 6,399,155 12,635,039 38%

37 Imperial Bancorp 1,401,653 11,086,989 12,488,642 —

38 Compass Bancshares 7,534,402 4,802,032 12,336,434 26%

39 HSBC USA Inc. 1,851,585 8,494,842 10,346,427 8%

40 Summit Bancorp 2,236,379 8,073,368 10,309,747 3%

41 First Premier Bank 8,876,037 1,347,176 10,223,213 27%

42 BOK Financial Corp. 7,248,818 2,873,858 10,122,676 20%

43 USAA Federal Savings Bank 819,011 8,767,469 9,586,470 –25%

44 Commerce Bancshares 3,213,378 6,170,289 9,383,667 17%

45 Universal Savings Bank 6,463,723 1,604,910 8,068,633 26%

46 SouthTrust Corp. 2,095,521 5,179,092 7,274,613 15%

47 CentraBanc Corp. 210,838 6,878,485 7,089,323 —

48 Arvest Inc. 56,213 6,721,337 6,777,550 —

49 Old Kent Financial Corp. 1,747,499 4,909,567 6,657,066 41%

50 First Hawaiian Bank 4,232,484 2,344,783 6,577,267 28%

Source: AmericanBanker.com. <http://www.americanbanker.com/PSUser/ABO_Display.htm?type=RankingBanks&
master=1999/Holding/ACHYE1999.html>.

The use of clearinghouse software has increased dramatically during
the last several years. Roughly 70 percent of all transactions now
take place electronically (NACHA, 2000). This increased reliance
on electronic data transactions has increased the importance of
software used in these transactions. However, the software often
used in these transactions occasionally fails. For example, in April
1999, CheckFree, which produces a clearinghouse software
application, announced that a bug existed in their product that
could have effected up to 350 banks throughout the country
(Sullivan, 1999).

Appendix D — Financial Services Software Use and Development

D-15

 D.2.3 The Developers of FEDI and Clearinghouse Software

When a firm is deciding on what FEDI or clearinghouse software to
implement, it can either develop its own software, have the software
custom built, or purchase a commercial application. While some
FEDI and clearinghouse software applications are commercially
available, they often have to be adapted and altered to fit in with
the firm’s existing legacy system.

Tables D-4 and D-5 list the firms that have developed commercial
clearinghouse software and FEDI products, respectively, and
provides a description of the products.

 D.2.4 Impacts of Software Failures

The economic cost associated with inadequate FEDI and
clearinghouse software can be substantial (System Transformation,
2000). In some cases, software failures prevent transactions from
occurring; in other cases, expensive work-arounds for failures need
to be implemented. Examples of the problems and associated costs
resulting from FEDI and clearinghouse software failures include the
following:

Z Data interchange interruptions or errors. If software fails,
originating and receiving financial institutions may not
receive some or all of the information involved in the
transaction. Solutions to this problem include switching to
paper or alternate ways to conduct a transaction, manually
correcting the data once they have been received, or
working with the data creators to correct the problem. In
the extreme, the entire transacting process may need to be
frozen until the problem is remedied.

Z Credit card processing failure in the banking system. If FEDI
software fails and the volume of credit card transactions is
low, the transactions can be approved manually, although at
a much higher cost. However, if transactions volume is
high, merchants may have to purchase a new system or
discontinue use of credit card transactions until the problem
is remedied.

Z Trading system failure. If major financial trading systems fail
and no suitable remedies exist, the impacts of the failure
could be significant. If a second trading system cannot be
quickly modified to accept these transactions, trading would
have to be halted until the problem is resolved.

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-16

T
a

b
le

 D
-4

.
 C

le
a

ri
n

g
h

o
u

s
e

 S
o

ft
w

a
re

 D
e

ve
lo

p
e

rs

C
om

pa
ny

 N
am

e
So

ft
w

ar
e

Pr
od

uc
t

D
es

cr
ip

ti
on

C

os
t

C
on

ta
ct

 I
nf

or
m

at
io

n

A
M

D
EV

, I
N

C
.

A
U

TO
D

R
A

FT
 C

P
W

in
do

w
s-

ba
se

d
so

ftw
ar

e
pr

og
ra

m
 d

es
ig

ne
d

to

st
ru

ct
ur

e
da

ta
 in

to
 th

e
st

an
da

rd
 A

C
H

 fo
rm

at
.

$2
99

A

U
TO

D
R

A
FT

SB

W

in
do

w
s-

ba
se

d
so

ftw
ar

e
pr

og
ra

m
 d

es
ig

ne
d

to

st
ru

ct
ur

e
da

ta
 in

to
 th

e
st

an
da

rd
 A

C
H

 fo
rm

at
.

$9
9

N

O
V

A

W
in

do
w

s-
ba

se
d

so
ftw

ar
e

pr
og

ra
m

 d
es

ig
ne

d
to

al

lo
w

 fi
na

nc
ia

l i
ns

tit
ut

io
ns

 a
nd

 th
ir

d-
pa

rt
y

pr
oc

es
so

rs
 a

n
ef

fe
ct

iv
e

m
et

ho
d

to
 m

an
ag

e
or

ig
in

at
io

n
an

d
re

ce
ip

t o
f A

C
H

 fi
le

s.

$6
,5

00
 –

 $
15

,0
00

P.

O
. B

ox
 1

14
7

C
oo

ke
vi

lle
, T

N
 3

85
03

Ph

on
e:

 8
00

/6
28

-7
63

8

Fa
x:

 9
31

/5
20

-0
54

2

N

O
V

A
 2

00
0

A
C

H
 p

ro
ce

ss
in

g
fo

r
hi

gh
-v

ol
um

e
pr

oc
es

so
rs

, i
s

a
hi

gh
-l

ev
el

 im
pl

em
en

ta
tio

n
of

 a
n

SQ
L-

ba
se

d
ve

rs
io

n
of

 th
e

N
O

V
A

 a
pp

lic
at

io
n.

 N
O

V
A

20

00
 p

ro
vi

de
s

m
or

e
fe

at
ur

es
, f

le
xi

bi
lit

y,
 a

nd

pe
rf

or
m

an
ce

 th
an

 th
at

 o
f c

ur
re

nt
 m

ai
nf

ra
m

e
pr

oc
es

si
ng

 a
pp

lic
at

io
ns

.

$2
50

,0
00

V

IP

W
in

do
w

s-
ba

se
d

so
ftw

ar
e

pr
og

ra
m

 d
es

ig
ne

d
to

al

lo
w

 fi
na

nc
ia

l i
ns

tit
ut

io
ns

 a
nd

 th
ir

d-
pa

rt
y

pr
oc

es
so

rs
 a

n
ef

fe
ct

iv
e

m
et

ho
d

fo
r

m
an

ag
in

g
A

C
H

 fi
le

s
cr

ea
te

d
by

 th
ei

r
cl

ie
nt

s.
 T

he
 s

ys
te

m

is
 u

se
d

to
 s

tr
ea

m
lin

e
A

C
H

 p
ro

ce
ss

in
g,

 a
dd

re
ss

tim

in
g

is
su

es
, m

an
ag

e
ri

sk
, a

nd
 r

ed
uc

e
co

st
.

$3
,5

00

B
ar

ri
ng

to
n

C
or

po
ra

tio
n

A
C

H
 fo

r
th

e
PC

PC

-b
as

ed
 s

of
tw

ar
e

sy
st

em
 th

at
 le

ts
 c

us
to

m
er

s
cr

ea
te

 th
ei

r
ow

n
A

C
H

 tr
an

sa
ct

io
ns

 fr
om

 th
ei

r
PC

s.
 C

us
to

m
er

s
ar

e
ab

le
 to

 c
re

at
e

di
re

ct

de
po

si
t o

f p
ay

ro
ll,

 c
ol

le
ct

 r
ec

ei
va

bl
es

, m
ak

e
lo

ca
l,

st
at

e
an

d
fe

de
ra

l t
ax

 p
ay

m
en

ts
, a

nd

co
ns

ol
id

at
e

an
d

di
sb

ur
se

 fu
nd

s
w

ith
 m

in
im

al

in
te

rv
en

tio
n

fr
om

 th
e

fin
an

ci
al

 in
st

itu
tio

n.

$1
,6

00
 a

nd
 $

2,
00

0
60

7
N

P
A

ve
nu

e,
 T

hi
rd

 F
lo

or

Fa
rg

o,
 N

D
 5

81
02

Ph

on
e:

 8
00

/7
79

-0
18

3

Fa
x:

 7
01

/2
41

-9
93

0

(c
on

tin
ue

d)

Appendix D — Financial Services Software Use and Development

D-17

T
a

b
le

 D
-4

.
 C

le
a

ri
n

g
h

o
u

s
e

 S
o

ft
w

a
re

 D
e

ve
lo

p
e

rs
 (

c
o

n
ti

n
u

e
d

)

C
om

pa
ny

 N
am

e
So

ft
w

ar
e

Pr
od

uc
t

D
es

cr
ip

ti
on

C

os
t

C
on

ta
ct

 I
nf

or
m

at
io

n

B
ot

to
m

lin
e

Te
ch

no
lo

gi
es

B

an
kQ

ue
st

N

et
Tr

an
sa

ct

Pa
yB

as
e

Pr
ov

id
es

 w
eb

-e
na

bl
ed

 b
ill

in
g,

 p
ay

m
en

t,
an

d
el

ec
tr

on
ic

 b
an

ki
ng

 s
ol

ut
io

ns
 fo

r
th

e
bu

si
ne

ss
-

to
-b

us
in

es
s

m
ar

ke
t.

1-

80
0-

47
2-

13
21

w

w
w

.b
ot

to
m

lin
e.

co
m

bt

in
fo

@
bo

tto
m

lin
e.

co
m

Pa

yb
as

e
A

llo
w

s
or

ga
ni

za
tio

ns
 to

 a
ut

on
om

ou
sl

y
cr

ea
te

an

d
se

nd
 a

ny
 ty

pe
 o

f e
le

ct
ro

ni
c

pa
ym

en
t.

 It

ca
n

be
 u

se
d

to
 e

xt
ra

ct
 d

at
a

fr
om

 a
ny

 c
or

po
ra

te

fin
an

ci
al

 a
pp

lic
at

io
n,

 in
cl

ud
in

g
Lo

tu
s

an
d

Ex
ce

l s
pr

ea
ds

he
et

s,
 a

cc
ou

nt
in

g
pa

ck
ag

es
, a

nd

ch
ec

k-
is

su
in

g
so

ftw
ar

e,
 a

nd
 p

ro
du

ce
 a

ny
 ty

pe

of
 p

ay
m

en
t.

$1
9,

99
5

–
$6

9,
99

5
15

5
Fl

ee
t S

tr
ee

t
Po

rt
sm

ou
th

, N
H

 0
38

01
-4

05
0

Ph

on
e:

 6
03

/4
36

-0
70

0

Fa
x:

 6
03

/4
36

-0
30

0

B
ri

nk
m

an

Te
ch

no
lo

gi
es

,
In

c.

C
A

P
20

00
 A

C
H

O

ri
gi

na
tio

n
Pr

oc
es

se
s

in
co

m
in

g
Fe

dL
in

e
A

C
H

 a
nd

 E
D

I
tr

an
sa

ct
io

ns
, A

C
H

 tr
an

sa
ct

io
ns

 o
ri

gi
na

te
d

by

th
ir

d-
pa

rt
y

pa
yr

ol
l s

er
vi

ce
 p

ro
vi

de
rs

, a
nd

 A
C

H

an
d

ED
I t

ra
ns

ac
tio

ns
 o

ri
gi

na
te

d
by

 a
 b

an
k’

s
co

m
m

er
ci

al
 a

cc
ou

nt
s.

$5
,0

00
 –

 $
17

,0
00

14

45
 M

ac
A

rt
hu

r
D

ri
ve

,
Su

ite
 1

22

C
ar

ro
llt

on
, T

X
 7

50
07

Ph

on
e:

 9
72

/2
42

-8
09

0

Fa
x:

 9
72

/2
42

-8
67

6

Po

w
er

lin
e

A
C

H

(R
ET

A
IL

)
G

iv
es

 a
ny

 s
iz

e
co

rp
or

at
io

n
or

 o
rg

an
iz

at
io

n
th

e
ab

ili
ty

 to
 o

ri
gi

na
te

 e
le

ct
ro

ni
c

tr
an

sa
ct

io
ns

—
A

C
H

 tr
an

sa
ct

io
ns

.

$1
00

 –
 $

2,
00

0

En
te

gr
ity

So

lu
tio

ns

A
ss

ur
eM

ai
l

En
te

gr
ity

A

ss
ur

eW
eb

En

te
gr

ity
-E

na
bl

ed

En
te

gr
ity

Sa

fe
Pa

ge
s

En
te

gr
ity

 S
D

P
En

te
gr

ity
 S

ec
re

ts

En
te

gr
ity

 S
ol

ut
io

ns
 s

ec
ur

es
 s

ta
nd

ar
d,

 c
us

to
m

,
an

d
le

ga
cy

 a
pp

lic
at

io
ns

 fo
r

th
e

bu
si

ne
ss

-t
o-

bu
si

ne
ss

 (B
2B

) e
-c

om
m

er
ce

 n
ee

ds
 o

f t
he

G

lo
ba

l 1
00

0.

20

77
 G

at
ew

ay
 P

la
ce

, S
ui

te
 2

00

Sa
n

Jo
se

, C
A

 9
51

10

Ph
on

e:
 4

08
-4

87
-8

60
0

X
10

4
w

w
w

.e
nt

eg
ri

ty
.c

om

in
fo

@
en

te
gr

ity
.c

om

Eq
ui

fa
x

E-
B

an
ki

ng
 S

ol
ut

io
ns

C

us
to

m
er

-L
in

k
A

C
H

 O
ri

gi
na

tio
n

H
el

ps
 fi

na
nc

ia
l i

ns
tit

ut
io

ns
 a

nd
 c

or
po

ra
tio

ns

el
im

in
at

e
th

e
pr

oc
es

si
ng

 a
nd

 r
ec

on
ci

lia
tio

n
of

ch

ec
ks

.

$5
,0

00
 –

 $
15

,0
00

10

3
C

om
m

er
ce

 S
tr

ee
t,

Su
ite

12

0
La

ke
 M

ar
y,

 F
L

32
74

6

Ph
on

e:
 8

88
/4

53
-5

32
3

Fa

x:
 4

07
/8

29
-4

45
2

(c
on

tin
ue

d)

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-18

T
a

b
le

 D
-4

.
 C

le
a

ri
n

g
h

o
u

s
e

 S
o

ft
w

a
re

 D
e

ve
lo

p
e

rs
 (

c
o

n
ti

n
u

e
d

)

C
om

pa
ny

 N
am

e
So

ft
w

ar
e

Pr
od

uc
t

D
es

cr
ip

ti
on

C

os
t

C
on

ta
ct

 I
nf

or
m

at
io

n

Fu
nd

te
ch

C

or
po

ra
tio

n
Fu

nd
te

ch

A
C

H
(T

M
)

G
en

er
at

e
A

C
H

 p
ay

m
en

ts
 o

r
co

lle
ct

io
ns

 q
ui

ck
ly

an

d
ea

si
ly

 in
 a

 h
ig

hl
y

se
cu

re
 e

nv
ir

on
m

en
t.

$5

,0
00

 –
 $

75
,0

00

30
 M

on
tg

om
er

y
St

re
et

, S
ui

te

50
1

Je
rs

ey
 C

ity
, N

J 0
73

02

Ph
on

e:
 2

01
/9

46
-1

10
0

Fa

x:
 2

01
/9

46
-1

31
3

G
lo

ba
l P

ay
m

en
t

Sy
st

em
s

B
an

k-
O

n-
It

Tr
an

sa
ct

A

 W
in

do
w

s-
ba

se
d

A
C

H
 o

ri
gi

na
tio

n
sy

st
em

 fo
r

fin
an

ci
al

 in
st

itu
tio

ns
 a

nd
 th

ei
r

co
rp

or
at

e
cu

st
om

er
s.

 C
us

to
m

er
s

cr
ea

te
 A

C
H

 tr
an

sa
ct

io
ns

an

d
el

ec
tr

on
ic

al
ly

 s
en

d
th

e
fil

es
 in

 a
 s

ec
ur

e
N

A
C

H
A

 fo
rm

at
 to

 th
e

ba
nk

.

St
ar

tin
g

at
 $

3,
80

0
11

09
 M

ai
n

St
re

et

B
oi

se
, I

D
 8

37
02

Ph

on
e:

 8
00

/7
27

-5
00

9

Fa
x:

 2
08

/3
42

-0
96

4

H
IC

O
R

Pr
ov

id
es

 s
ol

ut
io

ns
 fo

r
hi

gh
-s

pe
ed

 tr
an

sl
at

io
n

an
d

tr
an

sm
is

si
on

 o
f A

C
H

, C
H

IP
S,

 fi
na

nc
ia

l

ED
I a

nd
 S

.W
.I.

F.
T.

 fo
rm

at
s.

 C
us

to
m

er
 b

as
e

in
cl

ud
es

 le
ad

in
g

fin
an

ci
al

 in
st

itu
tio

ns
 a

nd

na
tio

na
l c

le
ar

in
gh

ou
se

s.

17

19
7

N
. L

au
re

l P
ar

k
D

r.
,

Su
ite

 2
01

Li

vo
ni

a,
 M

I 4
81

52

Ph
on

e:
 7

34
-4

62
-2

24
4

w
w

w
.h

ic
or

.n
et

pa

ul
.w

re
nn

@
hi

co
r.

ne
t

M
el

lo
n

G
lo

ba
l

C
as

h
M

an
ag

em
en

t

O

ffe
ri

ng
s

in
cl

ud
e

In
te

rn
et

 p
ay

m
en

t a
nd

 b
ill

pr

es
en

tm
en

t.

Th
re

e
M

el
lo

n
B

an
k

C
en

te
r

Pi
tts

bu
rg

h,
 P

A
 1

52
59

-0
00

1
41

2-
23

6-
87

23

41
2-

23
6-

05
04

w

w
w

.m
el

lo
n.

co
m

/in
st

/g
cm

/
gc

m
_d

ir
ec

t_
pg

h@
m

el
lo

n.
co

m

N
at

io
na

l C
ity

C

or
po

ra
tio

n

N
at

io
na

l C
ity

 o
ffe

rs
 d

om
es

tic
 a

nd
 in

te
rn

at
io

na
l

st
an

da
rd

s
tr

an
sl

at
io

n
of

 s
ec

ur
ed

ED
I/A

C
H

/W
ir

e/
C

he
ck

 p
ay

m
en

ts
 o

ut
so

ur
ci

ng
,

re
m

itt
an

ce
 d

el
iv

er
y,

 r
ec

ei
pt

 r
ep

or
tin

g,
 A

R
/A

P

pr
oc

es
s

in
te

gr
at

io
n,

 a
nd

 p
ro

gr
am

 p
la

nn
in

g
an

d
se

tu
p

as
si

st
an

ce
.

C

or
po

ra
te

 B
an

ki
ng

 B
us

in
es

s
So

lu
tio

ns

19
00

 E
as

t 9
th

 S
tr

ee
t

C
le

ve
la

nd
, O

H
 4

41
14

21

6-
22

2-
36

33

m
ar

k_
d_

sc
hu

lte
@

na
tio

na
l-

ci
ty

.c
om

(c
on

tin
ue

d)

Appendix D — Financial Services Software Use and Development

D-19

T
a

b
le

 D
-4

.
 C

le
a

ri
n

g
h

o
u

s
e

 S
o

ft
w

a
re

 D
e

ve
lo

p
e

rs
 (

c
o

n
ti

n
u

e
d

)

C
om

pa
ny

 N
am

e
So

ft
w

ar
e

Pr
od

uc
t

D
es

cr
ip

ti
on

C

os
t

C
on

ta
ct

 I
nf

or
m

at
io

n

Pa
ym

en
t

Te
ch

no
lo

gi
es

 In
c

Tr
an

sL
in

k
Tr

an
sL

in
k

is
 a

 lo
w

-c
os

t,
PC

 s
of

tw
ar

e
pa

ck
ag

e
th

at
 e

na
bl

es
 A

C
H

 r
ec

ei
ve

rs
 to

 p
ro

vi
de

 fi
na

nc
ia

l
ED

I T
ra

ns
la

tio
n

an
d

R
em

itt
an

ce
 D

el
iv

er
y

Se
rv

ic
es

.

50

00
 R

itt
er

 R
oa

d,
 S

ui
te

 1
03

M

ec
ha

ni
cs

bu
rg

, P
A

 1
70

55

71
7-

50
6-

22
00

gi

gi
w

@
pa

yt
ec

.c
om

Po
lit

ze
r

&
 H

an
ey

A

ut
o

C
as

h
Tr

an
sf

er

O
ri

gi
na

te
s

an
d

pr
oc

es
se

s
A

C
H

 tr
an

sf
er

s
in

cl
ud

in
g

di
re

ct
 d

ep
os

it
of

 p
ay

ro
ll,

 d
ir

ec
t

de
bi

ts
, c

as
h

co
nc

en
tr

at
io

n,
 b

oo
k

tr
an

sf
er

s,

re
ve

rs
al

s,
 r

et
ur

ns
, a

dj
us

tm
en

ts
 a

nd
 c

or
po

ra
te

pa

ym
en

ts
 in

cl
ud

in
g

ve
nd

or
 p

ay
m

en
ts

 a
nd

 s
ta

te

an
d

fe
de

ra
l t

ax
 p

ay
m

en
ts

.

$2
,5

00
 –

 $
4,

00
0

32
0

N
ev

ad
a

St
re

et

N
ew

to
n,

 M
A

 0
24

60

Ph
on

e:
 6

17
/7

96
-7

70
0

Fa

x:
 6

17
/2

43
-0

03
3

W

eb
 P

ay
m

en
ts

Fu

nd
 tr

an
sf

er
 in

iti
at

io
n

sy
st

em
 th

at
 a

llo
w

s
co

rp
or

at
e

cu
st

om
er

s
to

 o
ri

gi
na

te
 A

C
H

tr

an
sa

ct
io

ns
 u

si
ng

 a
 s

ta
nd

ar
d

br
ow

se
r

(N
et

sc
ap

e
or

 E
xp

lo
re

r)
 o

n
th

ei
r

PC
s.

$1
0,

00
0+

Pr
es

tig
e

Sy
st

em
s,

In

c.

A
ut

om
at

ed

Tr
an

sa
ct

io
n

Sy
st

em
 II

U
se

d
fo

r
re

ce
ip

t,
m

an
ag

em
en

t,
an

d
or

ig
in

at
io

n
of

 A
C

H
 tr

an
sa

ct
io

ns
.

$3
,5

00
 –

 $
10

,0
00

P.

O
. B

ox
 3

63
3

O
ak

br
oo

k,
 IL

 6
05

22

Ph
on

e:
 6

30
/8

50
-7

94
0

Fa

x:
 6

30
/8

50
-7

64
4

So
ut

he
rn

B

us
in

es
s

Te
ch

no
lo

gi
es

,
In

c.

B
A

N
C

-C
O

M

/A
C

H

PC
-b

as
ed

, s
ta

nd
 a

lo
ne

, e
nt

ry
-l

ev
el

 A
C

H

or
ig

in
at

io
n

sy
st

em
 d

es
ig

ne
d

fo
r

th
e

sm
al

l
bu

si
ne

ss
 c

us
to

m
er

 o
f a

 fi
na

nc
ia

l i
ns

tit
ut

io
n.

$3
95

33

00
 H

ig
hl

an
ds

 P
kw

y,

Su
ite

 2
55

Sm

yr
na

, G
A

 3
00

82

Ph
on

e:
 7

70
/4

36
-2

33
2

Fa

x:
 7

70
/4

34
-9

84
4

St
er

lin
g

C
om

m
er

ce

St

er
lin

g
C

om
m

er
ce

, a
n

SB
C

 C
om

m
un

ic
at

io
ns

C

om
pa

ny
, p

ro
vi

de
s

so
lu

tio
ns

 to
 in

 th
e

ac
co

un
ts

 r
ec

ei
va

bl
es

,
ac

co
un

ts
 p

ay
ab

le
s,

 a
nd

 o
th

er
 b

us
in

es
s

pr
oc

es
se

s.

46

00
 L

ak
eh

ur
st

 C
ou

rt

D
ub

lin
, O

H
 4

30
16

61

4-
79

3-
70

00

w
w

w
.s

te
rl

in
gc

om
m

er
ce

.c
om

ed

_a
rm

st
ro

ng
@

st
er

co
m

m
.c

om

(c
on

tin
ue

d)

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-20

T
a

b
le

 D
-4

.
 C

le
a

ri
n

g
h

o
u

s
e

 S
o

ft
w

a
re

 D
e

ve
lo

p
e

rs
 (

c
o

n
ti

n
u

e
d

)

C
om

pa
ny

 N
am

e
So

ft
w

ar
e

Pr
od

uc
t

D
es

cr
ip

ti
on

C

os
t

C
on

ta
ct

 I
nf

or
m

at
io

n

Su
ch

ak
 D

at
a

Sy
st

em
s,

 In
c.

(S

D
S)

A
C

H
 O

ri
gi

na
tio

n
Sy

st
em

A

llo
w

s
a

fin
an

ci
al

 in
st

itu
tio

n
to

 b
e

a
“l

ea
d

ba
nk

”
an

d
or

ig
in

at
e

A
C

H
 tr

an
sa

ct
io

ns
 to

 th
e

A
C

H
 o

r
Fe

de
ra

l R
es

er
ve

.

$1
,9

95
 li

ce
ns

e
fe

e.

C
us

to
m

er
 m

od
ul

e:

$4
95

.
A

nn
ua

l s
of

tw
ar

e
m

ai
nt

en
an

ce
:

$3
95

20
85

 B
as

el
in

e
R

oa
d

G
ra

nd
 Is

la
nd

, N
Y

 1
40

72

Ph
on

e:
 7

16
/7

73
-1

48
3

Fa

x:
 7

16
/7

73
-7

69
2

U
M

B
 B

an
k,

 N
.A

.

A
C

H
/E

D
I o

ri
gi

na
tio

n
an

d
re

ce
ip

t.
 S

pe
ci

al
iz

in
g

in
 in

du
st

ry
 ty

pe
s

w
ith

 s
pe

ci
fic

 n
ee

ds
 s

uc
h

as

m
ut

ua
l f

un
d,

 in
su

ra
nc

e,
 u

til
ity

 a
nd

 h
ea

lth
 c

ar
e,

EB

P-
B

SP
, a

nd
 In

te
rn

et
 P

ay
m

en
ts

 P
ro

ce
ss

in
g.

92

8
G

ra
nd

, 3
rd

 F
lo

or

K
an

sa
s

C
ity

, M
O

 6
41

41
-6

22
6

81
6-

86
0-

70
45

w
w

w
.u

m
b.

co
m

pa
tr

ic
ia

.e
ng

el
ag

e@
um

b.
co

m

Appendix D — Financial Services Software Use and Development

D-21

T
a

b
le

 D
-5

.
 F

E
D

I
S

o
ft

w
a

re
 D

e
ve

lo
p

e
rs

C
om

pa
ny

 N
am

e
So

ft
w

ar
e

Pr
od

uc
t

D
es

cr
ip

ti
on

C

os
t

C
on

ta
ct

 I
nf

or
m

at
io

n

Fu
nd

te
ch

C

or
po

ra
tio

n
R

EC
O

N
$T

A
R

R

ec
on

ci
lia

tio
n

pr
od

uc
t t

ha
t f

ac
ili

ta
te

s
ac

co
un

t
re

co
nc

ili
at

io
n,

 tr
an

sa
ct

io
n

m
at

ch
in

g,
 a

nd
 M

IS

re
po

rt
in

g.

$4
0,

00
0

30
 M

on
tg

om
er

y
St

re
et

,
Su

ite
 5

01

Je
rs

ey
 C

ity
, N

J 0
73

02

Ph
on

e:
 2

01
/9

46
-1

10
0

Fa

x:
 2

01
/9

46
-1

31
3

St
. P

au
l S

of
tw

ar
e

SP
ED

I*
TR

A
N

H

ig
h

pe
rf

or
m

an
ce

 E
D

I t
ra

ns
la

tio
n

so
ftw

ar
e

de
si

gn
ed

 fo
r

in
te

gr
at

io
n

in
to

 a
 c

lie
nt

-s
er

ve
r

ED
I

en
vi

ro
nm

en
t a

nd
 p

ro
vi

de
s

ex
tr

em
el

y
fle

xi
bl

e
m

ap
pi

ng
 c

ap
ab

ili
tie

s.

$3
,0

00
 –

 $
50

,0
00

14

50
 E

ne
rg

y
Pa

rk
 D

ri
ve

St

. P
au

l,
M

N
 5

51
08

Ph

on
e:

 8
00

/9
98

-4
33

4

Fa
x:

 6
51

/6
03

-4
40

3

Th
e

W
ei

la
nd

Fi

na
nc

ia
l G

ro
up

,
In

c.

B
an

k
A

dm
in

is
tr

at
or

D

es
ig

ne
d

to
 tr

ac
k

si
gn

at
or

ie
s,

 b
an

ks
, c

on
ta

ct
s,

di

vi
si

on
, a

nd
 a

cc
ou

nt
 r

el
at

io
ns

hi
ps

.
$6

,0
00

 –
 $

8,
00

0.

Th

e
82

2
Ex

pr
es

s
So

lv
es

 th
e

pr
ob

le
m

 o
f t

ra
ns

m
itt

in
g

ac
co

un
t

an
al

ys
is

 s
ta

te
m

en
ts

 r
eg

ar
dl

es
s

of
 th

ei
r

fo
rm

at
,

vi
a

th
e

A
N

SI
 X

12
 8

22
 e

le
ct

ro
ni

c
tr

an
sm

is
si

on

st
an

da
rd

.

$8
,0

00
 –

 $
50

,0
00

90

0
N

or
th

 S
ho

re
 D

ri
ve

,
Su

ite
 1

85

La
ke

 B
lu

ff,
 IL

 6
00

44

Ph
on

e:
 8

47
/7

35
-0

57
7

Fa

x:
 8

47
/7

35
-0

41
9

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-22

 D.3 SOFTWARE EMBEDDED IN HARDWARE USED
TO SUPPORT FINANCIAL TRANSACTIONS
In addition to software used to support FEDI and clearinghouse
transactions, software is also embedded in hardware that is used to
facilitate the physical transfer of electronic information. The
process of passing information from one user to another is called
routing. The two key pieces of technology involved in routing are
routers and switches, both of which are combination of hardware
and software that manage the flow of information. However, the
software used to manage the flow of information is often inoperable
across firms, routers, and area networks. Different products use
different languages and different algorithms when making decisions
about the passage of information. These differing decision-making
processes create an interoperability problem.

The following section describes how information is passed through
an internetwork to get from one user to another. This section
describes how software is used in the routing of information and
provides an overview of the markets for routers and switches. It
concludes with on overview of current problems and inadequacies
in the production and use of the software used in routers and
switches.

 D.3.1 Internetwork Systems

Regardless of the sector of the economy or the type of software
being used, the passage of information from users within or across
firms is a complicated process. When information is passed from
one user to another, it is separated into smaller pieces and then
shipped through nternetworks, such as local area networks (LAN)
and wide area networks (WAN), via a series of communication
protocols.

Internetworks manage the transportation of information within and
across firms. An internetwork is a collection of individual networks
connected by networking devices that allow individual networks to
act as if they are parts of a larger network. Internetworks were first
developed by IBM and Digital and were time-sharing networks that
attached terminals to mainframes to increase the amount of users of
a mainframe. With the development of PCs, LANs were introduced
that allowed users within a specific, relatively small, geographic

Appendix D — Financial Services Software Use and Development

D-23

region to share access to resources and files. WANs soon followed
that connected multiple LANs across normal telephone lines and
eliminated the geographic proximity that they required. Modern
internetworking links high-speed LANs to support the transmission
of voice, high-bandwidth applications, and videoconferencing.

LANs offer three key advantages over individually linked PCs. First,
LANs let users interact more efficiently; users no longer have to ship
disks back and forth to communicate electronically. Second, LANs
eliminate the duplication of resources because each individual no
longer needs his/her own software and hardware. Third, LANs
decrease the difficulty of managing a network by creating a
centralized management structure that eases maintenance, trouble-
shooting, and other management responsibilities of information
administrators.

The most widely agreed-upon system for transporting data is the
Open Systems Interconnection reference model established by the
International Standards Organization. Within this model,
information from a software application is passed through a series of
seven phases that specify each activity that occurs within the
network. The seven phases can be separated into two overarching
activities: application activities and data transportation activities.
The application process interacts with the communications
components of the software application being used. The data
transportation process determines how the data will be transmitted
across LANs.

 D.3.2 Routing

Routing is the term used to describe the process of passing
electronic information from one entity to another. It refers to the
passing of transportable units, called packets, through intranets and
the Internet so they can be reassembled at their destination.5 Once
the data have been divided into packets, two basic routing activities
occur. First, the optimal path that the data will travel is determined;
second, the information has to be passed from the starting point to
the destination. The routing and switching algorithms are used in
these two activities.

5The applications software described in Section 2 labels and divides information

into packets and reassembles these packets.

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-24

Correspondingly, the two main physical components that are
involved in transmitting electronic information are routers and
switches. A router is a device that uses multiple metrics to
determine the optimal path along which network data should travel.
Switches are used to facilitate the process of transporting the
information packets along their optimal path through intranets and
the Internet. The switching process is relatively straightforward
compared to the determination of the optimal path. Table D-6
provides a technical description of routers, switches, and several
related components used in the passage of information.

Table D-6. Network Devices

Technology Description

Router Network layer device that uses one or more metrics to determine the optimal path along
which network traffic should be forwarded. Routers forward packets from one network
to another based on network layer information.

LAN switch High-speed switch that forwards packets between data-link segments. Most LAN
switches forward traffic based on MAC addresses. This variety of LAN switch is
sometimes called a frame switch. LAN switches are often categorized according to the
method they use to forward traffic: cut-through packet switching or store-and-forward
packet switching. Multilayer switches are an intelligent subset of LAN switches.

Multilayer
switch

Switch that filters and forwards packets based on MAC addresses and network
addresses—a subset of LAN switch.

Access server Communications processor that connects asynchronous devices to a LAN or WAN
through network and terminal emulation software. Performs both synchronous and
asynchronous routing of supported protocols. Sometimes called a network access server.

Routing Algorithms for Path Determination

Several metrics are widely used to determine the optimal path that a
packet of information will take when it is transported from a sender
to a user. The most common metric is path length. Various routing
algorithms and tables are used to determine the shortest path length
or to optimize on another metric. Routing algorithms fill out and
update routing tables with different pieces of information,
depending on the metric being used to determine the path that the
packet of information will follow.

A variety of messages are passed between routers to update the
progress of the information being passed through an intranet or the

Appendix D — Financial Services Software Use and Development

D-25

Internet. The purpose of these messages is to constantly update the
topology that information will pass through so the routers can
continuously update and redetermine the optimal path that a piece
of information will travel. For example, each router sends out
routing updates that consist of part, or all, of its routing table as it
gains information about the specific part of the network that it is
traveling through (e.g., is there a significant amount of traffic here, is
there a problem with one of the routers or switches). When routers
are deciding how to send that piece or other pieces of information
along, it incorporates the data that it receives from routers
throughout the network to recalculate the optimal path for all
information in and entering the network.

There are several different types of routing algorithms. The
differences in the types of algorithms have the potential to decrease
the interoperability of network systems. Several characteristics
cause routing protocols to differ:

Z algorithm designs may have different objectives,

Z different types of routing algorithms have different impacts
on network resources, or

Z routing algorithms use different metrics to determine optimal
paths.

Routing algorithms often have different objectives, including
optimality, simplicity, robustness, rapid convergence, and flexibility.
Different designers have different goals depending on which
attribute they wish to maximize. Because all potential users of the
routers in a network do not maximize the same attributes, potential
suboptimalities emerge across users.

Routing algorithms also differ in how they interact with the network.
Algorithms may be classified as either static or dynamic, single or
multi-path, and flat or hierarchical. Flat versus hierarchical
algorithms present an example of how differences in algorithms can
create interoperability problems. Flat algorithms operate in a two-
dimensional plane, while hierarchical algorithms operate in a three-
dimensional plane and can use a routing backbone to send the
packets of information from one major hub to another and then
send the packet to its destination address over local lines. These
and other differences in algorithms delay the amount of time that it
takes for information to be passed from a host PC to a destination
PC.

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-26

The third way that routing algorithms differ is through the use of
different routing metrics. Routing tables are designed to contain
information that is used by the software within the router to select
the best route that each packet of information will take to reach its
destination. However, different routes use different types of
software to build their routing tables. Examples of metrics that can
be used in constructing the routing tables are path length, reliability,
delay, bandwidth, load, and communication costs. Additionally,
some routing tables combine several different metrics to form hybrid
metrics.

Even if each individual algorithm functions effectively and correctly,
it might not interoperate with other routers. For example, if routing
tables are not updated and routing algorithms are not compatible,
users may not be able to pass packets of information between each
other in a timely fashion (if they receive the information at all).
Each of the four major producers of routers test the software that is
used within each router, but testing of the interoperability across
routers is not occurring to the same degree. Improved testing of the
software that is used in routers to transmit information could be an
effective mechanism to increase interoperability between routers.

Switching Algorithms

Relative to routing, switching algorithms are simple and fairly
consistent across routing protocols. Switching consists of a host
receiving a piece of information that tells it to send a packet to
another host. Each step in the transfer of the packet is called a
“hop.” When the information is first separated into packets it is
assigned a Transmission Control Protocol (TCP). The TCP is
designed to verify the delivery of information from one location to
another. In other words, it checks to see if the information that was
sent was received. Each packet is also assigned an Internet Protocol
(IP). The IP is responsible for moving the information from one
node to another and controls the hops that the packet takes.

When a router examines the packet’s IP address, it determines if it
knows how to forward that information to the intended location. If
the router knows, then it forwards the information, if it does not
know, then it drops the packet of information. The next hop that
the information takes is either to its final destination or to another

Appendix D — Financial Services Software Use and Development

D-27

router or switch that passes the information along. If the packet is
sent to another router, then the process repeats.

The International Standards Organization has developed a
hierarchical terminology to describe this process. End systems (ES)
are network devices that cannot pass information along.
Intermediate systems (IS) are network devices with this ability. IS
can be subdivided into intradomain IS and interdomain IS, which
transmit packets of information within and across domains,
respectively.

 D.3.3 Market for Routers and Switches

The market supply for routers and switches is relatively
concentrated with four companies accounting for the majority of
U.S. productions. In contrast, almost every major domestic
company on the demand side is a consumer of routers and
switches. There are two major types of consumers of this
technology. Companies that provide web hosting, Internet access,
and other electronic services to be used over the Internet are major
consumers of the product. These companies must have routers and
switches in place for their business to operate. The second group of
consumers consists of companies that use routers and switches to
pass information over LANs or WANs. These companies use the
technology to pass information throughout their business, but it is
not the business’s core technology. Rather, it is a technology that
increases the efficiency with which they conduct their business.

Market Size

The market for routers grew steadily throughout the end of the
1990s, increasing from less than 500,000 units shipped in 1997 to
close to 800,000 (est.) shipped in the United States in 2000. The
market for switches has expanded even faster, growing from roughly
7.5 million units shipped in 1997 to close to 25 million in 2000
(IDC, 2000). Total worldwide revenues from the sale of routers are
estimated at over $6 billion, while sales from switches are estimated
to pass $8 billion in 2000.

Table D-7 shows the total revenue from the sale of routers, by type,
since the fourth quarter of 1997. Legacy routers only transmit data;
access routers are able to transmit both voice and data. Remote
access routers are used by employees outside of the firm to transmit

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-28

Table D-7. Total Sales of Routers (millions $)

Date Legacy Routers Access Routers Remote Access Routers

4Q97 1,383 574 NA

1Q98 1,297 541 NA

2Q98 1,372 571 NA

3Q98 1,478 616 NA

4Q98 1,071 475 556

1Q99 1,112 575 867

2Q99 1,077 566 1,113

3Q99 1,044 585 1,397

NA – not available.

Source: The Dell’Oro Group. 2001. <www.delloro.com>.

both voice and data, and are faster and more efficient than
traditional modems. While sales of legacy and access routers have
been flat or slightly declining over the last 2 years, sales of remote
access routers have been increasing substantially. In the last quarter
of 1997, the technology did not even exist; by the third quarter of
1999, it was the greatest in terms of sales.

Major Producers of Routers and Switches

Four major companies produce the routers that are used to transfer
information: Cisco, Nortel, Lucent, and 3Com. Each major
company uses its proprietary software to write switching and routing
algorithms for use in its routers. Table D-8 presents a list of
companies and the proprietary software that they use.

Table D-8. Router Market Shares of Major Firms

Company
Number of

Router Types
Total Sales

(millions in 3rd quarter, 1999) Market Share Software Product

Cisco 16 $1,360 72% IOS, ConFig Maker

Nortel 8 $51 3% Preside

Lucent $278 15% Hybrid Access

3Com 5 $196 10% Enterprise OS Software

Source: The Dell’Oro Group. 2001. <www.delloro.com>.

Appendix D — Financial Services Software Use and Development

D-29

The measure of the number of router types that each company has is
a broad measure of product categories. Numerous potential
configurations and upgrades are available to the end user within
each broad router type, effectively increasing the number of
available products. We use total sales in the third quarter of 1999
to get a common metric for the relative share of the market for
routers and switches held by each firm.

Consumers of Routers and Switches

Not surprisingly, the major market for routers and switches is North
America. Data for Nortel, Lucent, and 3Com are not available for
regional sales of routers and switches, but they are available for
Cisco. Because of Cisco’s market dominance, its sales are likely to
be representative of global sales. Table D-9 presents Cisco’s
regional sales of routers, switches, and other support hardware and
services, as well as the regional percentage of total sales.

Table D-9. Cisco’s Regional Sales

 1999 2000 2001

Regions Sales Percent Sales Percent Sales Percent

Americas $8,088 64% $12,924 65% $15,130 68%

Europe $3,216 26% $4,770 24% $6,288 28%

Asia Pacific $825 7% $1,705 9% $2,384 11%

Japan Pacific $459 4% $566 3% $1,540 7%

Source: Cisco Systems. Cisco 2001 Annual Report. 2001.
<www.cisco.com/warp/public/749/ar2001/online/financial_review/mda.html>.

 D.3.4 Current Market Inefficiencies

Developing the software and hardware needed to run an effective
internetwork is a difficult task. The rapid growth in the sales of
switches and routers and the significant technological
improvements that have occurred in the second half of the 1990s
has created routers and switches that may not interoperate.
Insufficient testing of the software algorithms that are used in the
operation of the routers and switches is contributing to the lack of
interoperability.

The Economic Impacts of Inadequate Infrastructure for Software Testing

D-30

Failures in the software used to run internetworks, which can be
attributed to inadequate testing, can cause serious information
delivery problems. Attributes of the software used to run
internetworks that are of concern to developers are connectivity,
reliability, network management, and flexibility. Connectivity is a
challenge because various sites use different types of technology
that may operate at different speeds. Reliability is a concern
because individual users need information from other users in a
timely manner. Network management ensures that centralized
support is available to all users. Flexibility deals with the ability to
adapt, add on to, and improve the network.

Failure on any of these measures leads to several potential impacts,
including the following:

1. Decreased speed of information delivery. Poor
communication and lack of interoperability across routers
increase the delay time between a message being sent and
received. This problem is worsened due to the different
types of information that a router can transmit (e.g., voice
versus data). Additionally, if the algorithms within each
router are not well tested, they may not choose the optimal
route to transmit data from one location to another, thereby
increasing delay time.

2. Failure of information delivery. Poor communication may
not only be delaying the delivery of some packets of
information; it may also be preventing some packets from
ever being delivered. A lack of adequate testing of the
software across routers may be contributing to this failure.

 Convergence is the process of agreement among all routers
on the optimal route for a packet of information. When a
router becomes unavailable, routers distribute routing
update messages that permeate networks, stimulating
recalculation of optimal routes and eventually causing all
routers to agree on these routes. If convergence occurs
slowly, routing loops (a packet of information being
continuously cycled from one router to another without
being delivered) or network outages may occur.

3. Inefficient router algorithms. Routing algorithms should be
designed to be as simple as possible. The less software
utilization within the routing algorithm, the more efficient
the algorithm. A lack of adequate testing may be increasing
the amount of software utilization within each router, in turn
decreasing its efficiency. This problem is of special concern
when the computer that is either sending or receiving the
information has limited resources.

4. Lack of robust routers. Failure to adequately test routers or
the interoperability of routers may lead to fragile and weak

Appendix D — Financial Services Software Use and Development

D-31

routers. Routing algorithms need to be robust and perform
correctly during software or hardware failures, high loads, or
other uncommon circumstances. Routers are located at
major network junction points, so they can cause
considerable problems when they fail.

5. Reduced security of Internet and intranet traffic. Lack of
adequate testing of routing algorithms may also be
contributing to security violations.

6. Inability to run specific programs. Because of the slowness
of the software within the router, certain programs simply
cannot be run over or across networks.

Appendix E:
Financial Services
Survey Instruments

E-1

Survey of Routers and Switches Software Developers

Being conducted by

Research Triangle Institute

On behalf of
National Institute of Standards and Technology

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-2

OMB NO: 0693-0031 Expires 10/31/2002

This survey is authorized under Executive Order 12862, “Setting Customer Service Standards.”
Your response is voluntary and all data collected will be considered confidential. Public
reportings for this collection of information is estimated to average 25 minutes per response,
including the time of reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this estimate or any other aspects of this collection of information, including
suggestions for reducing the length of this questionnaire, to the National Institute of Standards and
Technology, 100 Bureau Drive, Stop 3220, Gaithersburg, MD, 20899-3220 and the Office of
Management and Budget Information and Regulatory Affairs, Office of Management and Budget,
Washington, DC 20503.

Appendix E — Financial Services Survey Instruments

E-3

Introduction
As part of a research study for the National Institute of Standards and Technology (NIST),
Research Triangle Institute (RTI) is conducting a survey of Routers and Switches software
developers. The purpose of this survey is to learn about the incidence and cost of software bugs
and errors to software users.

The National Institute of Standards and Technology (NIST) is a non-regulatory federal agency
within the Commerce Department’s Technology Administration. NIST’s mission is to promote
economic growth by working with industry to develop and apply technology, measurements, and
standards. NIST carries out its mission through four interwoven programs: NIST Laboratories,
Baldridge National Quality Program, Manufacturing Extension Partnership, and Advanced
Technology Program. See http://www.nist.gov for more information about NIST’s work.

Our study would greatly benefit from your insights and experience. The findings from the study
will be used to prioritize NIST’s research and development efforts addressing software
improvements for manufacturing and financial industries. In addition, your company could
benefit from identifying and quantifying basic software testing inadequacies. All participants will
receive a copy of the final report.

Your participation is voluntary, and your responses will be kept strictly confidential. Please note
that questions regarding the number and type of software bugs will only be used to estimate the
cost of software errors for the entire industry and will not be available to the public or shared with
other survey participants. Only aggregate results will be included in the final report.

Your establishment was randomly selected to participate in this survey. Please answer all
questions as they pertain to your firm.

The survey will take about 25 minutes to complete. Please answer each question by checking the
appropriate answer(s) or providing your answer in the designated space.

If you have any questions as you complete the survey, please contact Michelle Bullock at
(919) 485-5599 or bullock@rti.org.

Thank you in advance for your participation.

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-4

1. Background Information

1.1 Please type your name, company name, and e-mail address on the lines below.

Name: ___

Company: __

E-mail: ___

1.2 What types of software products are developed at your company? (Check all that apply.)

1. Routers

2. Switches

3. Other (Specify): __

1.3 What share of products can be classified as router or switch software?

___________________ %

1.4 Please choose the North American Industry Classification System (NAICS) code(s) under
which your company is classified.

1. 334210-Telephone apparatus equipment manufacture, including data communications
equipment (e.g., bridges, gateways, routers) manufacturing

2. 511210-Packaged computer software computer publishers

3. 541511-Custom computer software analysis and design services

4. Other (Specify): __

1.5 What was the approximate total number of employees employed by your company in
2000? (Report a range of employees if necessary.)

1.6 What was the approximate value of total revenues (sales) reported by your company in
2000? (Report a range of sales if necessary.)

Appendix E — Financial Services Survey Instruments

E-5

2. Expenditures on Software
Testing

2.1 What were the total number of full-time equivalent (FTE) employees for your company in
2000 who were involved in software testing and error correction? If you can’t answer this
question for your entire company directly, take the total number of full-time equivalent
(FTE) employees for your group/organization who were involved in software testing and
error correction. Then multiply that number by the number of groups/organizations in
your company that are involved in software testing and error correction. Please
breakdown the total number according to the employee category.

Employee Category
Number of FTE Employees Involved in
Software Testing and Error Correction

Software Engineers/Programmers

Software Engineers/Testers/QA Engineers

Other: (Specify) ______________________

Total

2.2 Did your company purchase testing software in 2000?

_____ Yes

_____ No (Go to Question 2.4)

2.3 Please complete the following table based on testing software purchases that were made
in 2000.

Software Name
Annual Expenditures for Test

Software1 Type of Testing Conducted2

Notes:
1. If Test Software was developed In-house, then estimate yearly internal expenditures, budget, or

number of FTE employees engaged in development and maintenance of the test software.
2. Choose all of the following types of testing that apply: a) Conformance to Specifications (also

called Functional Verification Testing), b) Interoperability Testing, or c) Performance Testing (also
called System Testing).

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-6

2.4 Did your company purchase hardware to support software testing in 2000?

_____ Yes

_____ No (Go to Question 2.6)

2.5 Please complete the following table based on testing hardware purchases that were made
in 2000.

Hardware Name
Cost of

Hardware

Was the
Hardware
Leased?

Expected Useful
Life of the
Hardware

Type of Testing
Conducted3

Notes:
3. Choose all of the following types of testing that apply: a) Conformance to Specifications, b)

Interoperability Testing, or c) Performance Testing.

2.6 Did your company contract for external testing services in 2000?

_____ Yes

_____ No (Go to Section 4)

2.7 How much did your company pay for external testing services in 2000 (expressed in
dollars or as the number of Full Time Equivalent Employees)? If you can’t answer this
question for your entire company directly, take what your group/organization paid for
external testing services in 2000. Then multiply that number by the number of
groups/organizations in your company that contracted for external testing services in
2000.

$ ____________________

Appendix E — Financial Services Survey Instruments

E-7

3. Incidence of Software Bugs and
Errors

In this section of the survey, we segment the software development process into five stages and
investigate

• where bugs are typically detected and

• where errors are introduced.

Software bugs and errors can be generally divided into three broad categories; design,
implementation and delivery errors. Design bugs are flaws in the underlying design of the
software architecture typically resulting in redesign. Implementation and delivery bugs are errors
in the way the programmer tries to achieve the design during coding. For the purpose of this
survey, we are limiting our definition of a software bug to implementation and delivery coding
errors.
The five stages are

• requirements gathering and analysis/architectural design,

• coding/unit testing,

• integration and component/RAISE (Reliability, Availability, Install Serviceability, and Ease
of Use) system testing,

• early customer feedback/beta test programs, and

• post-product release (found by customer after purchase or acceptance).

For the following questions, please consider a representative new router or switch software
development project or a new version.

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-8

3.1 Bugs are found throughout the software development process. Bugs are detected
internally through formal testing and externally by users during beta testing and business
operations. In the table below, please identify the stages in which bugs are typically
found. Please list either the number of bugs typically detected (per development project
or lines of code) or the distribution (percentage) of bugs detected across the five stages.

Stages of Development
Number of Bugs Detected

at Each Stage or
Distribution of Bugs

Detected Across Stages

Requirements gathering and
analysis/ architectural design

_____%

Coding/unit testing _____%

Integration and component/
RAISE system testing

_____%

Early customer
feedback/beta test programs

_____%

Post-product release _____%

 per project

 per _____ lines of code

 Total = 100%

3.2 Bugs can be introduced into software at various stages in the development process. For
bugs found during the coding/unit testing phase, in what stage was the bug likely to be
introduced? Please indicate the probability of the error being introduced during the
following stages.

_____% requirements gathering and analysis/architectural design

_____% coding/unit testing

100% Total

3.3 For bugs found during the integration and component testing phase, in what stage was the
bug likely to be introduced?

_____% requirements gathering and analysis/architectural design

_____% coding/unit testing

_____% integration and component

100% Total

3.4 For bugs found during beta testing, in what stage was the bug likely to be introduced?

_____% requirements gathering and analysis/architectural design

_____% coding/unit testing

_____% integration and component

100% Total

Appendix E — Financial Services Survey Instruments

E-9

3.5 For bugs found by customers during the post-product release phase, in what stage was the
bug likely to be introduced?

_____% requirements gathering and analysis/architectural design

_____% coding/unit testing

_____% integration and component

100% Total

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-10

4. The Cost of Fixing Bugs
In this section, we investigate the costs of locating the source of bugs and of correcting bugs
(referred to as fixing or repairing bugs). We are primarily interested in how these costs vary with
respect to where the bug was introduced and at what stage in the software development process
the bug is detected.

4.1 The severity and, hence, the cost of fixing a given bug may depend on what stage the bug
was introduced into the software. In the table below, provide the average cost of fixing
bugs (in terms of labor hours) that are introduced during the three main development
stages presented in Section 3. For this cost table, assume that the bug is detected in the
same stage that it was introduced.

Stage the Bug was Introduced
Average Number of Hours to Correct an Error

Introduced and Found in this Stage

Requirements gathering and analysis/
architectural design __________ hours

Coding/unit testing __________ hours

Integration and component/RAISE system testing __________ hours

4.2 It is widely assumed that bugs caught later in the software development process are more
expensive to repair. In the following table, please indicate how much more expensive it is
to repair a bug created in the requirements gathering and analysis/architectural design
stage if it is not detected until later in the software development process (i.e., Not detected
until coding, integration, beta testing, or post-product release). Provide your answer in
terms of how many times more expensive it is to repair the bug in later stages compared to
detecting and repairing it during the stage in which it was introduced.

Stage Where Errors Introduced in
Requirements Gathering and Analysis/

Architectural Design Stage are Detected

How Many More Times as Costly is it to
Repair a Bug if it is Detected After the

Stage it is Introduced

Requirements gathering and analysis/
architectural design Stage bug is introduced

Coding/unit testing _____ times as costly to repair

Integration and component/RAISE system testing _____ times as costly to repair

Early customer feedback/beta test programs _____ times as costly to repair

Post-product release _____ times as costly to repair

Appendix E — Financial Services Survey Instruments

E-11

4.3 Now consider bugs introduced during the coding stage. How much more costly is it to
repair these bugs if they are detected in later stages?

Stage Where Errors Introduced in
Coding Stage are Detected

How Many More Times as Costly is it to
Repair a Bug if it is Detected After the

Stage it is Introduced

Coding/unit testing Stage bug is introduced

Integration and component/RAISE system testing _____ times as costly to repair

Early customer feedback/beta test programs _____ times as costly to repair

Post-product release _____ times as costly to repair

4.4 Finally, consider bugs introduced during the integration stage. How much more costly is
it to repair these bugs if they are detected in later stages?

Stage Where Error Introduced in
Integration Stage are Detected

How Many More Times as Costly is it to
Repair a Bug if it is Detected After the

Stage it is Introduced

Integration and component/RAISE system testing Stage bug is introduced

Early customer feedback/beta test programs _____ times as costly to repair

Post-product release _____ times as costly to repair

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-12

5. A World with Improved Testing
Resources

NIST is interested in estimating the costs of inadequate software testing tools and resources to U.S.
companies.

5.1 Please describe the shortcomings of the testing software (testware) and processes you
currently use to detect and fix bugs in your software products.

For example:

• Testware products are not as compatible with our software development environment
as we had expected.

• Testware products assume a software development process that is different than the
one we use.

5.2 What improvements would you like to see in software testing programs and procedures?
For example:

• What are there capabilities you would like to see that are not available in current
testware?

• Could testware products function better if there were fewer user interface or
interoperability problems?

For the questions below, please consider how the distribution of where bugs are detected and the
cost of repairing bugs would change if the improved testing procedures and tools you described
above were available. (Even if you were not able to describe all the software testing
improvements you would like to see in Questions 7.1 and 7.2, feel free to broadly envision a
world with an enhanced software testing infrastructure when answering the questions below.)

Note: We are assuming that the number of bugs introduced during the software development
process remains unchanged—only the developer’s ability to detect and fix bugs is changed in our
hypothetical new and improved world.

Appendix E — Financial Services Survey Instruments

E-13

5.3 In a world with improved software testing tools, how would the distribution of where
(when) bugs are detected change?

5.3a In the table below, we have repeated your response to Question 3.1. Please
indicate how this distribution you provided would change in a world with
improved software testing tools.

 Current World
(your response to 3.1)

World with improved Testing
Tools

Stages of Development

Number of
Bugs Detected
at Each Stage

Or
Distribution of
Bugs Detected
Across Stages

Number of
Bugs Detected
at Each Stage

Or
Distribution of
Bugs Detected
Across Stages

Requirements gathering
and analysis/
architectural design

_____% _____%
Coding/unit testing _____% _____%
Integration and
component/RAISE system
testing

_____% _____%
Early customer
feedback/beta test
programs

_____% _____%
Post-product release _____% _____%
 per project

 per _____

lines of code

Total = 100% per project

 per _____
lines of code

Total = 100%

5.4 How would the cost of repairing bugs change with improved software testing tools?

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-14

5.4a In the table below, we have repeated your response to Question 4.1. Please
indicate how the number of labor hours would change with improved tools for
locating and repairing bugs.

Stage the Bug was Introduced

Current Labor
Hours to Fix
Average Bug

(your response to
Question 4.1)

World with
Improved Testing

Tools

Requirements gathering and analysis/
architectural design _______ hours _______ hours

Coding/unit testing _______ hours _______ hours

Integration and component/RAISE system
testing _______ hours _______ hours

Appendix E — Financial Services Survey Instruments

E-15

6. Time to Market

6.1 For a representative new router or switch software product or new version developed by
your company, what is the average time to market? If you can’t answer this question for
your entire company directly, use the average time to market for a representative new
router or switch software product or new version developed by your group/organization.

________________ years

6.2 If no testing activities were needed (i.e., no error detection and repair), how much would
this shorten your time to market?

________________ years

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-16

7. Customer Service Cost

7.1 Does your company typically provide installation assistance for your router and switch
software products?

_____ Yes

_____ No (Go to Question 6.5)

7.2 Please describe the type of installation assistance your company provides.

7.3 What were your total installation costs (annual expenditures or Full Time Equivalent
Employees) in 2000?

$ ____________

7.4 What percentage of your installation costs are due to bugs or errors found during
installation?

______________ percent

7.5 Does your company provide long-term service contracts or other types of after-sales
customer service?

_____ Yes

_____ No (Go to Section 7)

7.6 Please describe the type of after-sales service your company provides.

7.7 What were your total after-sales service costs (annual expenditures) in 2000?

$ ____________

7.8 What percentage of your after-sales service costs are related to bugs found by customers
during business operations versus those costs related to user error or other causes not
related to defective software?

______________ percent

Appendix E — Financial Services Survey Instruments

E-17

7.9 In a world with improved software testing tools, how much could your customer
installation expenditures be reduced?

______________ percent

7.10 In a world with improved software testing tools, how much could your other after-sales
customer service costs be reduced?

______________ percent

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-18

8. Comments

8.1 Please provide any additional comments that would be helpful in evaluating how
improved testing tools would impact your company’s software development costs and
product quality.

We thank you for your participation.

Please indicate below if you would like to receive a copy of the final report.

_____ Yes, please send a copy

_____ No

Appendix E — Financial Services Survey Instruments

E-19

Survey of FEDI and Clearinghouse Software Users

Being conducted by

Research Triangle Institute

On behalf of
National Institute of Standards and Technology

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-20

OMB NO: 0693-0031 Expires 10/31/2002

This survey is authorized under Executive Order 12862, “Setting Customer Service Standards.”
Your response is voluntary and all data collected will be considered confidential. Public
reportings for this collection of information is estimated to average 20 minutes per response,
including the time of reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this estimate or any other aspects of this collection of information, including
suggestions for reducing the length of this questionnaire, to the National Institute of Standards and
Technology, 100 Bureau Drive, Stop 3220, Gaithersburg, MD, 20899-3220 and the Office of
Management and Budget Information and Regulatory Affairs, Office of Management and Budget,
Washington, DC 20503.

Appendix E — Financial Services Survey Instruments

E-21

Introduction
As part of a research study for the National Institute of Standards and Technology (NIST),
Research Triangle Institute (RTI) is conducting a survey of financial service companies that use
financial electronic data interchange (FEDI) and clearinghouse software. The purpose of this
survey is to learn about the incidence and cost of software bugs and errors to software users.

Our study would greatly benefit from your insights and experience. The findings from the study
will be used to assist NIST to identify and prioritize technical infrastructure needs in the area of
software testing. In addition, your company could benefit from identifying and quantifying how
software bugs and errors affect companies in the financial service sector. All participants will
receive a copy of the final report.

Your participation is voluntary, and your responses will be kept strictly confidential. Please note
that questions regarding the type and cost of software bugs will only be used to estimate the
aggregate impacts for the entire industry, and individual responses will not be available to the
public or shared with other survey participants. Only aggregate industry-level results will be
included in the final report.

Your establishment was randomly selected to participate in this survey. The survey will take
about 20 minutes to complete. Please answer all questions as they pertain to your firm by
checking the appropriate box(es) or providing text in the designated space.

If you have any questions as you complete the survey, please contact Michelle Bullock at
(919) 485-5599.

Thank you in advance for your participation.

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-22

1. Background Information

1.1 Please type your name, company name, and e-mail address on the lines below.

Name: ___

Company: __

E-mail: ___

1.2 What types of products or services are provided at this establishment? (Circle all that
apply.)

1. Credit intermediation

2. Securities, commodity contracts, and other financial services

3. Insurance

4. Other (Specify):___________________________________

1.3 Please fill in the North American Industry Classification System (NAICS) code(s) under
which this establishment is classified.

NAICS Code(s)

1.4 What was the approximate total number of employees employed by your company in
2000? (Report a range of employees if necessary.)

1.5 What was the approximate value of total revenues (sales) reported by your company in
2000?

Appendix E — Financial Services Survey Instruments

E-23

2. The Use of FEDI and
Clearinghouse Software
Systems

2.1 In the table below, please list the FEDI and clearinghouse software your company
currently maintains and indicate when it was installed and what you project to be its
remaining life expectancy?

Name of Software Product (all versions) Year Installed
Number of Years Expected To

Remain in Operation

Example: RECON$TAR Example: 1999 Example: 10 more years

2.2 What were the total number of (full-time equivalent [FTE]) employees in 2000 involved in
operating and supporting the software listed in Table 2.1?

Type of Activity
Number of
Employees

FEDI transactions

Clearinghouse transactions

Please Read Before Continuing!

In Sections 2 through 5, we ask about the incidence and cost of FEDI and clearinghouse software
bugs and errors at this establishment. Personnel responsible for monitoring and maintaining FEDI
and clearinghouse software at this establishment should be able to provide the best answers to
these questions. If necessary, please share your password with colleagues at your company and
ask them to complete the appropriate sections.

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-24

3. Incidence and Costs of Software
Bugs and Errors

This section focuses on the software bugs and errors your company encounters in the FEDI and
clearinghouse systems you employ and how they affect your business operations.

3.1 Does the information you are providing reflect all the FEDI and clearinghouse transactions
at your company?

 _____ yes

 _____ no: what percentage of your companies transactions are represented in your
 responses? _____%

3.2 Software bugs can either be major (systems shut down) or minor (a slight inconvenience to
your work). In 2000, how many major and minor software bugs or errors did your
company encounter in your FEDI or clearinghouse software?

_______________ major

_______________ minor

3.3 What percentage of those bugs or errors were attributable to problems with routers and
switches vs. problems with your transaction software?

_______________ % routers and switches

_______________ % transaction software

100% total

3.4 Was 2000 a typical year for software problems, or has your company been making an
above average number of software upgrades, potentially leading to an uncharacteristically
large number of software problems?

_____ typical year

_____ unusual year with _____% more software/system improvement projects than usual

3.5 For the typical major error that you had in 2000, what was the impact on your company’s
business operations?

1. Shut down all transactions for _________ hours, resulting in __________ transactions not
completed and $__________ lost sales.

2. Temporarily delayed transactions

3. Other impact: please explain ___

Appendix E — Financial Services Survey Instruments

E-25

3.6 Did your company experience any repair costs associated with the software failure, such
as time to re-enter lost data or repair data archives?

1. _____ No

2. _____ Yes: ________ labor hours spent on repair

 ________ value of lost information

 ________ other repair or damage costs,

 please explain ___

3.7 Do you think your company experienced any long-run competitive effects from the
software failure(s), such as lost reputation or lost market share?

Yes/no: lost reputation

Yes/no: lost market share

Yes/no: Delayed product or service introduction by _____ month leading to lost sales of ___ $/month

_____ other impacts

3.8 For minor software bugs in your FEDI or clearinghouse software, did these result in
increased operating costs or decreased efficiency?

_____ No (Go to Section 4)

_____ Yes: please explain __________________________________

3.8a Are these one-time expenditures due to developing patches and work arounds or
are they ongoing problems affecting efficiency?

 _____ one-time costs

 _____ ongoing costs

3.8b Approximately what are these annual expenditures?

 $_____________

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-26

4. Software Life-Cycle Costs
Associated with Bugs and Errors

In this section, we investigate how software bugs and errors affect the life-cycle costs of
purchasing and operating FEDI and clearinghouse software.

The Purchase Decision

4.1 How much time and resources are spent researching a new FEDI or clearinghouse
software package before a purchase decision is made?

_____ calendar time (months)

_____ labor expenditures (number of or fraction of FTEs)

4.2 Could the search time and resources have been reduced if you had better information
about the quality of the software products you were comparing?

_____ Yes: What would be the change in

 _____ fewer months

 _____ fewer number of FTEs

4.3 Because of potential software bugs and errors, do you typically delay purchasing new
versions of FEDI or clearinghouse software?

_____Yes: What is the typical delay? _____ months

_____ No

Software Installation and Acceptance

4.4 What was the average time it took for installation and acceptance testing for your FEDI
and clearinghouse software?

______________ months

4.5 What parties were involved in the installation and
performance testing of your FEDI and clearinghouse software,
and what was the share of effort/expenditures?

_____% software developers

_____% your company

_____% third-party integrator (consultant)

100%

Acceptance testing is the
process of determining
whether software
determines predefined
acceptance criteria.

Appendix E — Financial Services Survey Instruments

E-27

4.6 What were your company’s own expenditures on installing and performing acceptance
testing of FEDI and clearinghouse software in 2000?

______ total labor hours

4.7 How much did your company spend on external consulting services for installation and
acceptance testing services of FEDI and clearinghouse software in 2000?

$ ____________________

4.8 If the software you purchased contained fewer bugs and errors, how much would your
labor and external consulting expenditures for installation and acceptance testing have
been reduced?

______________ percent

Maintenance Costs

4.9 How much money did your company spend on maintenance
contracts for FEDI and clearinghouse software in 2000?

$____________________

4.10 In 2000, how much money did your company spend on FEDI
and clearinghouse software upgrades and maintenance that
were not covered by a maintenance contract?

$____________________

4.11 What percentage of maintenance costs were associated with bugs and errors embedded in
the software?

______________ percent

Redundant System Costs

4.12 After installation and acceptance, did your company maintain redundant backup systems
for some period of time in case the new system failed?

_____Yes

How long did you maintain the backup system? _____ months

What was (is) the estimated cost of maintaining these systems? __________ $/month

_____ No

Maintenance contracts
include any agreements
with outside agencies that
those agencies will perform
periodic checks of system
integrity and/or provide free
upgrades and/or correct
errors in installed software.
Contracts may include
training and technical
support.

The Economic Impacts of Inadequate Infrastructure for Software Testing

E-28

5. The Impact of Reducing the
Number of Software Bugs and
Errors

In this section, we investigate how the costs associated with bugs and errors in FEDI and
clearinghouse software would change if the number of bugs and errors embedded in these
software products were partially reduced. Our discussions with industry indicate that it is not
feasible or economical for software developers to produce “bug-free” software. However, NIST is
interested in knowing what the cost savings would be if your company encountered a 25, 50, 75,
or 90 percent reduction in software errors.

We anticipate that the rate at which the cost of bugs decreases as the number of bugs decreases
will not be the same for all of the cost categories that have been discussed previously in the
survey. For example, some cost-bug relationships may be linear (i.e., a 50 percent reduction in
bugs leads to a 50 percent reduction is costs), and some may be nonlinear (i.e., a 50 percent
reduction in bugs may lead to less than a 50 percent reduction in costs because even a small
number of bugs requires testing, backup, systems, etc.).

5.1 In the table below, please estimate the percentage cost reduction associated with different
percentage reductions in bugs for each of the major cost categories discussed earlier in the
survey. Two examples are provided. In Example A, costs decline proportionally as the
number of bugs are reduced. In Example B, costs do not decline proportionally, and a 90
percent reduction in bugs does not eliminate over half of the costs because other normal
costs may be associated with maintenance or installation.

Cost Reductions as a Function of Bug Reductions

Cost Categories
Percentage Reduction in Bugs or Errors in

FEDI and Clearinghouse Software

 25% 50% 75% 90%

Example A (linear) 25% 50% 75% 90%

Example B (nonlinear) 10% 15% 40% 45%

Major failure costs

Minor failure costs

Purchase decision costs

Installation costs

Maintenance costs

Redundant system costs

Appendix E — Financial Services Survey Instruments

E-29

6. Comments

6.1 Please provide any additional comments that would help us evaluate the cost of FEDI or
clearinghouse software bugs and errors to your company.

We thank you for your participation.

Please indicate below if you would like to receive a copy of the final report.

_____ Yes, please send a copy

_____ No

