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Foreword

The National Standard Reference Data System is a Government-wide effort to provide for the
technical community of the United States effective access to the quantitative data of physical
science, critically evaluated and compiled for convenience, and readily accessible through a variety
of distribution channels. The System was established in 1963 by action of the President’s Office of
Science and Technology and the Federal Council for Science and Technology.

The responsibility to administer the System was assigned to the National Bureau of Standards
and an Office of Standard Reference Data was set up at the Bureau for this purpose. Since 1963,
this Office has developed systematic plans for meeting high-priority needs for reliable reference
data. It has undertaken to coordinate and integrate existing data evaluation and compilation
activities (primarily those under sponsorship of Federal agencies) into a comprehensive program,
supplementing and expanding technical coverage when necessary, establishing and maintaining
standards for the output of the participating groups, and providing mechanisms for the dissemina-
tion of the output as required.

The System now comprises a complex of data centers and other activities, carried on in Gov-
ernment agencies, academic institutions, and nongovernmental laboratories. The independent
operational status of existing critical data projects is maintained and encouraged. Data centers
that are components of the NSRDS produce compilations of critically evaluated data, critical
reviews of the state of quantitative knowledge in specialized areas, and computations of useful
functions derived from standard reference data. In addition, the centers and projects establish
criteria for evaluation and compilation of data and make recommendations on needed modifications
or extensions of experimental techniques.

Data publications of the NSRDS take a variety of physical forms, including books, pamphlets,
loose-leaf sheets and computer tapes. While most of the compilations have been issued by the
Government Printing Office, several have appeared in scientific journals. Under some circum-
stances, private publishing houses are regarded as appropriate primary dissemination mechanisms.

The technical scope of the NSRDS is indicated by the principal categories of data compilation
projects now active or being planned: nuclear properties, atomic and molecular properties, solid
state properties, thermodynamic and transport properties, chemical kinetics, colloid and surface
properties, and mechanical properties.

An important aspect of the NSRDS is the advice and planning assistance which the National
Research Council of the National Academy of Sciences—National Academy of Engineering pro-
vides. These services are organized under an overall Review Committee which considers the
program as a whole and makes recommendations on policy, long-term planning, and international
collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to
examine major portions of the program, assign relative priorities, and identify specific key prob-
lems in need of further attention. For selected specific topics, the Advisory Panels sponsor sub-
panels which make detailed studies of users’ needs, the present state of knowledge, and existing
data resources as a basis for recommending one or more data compilation activities. This assembly
of advisory services contributes greatly to the guidance of NSRDS activities.

The NSRDS-NBS series of publications is intended primarily to include evaluated reference
data and critical reviews of long-term interest to the scientific and technical community.

A. V. AsTIN, Director.
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Nomenclature, Conversions, Physical Constants, and Fixed Points for Argon

Nomenclature

— absolute pressure

— absolute temperature

— specific volume

— density=1/V

— universal gas constant

— compressibility factor = PV/RT

— specific internal energy

— specific enthalpy

— specific entropy

— specific heat capacity at constant pressure
specific heat capacity at constant volume
— Joule-Thomson coefficient

— second virial coefficient

— Gibbs function

— Helmbholtz function

— residual work content

— potential energy

— distance of molecular separation

— molecular separation for £ =0

— Maximum energy of attraction

— Boltzmann constant

— Avogadro constant

— reduced distance = r/o

T* — reduced temperature = kT/e

bp — reducing parameter = 27No3/3

B*— reduced second virial coefficient = B/b,
po — distance between cores for minimum energy
h — Planck constant

a — radius of core

m — mass of molecule

A*— de Broglie wave length = h/(o Vme)
Superscripts:

o — ideal gas property

* —real or ideal gas property at very low pres-
sures (P approaching 0) except as noted in
symbols above

saturated liquid property

saturated vapor property

L =AM QY Ny Ot DOLTANZ® WU
I

OQ(\‘
(I

Subsecripts:
¢ — critical point
o - reference state property

sat — property at saturation

t — triple point

expr— experimentally determined property value
calc— calculated property value

melt —melting line property

Subscripts on partial derivatives and integrals
indicate which property is being held constant.

Conversions and Physical Constants

1 thermochemical calorie = 4.184 joules

0° C = 273.15 K (Triple point of water = 273.16 K)
Gas constant, R = 0.0820535 liter-atm/g-mole K
Planck constant, £=6.6256 X 10-3¢ joule-sec
Boltzmann constant, k=1.38054 X102 joule/K
Avogadro constant, N=6.02252 X 1022 per mole
Molecular weight of argon = 39.948g/g-mole (based
on the carbon-12 scale where the isotope C!2
=12.000. . .).

Fixed Points for Argon

Critical pressure = 48.34* atmospheres

Critical density = 300.4* Amagat = 13.41 g-mole/liter
Critical temperature = 150.86* K

Normal boiling point=87.280+0.015** K

Triple point temperature = 83.80** K

Triple point pressure=0.68005** atmospheres.

* These fixed points are those listed by Michels et al. [1]. Some recent investigations
indicate the critical temperature and pressure may be in error. However, these values
appear to be the best estimate available at this writing. In reference [1] the Amagat
unit of density is given as 4.4647 X 10~5 moles/cm?, based on the chemical scale. In
this work the physical scale is used, resulting in an Amagat density unit of 4.4659 X 10-5
moles/cm3,

** These fixed points are those listed by Ziegler et al. [2]. The value of the normal
boiling point calculated by the vapor pressure equation developed in this work agrees
with that listed by Ziegler [2]. The value of the triple point temperature calculated by
the vapor pressure equation developed in this work deviates from Ziegler’s reported
value by 0.0045 percent.



Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures
to 1000 Atmospheres

A. L. Gosman, R. D. McCarty, and J. G. Hust

Tabular values of density, internal energy, enthalpy, and entropy of liquid and gaseous argon are
presented for temperatures from 83.8 to 300 K at pressures of 0.01 to 1000 atmospheres. Diagrams of
specific heats, compressibility factor, and entropy are included. The properties presented are calculated
from an equation of state which was fitted to experimental P—p—T data from the world literature. Ex-
tensive comparisons were made between the equation of state and the experimental data, and deviation
plots are presented. The second virial coefficient and Joule-Thomson inversion curve were also cal-
culated and comparisons made with values from other sources. A vapor pressure equation which covers
the range from the triple point to the critical point is also given.

Key Words: Argon; compressibility factor; enthalpy; entropy; equation of state; internal energy;
Joule-Thomson coeflicient; P—V-T; specific heat; vapor pressure; virial coefficient.

1. Introduction

In recent years technical interest in pure argon
has greatly accelerated. This accelerated interest
has been evidenced by a demand which has more
than sextupled in 12 years. United States pro-
duction has continued to increase from less than
200,000,000 cubic feet per year in 1953 to almost
1,300,000,000 cubic feet in 1965, with about 80
percent being shipped in liquid form [3].!

In addition, scientific interest in argon has arisen
because of its characteristically “‘ideal” structural
makeup. That is, argon is monatomic, with the
relatively uncomplicated interatomic forces being
approximated by spherically symmetric, nonpolar
models. In addition, the quantum effects on argon
are relatively small. Although helium and neon
might be considered to be more ‘“ideal” fluids
from the standpoint of simple models, the quantum
effects are relatively large for these two fluids as
compared to argon. For these reasons argon might
be expected to permit a more direct classical in-
vestigation and experimental verification of the
theoretical model predictions.

In view of thé increased activity in cryogenic
engineering and physics, it was apparent that a
set of consistent thermodynamic properties, over
a relatively large region of the thermodynamic
surface, was needed. Although many investigators
had published data for the thermodynamic prop-
erties of argon, each tabulation was, in general,
limited to the property range of interest of the
specific investigator, and large gaps in the data
existed. In addition, where the ranges of data did

! Figures in brackets indicate the literature references (sec. 17).

overlap, there was a substantial degree of incon-
sistency in some instances. For these reasons, this
laboratory undertook the program of making a
critical analysis of the thermodynamic properties
of argon in the cryogenic temperature range, in-
cluding the low temperature —high density region.

In recent years, much of the technical design
and synthesis has been done with the aid of high
speed digital computers. Thus the need for an an-
alytical equation of state has become quite sig-
nificant when compared with the use of tables and
charts of thermodynamic properties. Many equa-
tions of state have been proposed in the literature,
each with its own peculiar strengths and weak-
nesses. Some of these equations represented the
data in certain regions of the thermodynamic
surface, but were quite inadequate in other regions
of the surface. Therefore, the need was established
for a single equation of state which could accurately
and consistently represent the data for both the
liquid and vapor phases with a consistent transi-
tion from the low temperature — high density region
to the low density region.

In the case of argon, it is difficult to assess the
general overall adequacy of an equation of state in
terms of deviations from the experimental P-V-T
surface. That is, due to the inconsistency of some
of the overlapping experimental data sources, there
is no single experimental P-V-T surface which can
be used as a reference. Also, the significance of
the deviations is wholly dependent upon the var-
iable chosen for the comparison and the specific
region of the thermodynamic surface which is
being studied. In certain regions of the surface,



large pressure deviations are caused by insignificant
density errors, while in other regions the reverse is
true. In general, the equation of state presented in
section 7 represents the different sources of experi-
mental data to within the accuracy of the data,
except at the higher temperatures on the coexist-
ence boundary and the critical region where the
deviations are, in a few cases, greater than the
accuracy of the data. Numerous deviation plots are
presented (sec. 8) in a manner which permits the
comparison of the equation of state with each of
the experimental data sources over the various
regions of the thermodynamic surface.

As a part of the critical analysis, it was deemed
necessary to develop a vapor pressure equation
which would accurately represent the experimental
vapor pressure data from the triple point to the
critical point. This vapor pressure equation could
then be used, in conjunction with the equation of
state, to calculate some of the derived thermo-
dynamic properties such as enthalpy, entropy, etc.

Thus it was concluded that a critical analysis of
thermodynamic properties of argon was to be made
for temperatures to about 300 K and for pressures
to about 1000 atm wherever the experimental data
permitted this pressure range.

2. Survey of the Literature

A comprehensive search of the literature re-
sulted in a bibliography of about 425 references.
The temperatures which were included in this
search covered the range from 0 to 300 K. In addi-
tion to manual-reviewing techniques, the data re-
trieval personnel and the computerized search
techniques of the Cryogenic Data Center of the
National Bureau of Standards at Boulder, Colo.
were utilized. As a result, a bibliography on the
thermophysical properties of argon [4] was prepared
and published in 1964. The literature search was
continually updated so that current data were
rapidly assimilated.

From this literature search, the most appropriate
P-V-T data, vapor pressure data, coexistence
density data, and fixed point data were selected
for consideration and evaluation. In addition, virial
coeflicient data, Joule-Thomson data, specific heat
data, and information on equations of state were
acquired and considered.

Although many equations of state were pre-
sented in the literature, none of these equations
appeared to have been developed to adequately
represent the data for argon for temperatures from
below the normal boiling point to twice the critical
temperature for the gaseous, dense gas, and liquid
regions. Hirschfelder et al. [5] developed a gen-
eralized equation of state which arbitrarily divided
the P-V-T surface into three regions, namely, gas,
dense gas, and liquid regions. For these three
regions, Hirschfelder et al. [5] developed three
equations in such a manner that discontinuities
at the junction of these regions were avoided.

Appearing in the literature were other tech-
niques for representing the P-V-T data. For some
fluids, where perhaps one source of highly precise

data were available, the P-V-T data could be repre-
sented by polynomials along isotherms or poly-
nomials along isochores. One such isothermal
representation is the virial equation of state.

The virial equation of state is based on funda-
mental grounds in that it can be derived from
fundamental statistical mechanics. Furthermore,
in principle, this equation of state depends upon a
very small number of parameters in that once one
characterizes the potential function (by assigning
values to its parameters) all virial coeflicients can
be calculated. In practice, however, only the second
virial coeflicient has been calculated properly. The
third virial has been calculated in the approximation
where nonadditivity is neglected for a small number
of functions. All higher virials have really not been
calculated except for the fourth and fifth virials for
the hard sphere and (12—6) potentials. Thus, in
actual practice, a virial equation of state is, in
effect, an equation of state with a number of param-
eters equal to the number of virials times the num-
ber of isotherms (perhaps minus the second virials).
Thus, Michels et al. [1, 6] equation of state remains
a 100 parameter representation of his 19 isotherms
until higher virials can be properly calculated from
potential functions.

In addition, where multiple sets of data exist
(as with argon) at odd temperature and density
spacings, a complete correlation at all points of the
P-V-T surface becomes very difficult with these
polynomials. That is, if isothermal polynomials are
used, then each set of coefficients is valid only for
the one specific isotherm which was fitted. If a
point on the P-V-T surface lies between two of the
fitted isotherms, then other interpolative tech-
niques must be used to obtain the P-V-T coordi-
nates of this point.

3. Summary of P-V-T Data

Published experimental P-V-T data were re-
viewed and examined. As a result, the P-V-T data
which were considered for use in this compilation
were distributed as shown in table 1.

Evaluation of the experimental P-V-T data of
van Itterbeek, Verbeke, and Staes [9] revealed

slight inconsistencies. Private communication
from Verbeke [12] indicated that there were typo-
graphical errors in the original paper [9]. The new
values given by Verbeke [12] were then used in
this work.



TaBLE 1. Summary of P-V-T data TABLE 1. Summary of P-V-T data— Continued
Number Temperature Pressure Source Number | Temperature Pressure Source
of points or volume range (atm) of points or volume range (atm)
8 ~140 °C 6 to 160 Michels, Levelt, and de Graaff [1] 1 93.15 K 320 van Witzenburg [10}
10 —135 7 to 200 1] 5 98.15 78 to 350 10
13 —130 7 to 240 1] 7 103.15 76 to 330 10
17 —-125 7 to 280 1] 12 123.15 303 1o 1042 10
20 —122.5 7 to 300 1] 12 128.15 302 to 1908 10
24 —120 7 to 320 1] 15 133.15 207 1o 1941 10
26 —110 8 to 400 1] 7 108.15 322 10 1210 10
26 —100 8 to 480 1] 3 113.15 74 10 967 10,
26 -85 9 to 600 1] 10 118.15 296 to 1590 10
27 —-70 6 to 700 1] 13 138.15 315 to 1957 10
27 —50 7 10 850 1] 16 148.15 66 to 1902 10
28 —-25 7 1o 1030 1} 13 153.15 315 to 1925 10
41 Near coexistence region 1
14 29.2 cm3/g-mol| 21 to 488 Walker [11]
48 0°C 19 to 930 Michels, Wijker, and Wijker [6] 15 29.6 25 to 494 11
46 25 20 10 870 [6] 17 29.8 43 to 520 11
15, 50 to 150 °C 27 to 750 {6] 20 31.3 39 1o 500 11
7 —~183.02 °C 26 to 165 Rogovaya and Kaganer [7] 17 33.8 16 to 515 11
8 —150.08 25 to 185 7] 24 35.7 24 to 500 11
6 —135.03 72 1o 196 7] 22 37.8 27 to 506 11
6 —120.02 73 to 166 7] 16 39.5 34 to0 286 11
7 —110.04 47 t0 176 7] 16 41.2 34 10 483 11
9 —100.01 49 to 192 7] 23 42,0 38 to 506 11
7 —90.03 50 to 190 7] 24 43.6 45 to 316 11
8 —175.03 26 to 194 7] 25 455 43 to 272 11
8 —49.93 28 to 197 7] 14 50.7 45 to 139 11
8 —24.98 27 to 184 7] %g (5322 gé :0 %gg ﬂ
. 4]
8 86.63 K 17 to 90 van Itterbeek and Verbeke [8]
14 87.91 13 to 147 [8]
14 89.13 22 10 150 [8]
14 90.55 18 to 146 18]
. . . b
8 9005K | 1010242 |van Itterbeck, Verbeke, and Staes [9] A preliminary comparison pf Wa}ker s [1.1] ex-
12 Lo 1110 280 bl perimental data showed an inconsistency in the
8 uzie 1610 284 {g{ published density values. Private communication
. t g
7 130.85 21 1o 266 () from Walker [13] indicated that there were errors
> 134.40 010258 i in the density values quoted in the original paper
14 138.98 33 to 285 ) [11]. A more complete discussion of Walker’s [11]
X to . .
9 148.25 45 10 288 1] data will be given later.

4. Summary of Vapor Pressure Data

Some of the vapor pressure data which are
available in the literature were published in the
early part of the century. Wherever possible, these
early data were replaced by more recent data if
there appeared to be sufficient evidence that the
recent data were of higher reliability.

Modern experimental instrumentation and tech-
niques generally permit a higher order of accuracy
and precision than did the earlier work. In addi-
tion, the temperature scales and basic standards
which were used in much of the older work were
substantially different from those used today. Some
of the earlier work may have been conducted with
variations in the temperature scales of as much as
0.06 deg. Much of the time, the early investigator
did not clearly state which temperature scale was
in current use and the results therefore lead to
confusion and uncertainty.

As a result of the above considerations, the vapor
pressure data which were selected for further
analysis are shown in table 2.

In addition to the vapor pressure data shown
above, two sources of coexistence or saturation
densities were examined. These are indicated in
table 3.

TABLE 2. Summary of vapor pressure data

Number Temperature s
of points range—K ource
23 90 to 150 fvan der Waals Laboratory data reported by
Clark, Din, Robb, Michels, Wassenaar, and
Zwietering [14].
17 86 to 150 | British Oxygen Co. Ltd. data reported by Clark
et al. [14].
23 117 to 150 Michels, Levelt, and de Graaff [1].
6 84to 87 | Flubacher, Leadbetter, and Morrison [15].
34 85 to 148 van Itterbeek, de Boelpaep, Verbeke, Theeuwes,
and Staes [16].
9 129 10 147 | van Itterbeek, Verbeke, and Staes [9].
TABLE 3. Coexistence density data
Number Temperature Source
of points range—K
23 117-150 Michels, Levelt, and de Graaff [1].
16 90-148 Mathias, Onnes, and Crommelin [17].




5. Saturated Liquid Density

In this analysis, it frequently was found con-
" venient to have an expression which could be used
to predict approximate values for the density of the
saturated liquid. This type of expression was not
needed for the determination of the equation of
state or the calculation of the thermodynamic prop-
erties. However, it would prove useful in the pre-
liminary analysis, where saturation data were
evaluated for consistency. Such an expression also
would be useful for obtaining initial approximations
in iterative solutions of the equation of state. For
these purposes a simple expression, based upon
the principle of corresponding states, was de-
veloped.
Using the critical point as the reducing parameter,
the principle of corresponding states assumes a
universal function which may be expressed as

Przf(Tra Vr) (1)
where
P.=P|P,
T,=T/T.
V.=V/V,.

However, in the coexistence region where the
saturated liquid and saturated vapor are in mutual
equilibrium, the pressure and temperature are
not independent properties. Thus if eq (1) were
examined in accordance with the thermodynamic
requirements of the coexistence line, it may be
deduced that there also exists a universal function
for the saturated liquid such that

pllpe=F(T;). )

Using a coordinate system of reduced tempera-
ture versus reduced density, Guggenheim [18]
plotted experimental data points for a number of
pure substances and verified the universal form of
eq (2). For the data which Guggenheim [18] had
available, he found that the coexistence line could
be adequately expressed by the relationships

1
L_:Ly=l+a(l—Tr) @)
and
1
p—pg= b(l _— Tr)1/3, (4)

c

where a and & are constants. Equation (3) repre-
sents the “law” of the rectilinear diameter which
states that the average of the saturated liquid and
saturated vapor densities appears as a straight line
on the reduced coordinate system of temperature
versus density.

Combining eqs (3) and (4) yields an equation for
the saturated liquid density, expressed as

plpe=1+a(l1—T,)+C(Q—T;)1 5)

where C=b/2.

In order to represent the data with more accuracy
than eq (5) permits, an expanded form of eq (5)
was proposed. Physical requirements demand that
the derivative

d(Ty)
d(p'lpc)

Thus the possibility of an equation with the satu-
rated liquid density as a function of only integer
powers of temperature is ruled out, since such an
equation would not fulfill the requirements of
eq {6). It then appears that a fractional power
term such as the last term in eq (5) is necessary
so that zero slope may exist at the critical point.
An expanded form of eq (5) may then be written as

pilpe= 2

n=0,1,2,3,...

=0at p'=p. and T, =1 6)

dn(1—T,)"3. )

For eq (7) to satisfy critical point behavior, the
coefficient dp should be essentially equal to unity.
In addition, if the derivative of eq (7) is written

T,
df) __ 1 : ®

d(p'/pc) 2 %dn(l_Tr)g—l

n=0,1,2,3,.

it is seen that the requirements of eq (6) are satisfied.
In eq (7), fractional exponents other than multiples
of 1/3 were investigated. The results showed no
apparent advantages, and the 1/3 exponent was
retained.

Equation (7) was fitted to the saturated liquid
data by least square techniques. A series of suc-
cessive fits was performed with increasing values
of “n.” Examination of these fits revealed a con-
tinued decrease in the deviations between the
calculated density and experimental density until
the fit with n=6. For fits with “n” greater than
six, the results appeared to be approaching the
precision of the data, and, therefore, the final form
for the equation was selected to be

6
pllpe="7y duK™ )
n=0

where K=(1—T,)"® and T, is calculated from
temperatures in Kelvin units.

An examination of the saturated liquid density
data demonstrates that the data from Michels et al.
[1] and Mathias et al. [17] are consistent with each
other, with Michels’ data showing somewhat more
precision. This may be seen in figure 1, where



percent density deviation is plotted as a function
of temperature.
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FIGURE 1. Deviations between calculated (eq (9)) saturation

liquid densities and experimental saturated liquid densities.

In figure 1, it is seen that both sets of data
exhibit almost the same characteristics with the
Mathias data showing a wider envelope of density
deviations. The maximum deviation of the saturated
liquid density data from that calculated by eq (9)
is 0.32 percent which occurs within 1/2 deg of the
critical point. The mean of the absolute values of

density deviations for Michels’ data is 0.099 per-
cent, and for the data of Mathias, 0.098 percent.

However, the three Michels’ data points which
exhibit the largest density deviations are all within
about a degree and a half of the critical point where
the experimental determination of saturated liquid
densities becomes most difficult. If these three
points are not included, then the mean density
deviation is 0.039 percent. On the other hand, the
single data point of the Mathias data which exhibits
the maximum deviation is within about two and a
half degrees of the critical point. If this point is
omitted, the mean density deviation for the Mathias
data is 0.076 percent.

With these comparisons, it can be concluded that
eq (9) adequately represents the data, with precision
approaching the precision of the data. In addition,
the data of Michels et al. [1} display a precision
about twice that of Mathias et al. [17].

The coefhicients of eq (9) which resulted from the
fit with n= 6 are shown in table 4.

TABLE 4. Coefficients for saturated liquid densities for eq (9)

Temperature in K, coefficients are dimensionless

do=0.9999548 d,=91.361470
d1=0.47354891 ds =—93.773992
d,=11.238328 ds=37.769045

3 =—43.741090

Use of the coefficients in table 4 produces a
root-mean-square deviation in p/p. of 0.002 for the
data considered.

6. Vapor Pressure

The purpose of developing a vapor pressure
equation was twofold. When used in conjunction
with an independently obtained equation of state,
the vapor pressure equation could be used to define
the coexistence boundary. Also, the vapor pressure
equation could be used in conjunction with the
equation of state to calculate some of the derived
thermodynamic properties.

The coexistence boundary may also be defined
without the use of a vapor pressure equation, as
discussed in section 11. However, this method
requires a sufficient number of highly precise
experimental P-V-T data points along the boundary.
Since saturation densities are difficult to measure
with a high degree of precision, and since there
was only one source of satisfactory coexistence
data, it was difficult to perform a critical evalua-
tion of this data for the purpose of establishing
the coexistence boundary.

Instead, there was in the literature a relatively
large number of experimental P-T data points along
the coexistence boundary. With these data a vapor
pressure equation could be developed. An examina-
tion of the literature indicated the existence of
many vapor pressure equations which have been

used. Some of these have been studied, compared,
and listed by Stewart [19].

For this evaluation of argon, a vapor pressure
equation was developed which would represent
the argon data with sufficient precision and at the
same time permit consistency with the equation
of state at the critical point.

The argon vapor pressure equation was developed
from the application of the Clapeyron equation
to a first order phase transition. The Clapeyron
equation is

dP\ _ HI—H
(d_T>sat‘ T =y (19)

If appropriate expressions for the changes in
enthalpy and volume as functions of temperature
and pressure are substituted in eq (10), the equa-
tion can then be integrated to give the desired
vapor pressure equation. Some of the simpler and
more commonly used vapor pressure equations
were obtained with the assumptions of

Ves Vi V9=—RiP;; H9—H'!=constant. (11)



The first assumption of eq (11) is valid only for
coexistence states which are considerably below
the critical point. In addition, figures 2 and 3
illustrate that the second and third assumptions
of eq (11) are in substantial error.

E-
o
T
Solid Line is Physical Behavior. \
Dashed Line is Equation (12). \
TEMPERATURE
FIGURE 2. Latent heat of vaporization as a function of

temperature.

Therefore, for this work on argon, the following
two approximations were proposed:

Hs—H'=K,+ K, T+ K;T? (12)
and
P\RT
Vg—V’=(1——P—C->T. (13)

The approximations suggested by eqs (12) and (13)
are compared with the assumptions of eq (11) and
are shown in figures 2 and 3.

Figure 2 illustrates a typical plot of the latent
heat of vaporization as a function of temperature.
It is observed that the third assumption of eq (11),
which approximates the latent heat as a constant,
is unsatisfactory both in magnitude and in charac-
teristic nature. It is thus proposed that eq (12)
represent the latent heat of vaporization. Equation
(12) is shown in figure 2 as the dashed line and is
seen to represent more closely the characteristic
nature of the physical behavior. The constants in
eq (12) may be adjusted to change slightly the nature
of the curve. Therefore, it was concluded that the
quadratic nature of eq (12) satisfactorily represented
the physical behavior in figure 2, and no higher de-
gree temperature terms were considered necessary.

Figure 3 illustrates a typical plot of the volume
of vaporization as a function of temperature. It is
clear that the perfect gas assumption of eq (11)
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Solid Line is Physical Behavior.
=  Long Dashed Line is Perfect Gas, Equation (l1}).
Short Dashed Line is Equation (13).
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FiGURE 3. Volume of vaporization as a function of temperature.

becomes quite unsatisfactory as temperature in-
creases. In addition, it is noted that the charac-
teristic curvature of the perfect gas representation
is incorrect. In figure 3, it is seen that the approxi-
mation proposed by eq (13) represents the physical
behavior more closely and maintains the proper
curvature for the entire temperature range. In
addition, eq (13) permits the volume of vaporization
to reduce to zero as the pressure approaches critical
pressure. It should be noted that the deviations
between the different models shown in figures 2
and 3 are used only for purposes of illustrating
qualitative trends and are not indicative of the
actual deviations of the calculated vapor pressure
properties.

Substitution of eqs (12) and (13) into eq (10) and
integrating give

InP=A/T+BInT+CT+D+EP. (14)
Equation (14) was then the equation which was
proposed for representing the vapor pressure data,
with five constants to be determined by a least-
square fit to the data.

In order to fit the vapor pressure eq (14) to
the data, considerations were given to the ex-
permental errors in the observed data points so that
each of the data points could be appropriately
weighted. The weighting scheme, as described by
Hust and McCarty [20], is outlined below.

Let a function with “Q” variables
.s xQn)

ynzf(xlih X2ny « + s ans ..

forn=1,2,. .., N (15)



represent the set of “/¥”’ experimental data points

Yo, Xin, Xow, -+ o, Xgns -+« -, Xam (16)
where Y, is the dependent variable for the nth data
point and X4, is the gth independent variable for
the nth data point. The weighting factor is most
usually described as the reciprocal of the variance

=L

et (17)
which takes into account the variance of the de-
pendent variable.

Since both the independent and dependent
variables affect the final fit of the function to the
data, the weight function for the nth data point is
expressed as

1
Q 0 f 2
o} + (— o )
Yn q=21 8an an

Since P was chosen as the dependent variable in
eq (14), Y becomes

W= (18)

Y=In P—EP. (19)
To obtain oy, for eq (18) for the nth data point,
Y 1
O'yn:m UPn=<ﬁ_E> O'pn. (20)

Also from eq (18) and the vapor pressure equation

(14),
Q af 2 _ ﬁ 2
& (3 om) =, om) @)
and
d B A
aTJ:ZT—n'FC—ﬁ 22)

If the experimental uncertainty of the nth data
point for the gth variable, “AX,,”, corresponds to
a 95 percent confidence interval on the observed
X, then the standard deviation “oy,” is related to

AX,, as

Ogn = 30X . (23)

The vapor pressure equation (14} is a function of
pressure and temperature. Applying eq (23), gives
201, = AT, (24)

and
20’1)" =AP,. (25)

Substituting the necessary expressions into (18), a
weighting function for the nth data point is obtained:

4
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W=

(26)

Equation (26) was then used as the weighting
function for all of the vapor pressure data except
the data of Clark et al. [14]. The vapor pressure data
of Clark consisted of several hundred observations.
The method which Clark used was a comparison of
the vapor pressure of argon with that of oxygen as
determined by Hoge {21], and using the latter as a
measure of the temperature. In this manner, the
temperatures were measured with a mercury-in-
glass manometer over most of the temperature
range. At higher pressures, the temperature was
measured with a copper-constantan thermocouple.
Clark stated that the measurements were taken with
a reproducibility of about 0.05 percent at low pres-
sures. At higher pressures he found that the temper-
ature control on his apparatus would not maintain
the temperature constant with the same precision
as at the lower temperatures, resulting in an un-
certainty of about 0.2 percent in pressure for a given
temperature.

Clark et al. [14] published a plot of deviation (from
a fitted equation) in A log P versus log P. From this
plot it appeared that there were about three to four
times as many data points at low pressures than
at pressures near the critical point. From the de-
scription of the experimental techniques used, the
uncertainty limits, and the variable density distri-
bution of Clark’s data, an arbitrary modifying func-
tion was developed to modify the weighting function
eq (26) for Clark’s data. This function, as described
by Gosman [22], is

1

375
ST

M= —0.28. 27)

Since Clark’s lower temperature range included
more data points than the high temperature range,
and since the temperature control on Clark’s ap-
paratus was less precise at the higher temperatures,
the modifying function (27) was made to reflect the
lower reliability at the higher temperatures.

Equation (27) was used to modify the variance of
the fit, so that the weighting factor for Clark’s data
resulted in

1

Ve~ T

(28)

Using eq (28), the final weighting expression for
Clark’s data is

W.=WMe, (29)

where W is the general weighting function eq (26).

The nine vapor pressure data points of van Itter-

beek, Verbeke, and Staes [9] were not used in the

final determination of the vapor pressure equation.
These nine points were omitted from the final



evaluation because, within a year of the vapor pres-
sure observations of van Itterbeek et al. [9], a new
set of vapor pressure data was reported by van
Iiterbeek, de Boelpaep, Verbeke, Theeuwes, and
Staes [16] which deviated considerably from the
earlier data [9], but appeared to be more consistent
with the vapor pressure observations from other
sources.

The uncertainties in the vapor pressure data
were estimated from the statements of the inves-
tigators, the description of the experimental pro-
cedures, the deviations between the different sets
of data, and the apparent random deviations of
each set of data.

The resulting uncertainties for all of the vapor
pressure data were estimated to be

AT
7= 0.00025
(30)
AP _
7= 0.00025.
Substituting eqs (30) into (26) and (29),
4 X 108
W= . (31)
6.25 [ (B+ CT_T) +(EP)?2+ 1]
and for Clark’s data,
We=WM-:. (32)

For each data point, the weighting functions
(31) or (32) were substituted into the normal least-
square equations as shown by Hust and McCarty
[20].

In addition, it was considered desirable to make
the vapor pressure equation (14) pass through the
critical pressure and temperature so as to be con-
sistent with the equation of state at the critical
point. This required adding a constraining equation
to the normal least-square equations so that the
coefficients of the vapor pressure equation would
satisfy the least-square criteria, as well as simul-
taneously constrain the vapor pressure equation to
pass through the critical point. The generalized
normal least-square equations with constraints are
shown by Hust and McCarty [20] and Gosman [22].

A preliminary weighted-least-square fit with one
constraint indicated that the low temperature data
of van Itterbeek et al. [16] exhibited a scatter of
about three to four times as great as the higher
temperature data. Since low temperature vapor
pressure data from other investigators were avail-
able, these low temperature data of van Itterbeek
et al. [16] were omitted from the final fit.

The resulting fit of the vapor pressure equation
(14) to the data is illustrated in figure 4, where the
deviation between the temperature predicted by
eq (14) and the experimental temperature is plotted
as a function of pressure.

Texpr.' Teale.

Data of van Itterbeek, et al. [16] below
pressures of 2 atm. were not included
in the fit of vapor pressure equation (14).
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FIGURE 4. Deviations of vapor pressure data from eq (14).

In figure 4, it 1s seen that the characteristic shape
of all five of the deviation curves is the same, except
for the low temperature data of van Itterbeek et al.
[16] (which was not included in the fitted data).
From figure 4 it is also noted that the data of van
Titerbeek et al. [16] exhibits a pattern of generally
wider scatter at the higher temperatures when com-
pared with the other data sources.

The similarity in the basic shape of the deviation
curves of figure 4 may be interpreted to indicate a
fundamental consistency between the selected
vapor pressure data. The deviation curves also
indicate the possibility of a disagreement in the
temperature scales between the different data
sources. This disagreement of temperature scales
is inferred from the essentially constant shift or
displacement between any one of the deviation
curves and any of the others. This displacement of
the deviation curves exists despite the fact that an
effort was made to convert all of the temperature
scales to a common thermodynamic temperature
scale. An additional correction of less than 0.01
deg (see sec. 9) was made to the data of Clark et al.
[14], since he stated that his data were based on an
ice-point temperature of 273.16 K, whereas the other
vapor pressure data sources were based on the
ice-point temperature of 273.15 K.

From figure 4 it is seen that the maximum tem-
perature deviation is 0.108 deg. This particular
point is in the Clark et al. [14] set of data and may
be questionable since it contributes a sharp spike
in the deviation curve. For Clark’s data, the mean of
the absolute values of the temperature deviations is
0.0290 deg. If the single questionable data point is
omitted, the mean deviation of Clark’s data is
0.0240 deg. For the data of Flubacher et al. [15],



the maximum temperature deviation is 0.0174 deg,
while the mean of the absolute values of the temper-
ature deviations is 0.0109 deg. The deviations of
Clark et al. [14] (experiments by Michels) appear to
oscillate slightly about the zero axis except at the
lower temperatures where the maximum tempera-
ture deviation occurs. For the data of Clark et al.
[14], the maximum temperature deviation is 0.0339
deg, while the mean of the absolute values of the
temperature deviations is 0.00925 deg. The data of
Michels et al. [1] also exhibit a small oscillation
with a maximum temperature deviation of 0.0309
deg and a mean of 0.0158 deg. For the data of van
Itterbeek et al. [16], the maximum temperature
deviation is 0.156 deg, while the mean is 0.0484 deg.

The summary of the deviations between the tem-
perature predicted by the vapor pressure equation
(llll))1 and the experimental temperature is given in
table 5.

TABLE 5. Summary of vapor pressure deviations

Max. temp, Mean abs. Source
deviation temp deviation
0.0339 0.00925 Clark et al. [14].2
.108 {0290 Clark et al. [14].
0309 0158 Michels et al. [1].
0174 L0109 Flubacher et al. [15].
156 0484 van Itterbeek et al. [16).

2 Experiments by Michels.

By independent means, Ziegler et al. [2] obtained
“best” values for the normal boiling point tempera-

ture and triple point temperature. It is important to
note the deviations between the temperatures given
by Ziegler et al. [2] and the temperatures predicted
by the vapor pressure equation (14). The normal
boiling point temperature given by Ziegler is
87.280 =0.015 K, while the normal boiling point
temperature predicted by equation (14) is 87.2838 K.
The triple point temperature recommended by
Ziegler is 83.80 K, while the triple point tempera-
ture predicted by eq (14) is 83.8038 K, which
corresponds to a temperature deviation of 0.0045
percent.

TABLE 6. Least squares estimates of coefficients for vapor
pressure eq (14) 2

Coefficient Least squares Standard deviation Significance
estimate of coefficient level »
A4 —1.062454904 X 103 4.993 x 101 99.5%+
B —4.271440691 1.056 99.5%+
C 1.524254979 x 10-2 5.670 X 1073 99 %
D 2.992927939 x 10! 4.796 99.5%+
E 2.465760638 x 10-3 5.049 X 10+ 99.5%+

2 Where P is in atm and T is in K.

" These parameters are significant at the level indicated when applying the standard
Frest.

Table 6 lists the five coefficients for eq (14). Also
tabulated in table 6 are the standard deviations and a
significance level of these parameters. The signifi-
cance level indicates these parameters are signifi-
cant at least to the level indicated when applying
the. standard F test.

7. The P-V-T Surface

Many equations of state have been proposed to
represent the P-V-T surface. Some of these equa-
tions represent the experimental data adequately
in limited regions of the thermodynamic surface
but are quite inadequate in other regions. Other
equations, taking the form of polynomials along
isotherms or isochores, are well suited to represent
a single source of highly precise experimental data.
However, the use of these polynomial expressions
becomes very difficult in a complete correlation of
the P-V-T surface with multiple sets of experimental
data with odd spacings of temperature and density.

In this analysis the P-V-T surface was basically
represented by an equation of state proposed by
Benedict, Webb, and Rubin [23] with modifications
by Bloomer and Rao [24] and further modified and
extended by Strobridge [25].

The Benedict-Webb-Rubin equation was devel-
oped by defining and utilizing a quantity 4, called
the residual work content. The residual work content
was defined as the difference between the Helmholtz
function for a real substance and the Helmholtz
function for an ideal gas.

The Helmholtz function

A=U—-TS (33)

may be combined with the first and second laws of
thermodynamics,

dU=TdS —Pdr. (34)
The resulting relationship is
dA=—PdV —SdT. (35)

From eq (35),

<%%) T pi=P 36)

where P is the difference in pressure between the
real and ideal gas. Then

P=pRT+ p? (%)T 37)

where the first term on the right side of eq (37) is
the ideal gas pressure and the second term is the
difference between the real and ideal gas pressure.
Benedict et al. [23] proposed an expression for the
residual work content which was actually an exten-
sion of the Beattie and Bridgeman equation. The
extension to the Beattie-Bridgeman equation was



necessary in order to represent more accurately
the real fluid properties at densities which were
higher than the Beattie-Bridgeman equation could
adequately represent. Beattie noted that isometrics
could be expressed by an equation of the form

(P—pRT)p*=RTF(p)— Fa(p) —F3(p)/T*.  (38)

Equations for the functions F;, F3, and F; were
then empirically developed to fit experimental data
and, at the same time, remain consistent with the
residual work content. By these means, Benedict
et al. developed an eight adjustable parameter
equation of state for hydrocarbons.

After further modifications, Strobridge [25] ex-
tended the Benedict-Webb-Rubin equation to
represent more accurately the properties of nitro-
gen. The Strobridge modifications resulted in an
equation with sixteen adjustable parameters.

The form of the equation expressed by Strobridge
was the one adopted for the determination of the
argon P-V-T surface. This form of equation appeared
justified because corresponding states theory in-
dicated that there should be reasonable correspond-
ence between nitrogen and argon [18]. The equation
of state then used is

P=pRT+ p*(niT+ no+ ny/ T+ na/T?+ n5/T?)
+ p3(ne T+ ny) + pngT
+ p3(no/ T? + nyo/ T3 + n11/TY) exp (— nisp?)
+ p*(n12/T? + ns/T? + n1a/TH) exp (—nigp?)
+ pbnys. (39
As a matter of convenience, eq (39) was solved

for Z—1, and the resulting expression was then
fitted to the data by least squares. This expression is

Z—1= % (n1 + 12T+ ns/ T2 + na/ T3 + ns/T5)
+%f (ne + n7/T)+%3 ng
+%f (o] T3+ naof T* + na/T5) exp (— nagp?)
+%f (12l T% + g T+ 1l T%) exp (— nagp?)

p°
+ R s [T. (40)

A preliminary least squares fit of eq (40) to the
selected P-V-T data indicated possible round-off
discrepancies due to the very large number of
arithmetic operations involved with the solution of
the normal equations. Therefore, the computer
program for the least squares fitting routine was
written for double precision arithmetic which carried
20 decimal figures throughout the calculations. This

10

procedure essentially doubled the number of sig-
nificant figures carried by the computer, so that
round-off error due to the large number of arithmetic
operations would be minimized.

In addition, an effort was made to check the
results of the least squares solution to see if round-
off error, due to operating on an ill-conditioned
matrix, was present. The method used to perform
this check is outlined as follows: The set of normal
equations was obtained by standard techniques.
The second normal equation in the set was multi-
plied by a constant and added to the first normal
equation. This sum then replaced the original second
normal equation. The third normal equation was
then multiplied by a different constant and added to
the new second normal equation, and so forth. Each
of the constant multipliers was, in general, different.
The constants were selected so that each of the
diagonal elements of the matrix formed by the re-
sulting set of normal equations was larger than the
elements to its right. This criterion was used since
appreciable loss of accuracy may occur if a diagonal
is smaller than elements to its right. The entire
check procedure is then equivalent to the rotation
of each of the normal equations relative to the
others. The solution to the matrix with rotated
vectors could then be obtained. If the solution was
the same as that for the original matrix, then it was
considered likely that a sufficient number of
significant figures was carried in the double pre-
cision computer solution to make round-off errors
insignificant. For the preliminary least squares fit
mentioned above, the solution to the matrix with
rotated vectors was the same as the original matrix,
to eight significant figures. Although eight signifi-
cant figures is not indicative of the precision of the
original P-V-T data, the agreement of the two solu-
tions indicated that numerical round-off errors were
probably insignificant.

The preliminary least squares fit showed that the
data of Walker [11] deviated substantially from those
of Michels et al. [1] and Rogovaya et al. [7]. There-
fore, the data of Walker were not used in the sub-
sequent fits to eq (40). (Further mention of Walker’s
data will be made later.)

In the subsequent fits it was found desirable to
satisfy the standard least squares criteria and, in
addition, to simultaneously constrain eq (40) to
exactly satisfy three specific requirements at the
critical point. The specific constraints which were
used are:

1. The critical isotherm of the equation of state
(40) has zero slope at the critical point.

P .. .
<$> 2 0 (critical point)

2. The critical isotherm of the equation of state
(40) has a point of inflection at the critical point.

PP\ _
<3P2)T_ 0

(critical point)



3. The equation of state (40) predicts the critical 72 éﬂ
pressure when the critical density and temperature o}= < 2y> - (—+ TT) (42)
are substituted into it.
In addition, provisions were made to account for
the different uncertainties in the experimental data (ﬁ) = (Q(Z___ll) = <QZ_> (43)
from the different data sources. The weighting 31 oT /), \oT/,
function described by eqs (18) and (23) was used
in conjunction with the equation of state (40), where (a_f) B (a(Z— 1)) _ (aZ> )
axz) \ @ ~\ap,
pRT
207r=A4T; 20,= A,. (45)
Substituting eqs (42) through (45) into eq (18), and simplifying,
W= 4 46
7 [ 2 AT T () ST, () ] 4o
P 7T oT), T |7 [P\ap )r p
The uncertainties in the P-V-T data were esti- o (PN (TN, ] 48
mated from the statements of the investigators, Py=A\T ) \P.), P (48)

from a knowledge of the experimental apparatus,
and from preliminary examinations of the data.
The estimated uncertainties associated with the
various data are given in table 7.

The uncertainties from table 7 were substituted
into eq (46) and weights were calculated for each
P-V-T data point. These weights were then sub-
stituted into the generalized normal least squares

equations with constraints as shown by Hust and
McCarty [20].

TABLE 7. Estimated uncertainties of the experimental data

% Density | % Pressure | % Temperature | Source
0.05 0.02 0.02 [1)
.05 02 .02 [ 6]
.1 1 1 [7]
2 .02 .02 [ 8]
2 02 02 [ 9]
2 2 2 [10]

Since the normal equations are linear in the
coefhicients, the coefficient ns6 in eq (40) had to be
determined before the remaining 15 coefficients
were evaluated. A systematic search for the op-
timum value of nis was performed on the digital
computer so that a minimum in the sum of the
squares of the deviations was obtained. In order
to have a realistic range in the search for ny, an
approximate value was obtained by corresponding
states with nitrogen. A modified corresponding
states method, proposed by Kamerlingh Onnes,
was used. This method suggests that the reduced
density is

_PRTC‘
Pr Pc

The difference between eq (47) and eq (1) is dis-
cussed by Gosman [22]. In eq (40), ms appears as
the coeflicient of a squared density term. From eq
(47), a corresponding states expression for a squared
density term was obtained:

47)
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316-977 O -69 -2

where the subscripts N and A represent nitrogen
and argon, respectively. Equation (48) was sub-
stituted into the exponential term in eq (40). From
Strobridge, the mg for nitrogen was also substi-
tuted into the exponential term of eq (40). The
resulting approximate value of the coefficient ny
for argon from corresponding states was calculated
to be 0.0039. The range of the systematic search
for nis was thus determined to be 0.0039 +0.0015.
The systematic search was accomplished by in-
crementing 0.0039 by small values and performing
a linear least squares fit for each consecutive value
of nie. As the search proceeded, it was found that
the sum of the squares of the deviations were not
much affected by the current value of n,6. However,
the fit of the equation of state in the region of the
critical point was moderately affected by the dif-
ferent trial values of n;s. The resulting value of
nis and the least square estimates of the remaining
15 coefficients for eq (40) are given in table 8.

TABLE 8. Least squares estimates of coefficients for equation of
state (40)®

Coefhicient Least squares Standard deviation Significance
estimate of coefficient level %

m 0.25978374 X 102 4.927x 105 99.5+

ny ~—.89735867 3.002 x 10-2 99.5+

ns ~.67273638 X 10? 2.939x 10 99.5+

ng ~.26494177 x 10* 2.475 X 10? 99.5+

ny 197631231 X 107 7.133 X 108 99.5+

ng . 70478556 X 10— 1.814x10-¢ 99,5+

nr ~.46767764 X 102 1.323 % 10~ 99.5+

g .22640765 X 10-5 6.177x 10¢ 99.5+

ng .48141071 X 10° 8.442x 10 99.5+
Mo 64565346 X 10° 3.152 x 10* 95.0

My ~—.11485282 x 108 2.495 x 108 99.5+
nyg ~—.64835488 1.942 x 10! 99.5+
ms .46524812 x 10° 7.373 % 10? 25.0

N4 10933578 X 10° 1.287 x 10° 99.5+
ns 169439530 X 10-¢ 4.064 X 10~* 99.5+
nie A8X 1072 L

2 Where P is in atm, T is in degrees K, p is in g-molfl, and R =0.0820535 atm l/g-
mol K.

5 These parameters are significant at the level indicated when applying the standard
F test.



8. Analysis of P-V-T Data

Using the coeflicients shown in table 8, the
equation of state (40) was used to calculate the
densities which corresponded to each of the experi-
mental P-V-T data points. Percent density deviations
between the points calculated by the equation of
state and the individual experimental data points
which were used in the fit are illustrated in figures 5
through 15. These deviation plots permit the identi-
fication of the maximum deviations corresponding
to each region of the P-V.T surface as well as the
specific deviations from each data source.

The deviation plots for the data of Michels et al.
[1] and Michels et al. [6] are shown by figures 5
through 11. Inspection of figures 5 and 6 shows that
the largest density deviations occur in the vicinity
of the 153.15 K isotherm. For this isotherm, the
largest deviations occur in the region of the critical
point. The same phenomenon occurs for the 163.15
K and 150.65 K isotherms and, to a lesser extent,
for the 173.15 K and 148.15 K isotherms. This be-
havior is illustrated in figures 7 and 8.

Figure 16 illustrates the characteristics of the
different isotherms as they range over the pressure-
density coordinate system. It is seen that the high
and low temperature isotherms have relatively large
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slopes with not much change in curvature. However,
the isotherms between 148 K and 173 K have large
variations in the slopes and curvatures. In addition,
the slopes of the isotherms in the vicinity of the
critical point are small, thus producing large density
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deviations for rather small pressure or temperature
deviations. The small cross-hatched area in figure 16
indicates the region where the density has the great-
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est sensitivity to small variations in pressure or
temperature. If the data points in this region are not
included, the mean of the absolute values of the
density deviations is 0.08 percent for the data of
Michels et al. {1]. If the data points in this region are
included, the mean deviation in density becomes
0.26 percent for the data of Michels.

Figures 7 and 8 are expanded-scale deviation
plots from figures 5 and 6 and correspond to the
region near the critical point. Figure 7 is a density
deviation plot and shows a systematic trend which
can be attributed to the equation of state. The mag-
nitudes of the density deviations in figure 7 are due
to the extreme sensitivity of the density in this
region. Figure 8 is a pressure deviation plot for the
same region. The systematic trend is still present,
but the magnitudes of the pressure deviations are
significantly smaller than the corresponding density
deviations.

Figure 9 illustrates the density deviations for two
isotherms from the data of Michels et al. [6]. A total
of 94 data points for these two isotherms were fitted
to pressures of about 1000 atm. The mean of the
absolute values of the density deviations is 0.034
percent for pressures to 1000 atm, and the data
appear to be consistent with the data of Michels
et al. [1]. In addition, figure 9 shows density devia-
tion plots for the same two isotherms for pressures
from 1000 to about 3000 atm. The equation of state
was not fitted to any data above 1000 atm, so the
latter deviation plots represent an extrapolation of
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the equation of state for pressures beyond the fitted
data. The density deviations are approximately
constant for this pressure range with a mean density
deviation of 0.15 percent.

Figure 10 exhibits the density deviations for 41
experimental data points of Michels et al. [1] which
are close to the saturation boundary. With the excep-
tion of the points close to the critical point the mean
density deviation is 0.05 percent. The density devia-
tions for the data close to the critical point are
again due to the extreme sensitivity of the density in
this region.

Figure 11 is a deviation plot for the saturation line,
showing the density deviations between the 23 data
points of Michels et al. [1] and the saturation densi-
ties calculated by the equation of state. Both
saturated liquid and saturated vapor data points are
illustrated. With the exception of the saturated
liquid data points within about 1.5 K of the critical
point, the mean density deviation for the saturated
liquid data is 0.03 percent. With the exception of the
saturated vapor data points within about 2.5 K of
the critical point, the mean density deviation for the
saturated vapor data is 0.24 percent.

Figure 12 is the deviation plot for the data of
Rogovaya et al. [7]. The mean density deviation is
0.17 percent except for the 90.13 K isotherm. This
90.13 K isotherm appears to be inconsistent with
the data of van Itterbeek and Verbeke [8], and
van Itterbeek et al. [9], and exhibits a mean density
deviation of 0.4 percent. Generally, the data of
Rogovaya showed a more random distribution of
density deviations than the data from some of the
other sources. Rogovaya’s data, in general, did not
approach the region near the critical point as closely
as did Michels et al. [1] and; therefore, no direct
comparison of these two data sources is possible in
this region where the data are difficult to fit.

Figure 13 illustrates the density deviation plot
for the data of van Itterbeek and Verbeke [8]. The
mean density deviation for these four isotherms is
0.026 percent. However, the 0.026 percent density
deviation of van Itterbeek et al. [8] cannot be
directly compared with the deviations of the other
data sources since van ltterbeek’s data are in the
high density—low pressure region of the P-V-T
surface where the isothermal derivative (0P/dp)r is
large. In this region small displacements in the iso-
therms result in small density deviations.

Figures 13 and 14 show the deviation plots for the
data of van Itterbeek, Verbeke, and Staes [9].
Comparisons of the deviations for isotherms of
increasing temperature show a trend of increasing
negative density deviations. This trend is not evident
in the deviation plots for Michels et al. [1], figures
5 and 6, or Rogovaya et al. {7], figure 12. The mean
density deviation is 0.16 percent with the larger
deviations occurring at the higher temperatures.

Figure 15 shows the deviation plot for the data of
van Witzenburg [10]. The trend here is opposite that
of van Itterbeek, Verbeke, and Staes. The data of
van Witzenburg exhibit an increasing negative
density deviation for increasing temperatures.



However, the van Witzenburg data extend to higher
pressures than. most of the other data sources for
equivalent isotherms, and direct comparisons of
density deviations are difficult to make at these
higher pressures. The low temperature, low pres-
sure isotherms may be compared with the data of
van Itterbeek, Verbeke, and Staes, where it is
noted that the van Witzenburg data exhibit density
deviations which are about an order of magnitude
greater in the negative direction. The mean density
deviation for the data of van Witzenburg is 0.30
percent.

Walker [11] displayed his data by isochores.
Comparisons with other data sources were difficult
to make since most of the other data were obtained
isothermally. Therefore, Walker’'s data were
smoothed to a function of the form P= g, + ¢2T+¢3T?
where the g’s are constants. (This function was
deemed adequate since the isochoric data of Walker
was in the liquid region and exhibited only small
deviations from straight lines.) These smoothed
isochoric P-T values were plotted and compared
with other data sources. This plot showed that the
slopes from the fitted function were consistent with
the slopes from other data, but the values of the
isochores assigned by Walker did not agree with
others. This disagreement became greater as the
critical point was approached. Therefore, the den-
sity values of each of the isochores were redeter-
mined by least squaring the experimental data, one
isochore at a time, and extrapolating that isochore
to the saturated liquid line. Upon comparison, the
original data of Walker deviate from the values
predicted by the equation of state by about 2 percent
in density, with the deviations increasing to about
10 percent as the critical point is approached. How-
ever, when comparing the density deviations be-
tween the recalculated least square densities and
the densities predicted by the equation of state,
the mean deviation was 0.25 percent. This latter
comparison is, perhaps, a more valid comparison
of Walker’s data, since he was not able to actually
measure the mass of his sample experimentally.
Instead, the density values quoted by Walker were
estimated by him from an extrapolation of the iso-
chores to the coexistence line. Private communica-
tion from Walker [13] indicated that there were
errors in the original values quoted for the densi-
ties, especially near the critical point. The new
values given to us by Walker [13] agreed much more
closely with the values predicted by the equation
of state.

Figure 17 illustrates the density deviations for
the data of Michels et al. [6]. These data include
temperatures above 300 K for pressures to about
2600 atm. Since the equation of state was not
fitted to the data in this region, these deviation
plots represent an extrapolation of the equation of
state for temperatures and press