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Abstract. Diversity as a security mechanism has received revived interest re­
cently due to its potential for improving the resilience of software and networks 
against unknown attacks. Recent work shows diversity can be modeled and quan­
tified as a security metric at the network level. However, such an effort does not 
directly provide a solution for improving the network diversity. Also, existing 
network hardening approaches are largely limited to handling previously known 
vulnerabilities by disabling existing services. In this paper, we take the first step 
towards an automated approach to diversifying network services under various 
cost constraints in order to improve the network’s resilience against unknown at­
tacks. Specifically, we provide a model of network services and formulate the 
diversification requirements as an optimization problem. We devise optimization 
and heuristic algorithms for efficiently diversifying relatively large networks un­
der different cost constraints. We also evaluate our approach through simulations. 

1 Introduction 

Many critical infrastructures, governmental and military organizations, and enterprises 
have become increasingly dependent on networked computer systems today. Such mis­
sion critical computer networks must be protected against not only known attacks, but 
also potential zero day attacks exploiting unknown vulnerabilities. However, while tra­
ditional solutions, such as firewalls, vulnerability scanners, and IDSs, are relatively suc­
cessful in dealing with known attacks, they are less effective against zero day attacks. 

To this end, diversity has previously been considered for a security mechanism for 
hardening software systems against unknown vulnerabilities, and it has received a re­
vived interest recently due to its potential for improving networks’ resilience against 
known attacks. In particular, a recent work shows diversity can be modeled and quanti­
fied as a security metric at the network level [21]. However, the work does not directly 
provide a systematic solution for improving the network diversity under given cost con­
straints, which can be a challenging task for large and complex networks. On the other 
hand, existing efforts on network hardening (a detailed review of related work will be 
given later in Section 2) are largely limited to handling previously known vulnerabilities 
by disabling existing services. 
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In this paper, we propose an automated approach to diversifying network services 
under various cost constraints in order to improve the network’s resilience against un­
known attacks. Specifically, we devise a model of network services and their different 
instances by extending the resource graph model; such a model allows us to formu­
late the diversification requirements and cost constraints as an optimization problem; 
we apply optimization techniques to solve the formulated problems, and design heuris­
tic algorithms to more efficiently handle larger networks. We evaluate our approach 
through simulations in order to study the effect of optimization parameters on accuracy 
and running time, and the effectiveness of optimization for different types of networks. 
In summary, the main contribution of this paper is twofold: 

–	 To the best of our knowledge, this is the first effort on formulating the problem of 
network service diversification for improving the resilience of networks, which en­
ables the application of existing optimization techniques and also provides a prac­
tical application for existing diversity metrics [21]. 

–	 As evidenced by the simulation results, the optimization and heuristic algorithms 
provide a relatively accurate and efficient solution for diversifying network services 
while considering various cost constraints. By focusing on zero day attacks, our 
work provides a complementary solution to existing network hardening approaches 
that focus on fixing known vulnerabilities. 

The remainder of this paper is organized as follows: The rest of this section first builds 
the motivation through a running example. Section 2 reviews related work. In Section 
3, we present the model and formulate the optimization problem, and in Section 4 we 
discuss the methodology and show case studies. Section 5 shows simulation results and 
Section 6 concludes the paper. 

1.1 Motivating Example 

We present a motivating example to demonstrate that diversifying network services can 
be a tedious and error-prone task if done manually, even if the considered network is 
of a small size. Figure 1 shows a hypothetical network, which is roughly based on the 
virtual penetration lab described in [14]. Despite its relatively small scale, it mimics a 
typical enterprise network, e.g., with DMZ, Web server behind firewall accessible from 
public Internet, and a private management network protected by another firewall. 

Specifically, the network consists of four hosts running one or more services al­
lowing accesses from other hosts. We assume the two firewalls and other host-based 
mechanisms (e.g., personal firewalls or iptables) together enforce the connectivity de­
scribed inside the connectivity table shown in the figure. We consider attackers on ex­
ternal hosts (represented as h0) attempting to compromise the database server (h4), and 
we assume the network is secured against known vulnerabilities (we exclude exploits 
and conditions that involve the firewalls). 

To measure the network’s resilience against unknown zero day attacks, we consider 
the k-zero day safety metric [17] (which will be referred to as k0d from now on for sim­
plicity), which basically counts how many distinct zero day vulnerabilities must exist 
and be exploited before an attacker may reach the goal. For simplicity, although the at­
tacker may follow many paths to compromise h4, here we only consider the Web servers 
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Fig. 1. Example network. 

as the initial targets. We can observe that there must exist at least two distinct zero-day 
vulnerabilities, one for the Apache server and one for the IIS server1, and the attacker 
must exploit both in order to compromise h4. Finally, we assume the administrator has 
the option of replacing those Web servers with either an NGINX 1.9 or a Litespeed 
5.0.14 Web server and each replacement will incur a given installation/maintenance 
cost (we will discuss the cost model in more details later in Section 3). Based on above 
assumptions, we may consider different use cases as follows. 

–	 Scenario 1: The administrator aims to render the network as resilient as possible to 
zero-day attacks (which means to maximize the aforementioned k0d metric). 

–	 Scenario 2: He/she aims at the same goal as in above Scenario 1, but under the 
constraint that the overall diversification cost must be less than a given budget. 

–	 Scenario 3: He/she aims at the same goal as in above Scenario 2, but under an 
additional constraint that at most two Web servers may be replaced. 

–	 Scenario 4: He/she aims at the same goal as in above Scenario 3, but under an 
additional constraint that replacing the Web server should be given a higher priority. 

Clearly, many more use cases may exist in practice than those listed above, and the 
solution may not always be straightforward even for such a small network. For example, 
while the administrator can easily increase the k0d metric value to 4 under Scenario 1 
(by having four different Web servers), the optimal solution in other scenarios will 
critically depend on the specific cost constraints and given budgets. Considering that 
the attacker may also follow other paths to attack (e.g., starting with SMTP, instead of 
Web, on h1), the problem becomes even more complicated. This shows the need for an 
automated approach, which will be the subject matter of the remainder of this paper. 

1 If different software are considered likely to share common vulnerabilities, a similarity-
sensitive diversity metric may be needed [21]. 



2 Related Work 

In general, the security of networks may be qualitatively modeled using attack trees [6, 
7, 15] or attack graphs [2, 16]. A majority of existing quantitative models of network 
security focus on known attacks [20, 1], while few work have tackled zero day at­
tacks [18, 17, 21] which are usually considered unmeasurable due to the uncertainties 
involved [12]. 

Early work on network hardening typically rely on qualitative models while im­
proving the security of a network [16, 19]. Those work secure a network by breaking 
all the attack paths that an attacker can follow to compromise an asset, either in the 
middle of the paths or at the beginning (disabling initial conditions). Also. those work 
do not consider the implications when dealing with budget constraints nor include cost 
assignments, and tend to leave that as a separate task for the network administrators. 
While more recent works [1, 23] generally provide a cost model to deal with budget 
constraints, one of the first attempts to systematically address this issue is by Gupta 
et al. [10]. The authors employed genetic algorithms to solve the problem of choosing 
the best set of security hardening options while reducing costs. Dewri et a. [6] build on 
top of Gupta’s work to address the network hardening problem using a more system­
atic approach. They start by analyzing the problem as a single objective optimization 
problem and then consider multiple objectives at the same time. Their work consider 
the damage of compromising any node in the cost model in order to determine the most 
cost-effective hardening solution. Later on, in [7] and in [22], the authors extrapolate 
the network hardening optimization problem as vulnerability analysis with cost/benefit 
assessment, and risk assessment respectively. In [13] Poolsappasit et al. extend Dewri’s 
model to also take into account dynamic conditions (conditions that may change or 
emerge while the model is running) by using Bayesian attack graphs in order to consider 
the likelihood of an attack. Unlike our work, most existing work on network hardening 
are limited to known vulnerabilities and focus on disabling existing services. 

There exist a rich literature on employing diversity for security purposes. The idea 
of using design diversity for tolerating faults has been investigated for a long time, such 
as the N-version programming approach [3], and similar ideas have been employed for 
preventing security attacks, such as the N-Variant system [5], and the behavioral dis­
tance approach [8]. In addition to design diversity and generated diversity, recent work 
employ opportunistic diversity which already exists among different software systems. 
For example, the practicality of employing OS diversity for intrusion tolerance is eval­
uated in [9]. More recently, the authors in [21] adapted biodiversity metrics to networks 
and lift the diversity metrics to the network level [21]. While those work on diversity 
provide motivation and useful models, they do not directly provide a systematic solution 
for improving diversity, which is the topic of this paper. 

3 Model 

We first introduce the extended resource graph model to capture network services and 
their relationships, then we present the diversity control and cost model, followed by 
problem formulation. 



example is shown in Figure 2 and detailed below. 

3.1 Extended Resource Graph 

The first challenge is to model different resources, such as services (e.g., Web servers) 
that can be remotely accessed over the network, different instances of each resource 
(e.g., Apache and IIS), and the causal relationships existing among resources (e.g., a 
host is only reachable after an attacker gains a privilege to another host). For this pur­
pose, we will extend the concept of resource graph introduced in [21], which is syn­
tactically equivalent to attack graphs, but models network resources instead of known 
vulnerabilities as in the latter. 

Specifically, we will define an extended resource graph by introducing the notion of 
Service Instance to indicate which instance (e.g., Apache) of a particular service (e.g., 
Web server) is being used on a host. Like the original resource graph, we only consider 
services that can be remotely accessed. The extended resource graph of the running 

Fig. 2. The example network’s resource graph 

In Figure 2, each pair shown in plaintext is a security-related condition (e.g., connec­
tivity ⟨source, destination⟩ or privilege ⟨privilege, host⟩). Each exploit node (oval) 
is a tuple that consists of a service running on a destination host, the source host, and the 
destination host (e.g., the tuple ⟨http, 1, 2⟩ indicates a potential zero day vulnerability 
in the http service on host 2, which is exploitable from host 1). The small one-column 
table beside each exploit indicates the current service instance using a highlighted inte­
ger (e.g., 1 means Apache and 2 means IIS) and other potential instances in lighter text. 
The self-explanatory edges point from pre-conditions to an exploit (e.g., from ⟨0, 1⟩ 
and ⟨http, 1⟩ to ⟨http, 0, 1⟩), and from the exploit to its post-conditions (e.g., from 
⟨http, 0, 1⟩ to ⟨user, 1⟩). 

A design choice here is whether to associate the service instance concept with 
a condition indicating the service (e.g., ⟨http, 2⟩ or the corresponding exploits (e.g., 
⟨http, 1, 2⟩). While it is more straightforward to have the service instance defined as 



the property of a condition, which can then be inherited by the corresponding exploits, 
we have opted to define this property as a label for the exploit nodes in the graph, be­
cause this will make it easier to check the number of distinct services along a path, as we 
will see later. One complication then is that we must ensure all exploits with the same 
service and destination host (e.g., ⟨http, 1, 2⟩ and ⟨http, 3, 2⟩ to be associated with the 
same service instance. 

Definitions 1 and 2 formally introduce these concepts. 

Definition 1 (Service Pool and Service Instance). Denote S the set of all services 
and Z the set of integers, for each service s ∈ S, the function sp(.) : S → Z gives the 
service pool of s which represent all available instances of that service. 

Definition 2 (Extended Resource Graph). Given a network composed of 
– a set of hosts H , 
– a set of services S, with the service mapping serv(.) : H → 2S , 
– the collection of service pools SP = {sp(s) | s ∈ S}, 
– and the labelling function v(.) : E → SP , which satisfies ∀hs ∈ S∀h ′ ∈s 

S, v(⟨s, hs, hd⟩) = v(⟨s, h ′ , hd⟩) (meaning all exploits with common service and s

destination host must be associated with the same service instance, as explained 
earlier). 

let E be the set of zero day exploits {⟨s, hs, hd⟩ | hs ∈ H, hd ∈ H, s ∈ serv(hd)}, and 
Rr ⊆ C × E and Ri ⊆ E × C be the collection of pre and post-conditions in C. We 
call the labeled directed graph, ⟨G(E ∪ C, Rr ∪ Ri), v⟩ the extended resource graph. 

3.2 Diversity control and cost model 

We employ the notion of diversity control as a model for diversifying one or more ser­
vices in the resource graph. Since we represent the service instance using integers, it will 
be straightforward to regard each pair of service and destination host on which the ser­
vice is running as an optimization variable, and formulate diversity control vectors using 
those variables as follows. We note that the number of optimization variables present 
in a network will depend on the number of conditions indicating services, instead of 
the number of exploits (since many exploits may share the same service instance, and 
hence the optimization variable). Since we only consider remotely accessible services 
in the extended resource graph model, we would expect in practice the number of opti­
mization variables to grow linearly in the size of network (i.e., the number of hosts). 

Definition 3 (Optimization Variable and Diversity Control). Given an extended re­
source graph ⟨G, v⟩, ∀e ∈ E, v(e) is an optimization variable. A diversity control 
vector is the integer valued vector V = (v(e1), v(e2), ..., v(e|E|). 

Changing the value of an optimization variable has an associated diversification cost 
and the collection of such costs is given in a diversity cost matrix in a self-explanatory 
manner. We assume the values of cost are assigned by security experts or network ad­
ministrators. Like in most existing work (e.g., [6]), we believe an administrator can 
estimate the diversification costs based on monetary, temporal, and scalability criteria 
like i) installation cost, ii) operation cost, iii) training cost, iv) system downtime cost 
and, v) incompatibility cost. We define the diversity cost, diversity cost matrix, and the 
total diversity cost. 
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Definition 4 (Diversification Cost and Diversity Cost Matrix). Given s ∈ S and 
sp(s), the cost to diversify a service by changing its service instance to another inside 
the service pool is called the diversification cost. The collection of all the costs associ­
ated with changing services in S are given as a diversity cost matrix DCM in which 
the element at ith row and jth column indicates the diversification cost of changing the 
ith service instance to be the jth service instance. Let vs(ei) be the service associated 
with the optimization variable v(ei) and V 0 the initial service instance values for each 
of the exploits in the network. The total diversification cost, Cd, given by the diversity 
vector V is obtained by 

|E|∑ 
Cd = DCMvs(ei)(V 0(i), V (i)) 

i=1 

We note that the above definition of diversification cost between each pair of ser­
vice instances has some advantages. For example, in practice we can easily imagine 
cases where the cost is not symmetric, i.e., changing one service instance to another 
(e.g. from Apache to IIS) carries a cost that is not necessarily the same as the cost of 
changing it back (from IIS to Apache). Our approach of using a matrix allows us to ac­
count for cases like this. Also, the concept can be used to specify many different types 
of cost constraints, which we will examine in the coming section. For example, an ad­
ministrator who wants to restrict the total cost to diversify all servers running the http 
service can do so by simply formulating the cost as the addition of all the optimization 
variables corresponding to http. 

3.3 Problem formulation 

As demonstrated in Section 1.1, the k0d metric is defined as the minimum number of 
distinct resources on a single path in the resource graph [17]. For example, a closer look 
at Figure 2 shows that the k0d value for our example network is 1. That is, an attacker 
needs only one zero-day vulnerability (in http service instance 1) to compromise this 
network. The dashed line in Figure 2 depicts the shortest path that provides this metric 
value. 

The k0 value can be increased by changing the service instances as long as we 
respect the available budget of cost. For example, consider a total budget of 78 units, 
and assume the costs to diversify the http service from service instance 1 to 2, 3 or 4 be 
78, 12, and 34 units, respectively. We can see that changing ⟨http, 2, 3⟩ from instance 
1 to 2 would respect the budget, as well as increasing the k0d value of the network 
to be 2. We may also see that this is not the optimal solution, since we could also 
replace ⟨http, 2, 3⟩ and ⟨http, 3, 4⟩ with instances 3 and 4, respectively, increasing k0d 
to 3 and still respecting the budget. In the following, we formally formulate this as an 
optimization problem. 

Problem 1 (k0d Optimization Problem). Given an extended resource graph ⟨G, v⟩, find 
a diversity control vector V which maximizes min(k0d(⟨G(V ), v⟩)) subject to the 
constraint C ≤ B, where B is the availble budget and C is the total diversification cost 
as given in Definition 4. 
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Since our problem formulation is based on an extended version of the resource 
graph, which is syntactically equivalent to attack graphs, many existing tools developed 
for the latter (e.g., the tool in [11] has seen many real applications to enterprise net­
works) may be easily extended to generate the extended resource graphs we need as 
inputs. Additionally, our problem formulation assumes a very general budget B and 
cost C, which allows us to account for different types of budgets and cost constraints 
that an administrator might encounter in practice, as will be explained in the following 
section. 

4 Methodology 

This section details the optimization and heuristic algorithms used for solving the for­
mulated diversification problem and describes a few case studies. 

4.1 Genetic Algorithm Optimization 

Inspired by [6], we also employ the genetic algorithm (GA) for our automated opti­
mization approach. GAx1 provides a simple and robust search method that requires 
little information to search effectively in a large search space in contrast to other opti­
mization methods (e.g., the mixed integer programming [4]). While the authors in [6] 
focus on disabling services, we focus on service diversification. 

The extended resource graph is the input to our automated optimization algorithm 
where the function to be optimized (fitness function) is k0d defined on the resource 
graph (later we will discuss cases where directly evaluating k0 is computationally in­
feasible). One important point to consider when optimizing the k0 function on the ex­
tended resource graph is that, for each generation of the GA, the graph’s labels will 
dynamically change. This in turn will change the value of k0d, since the shortest path 
may have changed with each successive generation of the GA. Our optimization tool 
takes this into consideration. We also note one limitation here is that the optimization 
does not provide a priority if there are more than one shortest path that provide the 
optimized k0d since the optimization only aims at maximizing the minimum k0d. 

The constraints are defined as a set of inequalities in the form of c ≤ b, where 
c represents one or more constraint conditions and b represents one or more budgets. 
These constraint conditions can be overall constraints (e.g. the total diversity cost Cd) 
or specific constraints to address certain requirements or priorities while diversifying 
services (e.g. the cost to diversify http services should be less than 80% of the cost to 
diversify ssh). Those constraints are specified using the diversity control matrix. 

The number of independent variables used by the GA (genes) are the optimization 
variables given by the extended resource graph. For our particular network hardening 
problem, the GA will be dealing with integer variables representing the selection of the 
service instances. Because v(e) is defined as an integer, the optimization variables need 
to be given a minimum value and a maximum value. This range is determined by the 
number of instances provided in the service pool of each service. The initial service 
instance for each of the services is given by the extended resource graph while the final 
diversity control vector V is obtained after running the GA. 
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The population size that we defined for our tool was set to be at least the value 
of optimization variables (more details will be provided in the coming section). This 
way we ensure the individuals in each population span the search space. We ensure 
the population diversity by testing with different settings in genetic operations (like 
crossover and mutation). In the following, we discuss several test cases to demonstrate 
how the optimization works under different types of constraints. For all the test cases, 
we have used the following algorithm parameters: population size = 100, number of 
generations = 150, crossover probability = 0.8, and mutation probability = 0.2. 

Test case A: Cd ≤ 124 units with individual constraints per service. We start with 
the simple case of one overall budget constraint (Cd ≤ 124). The solution provided 
by the GA is V = [3, 2, 1, 4, 1, 1, 1] (represented by label column a in Figure 3). The 
associated costs for V (1), V (2), and V (4) are 12, 78, and 34, respectively, and the test 
network’s k0d metric becomes 4 while keeping Cd within the budget (Cd ≤ 124). 

Fig. 3. Test case A: general and individual budget constraints. 

On the other hand, if we assign individual budgets per services, while maintaining 
the overall budget Cd ≤ 124, the optimization results will be quite different. In this 
case, assume the budget to diversify the http services cannot exceed 100 units (chttp ≤ 
100); for ftp, it cannot exceed 3 units (cftp ≤ 3); for ssh, it cannot exceed 39 units 
(cssh ≤ 39); and finally, for smtp, it cannot exceed 50 units (csmtp ≤ 50). The solution 
provided by the GA is a V vector where V (1) = 2 and V (2) = 3, with a cost of 78 and 
12 units, respectively. The value of the k0d metric rises to 3 with Cd = 90. This total 
diversification cost satisfies both the overal budget constraint and each of the individual 
constraints per service. 



From this test case, we can see that even with the minimum requeried budget to 
maximize the k0d metric, additional budget constraints might not allow to achieve the 
maximum k0d possible. We can see the result of running the GA for this test case in 
label column b in figure 3. 

Test case B: Cd ≤ 124 units while chttp + cssh ≤ 100. While test case 1 shows how 
individual cost constraints can affect the k0d metric optimization, in practice not all 
services may be of concern and some may have negligible cost. This test case models 
such a scenario by assigning a combined budget restriction for only the http and ssh 
services, i.e., the cost incurred by diversifying these two services should not exceed 100 
units. 

The solution provided by the GA is V = [3, 4, 3, 1, 1, 3, 2] (lable column a in Fig­
ure 4). Since V (1) to V (3) deal with the http service, we can see that the total incurred 
cost for http is chttp =12+34+12=58 units. Because V (6) and V (7) are the only opti­
mization variables that deal with the ftp and ssh services respectively, we can see that 
cftp = 8, and cssh = 40. The value of the k0d metric rises from 1 to 3 by incurring a 
total cost of Cd = 106 units. The combined http/ssh budget constraint of 100 units is 
also satisfied since chttp + cssh = 98 units. 

Fig. 4. Test case B and test case C. 

Test case C: Cd ≤ 124 units while chttp ≤ 0.8 · cssh. This final case deals with 
scenarios where some services might have a higher priority over others. The constraint 
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in this test case is that the total incurred cost while diversifying the http service should 
not exceed 80% of what is incurred by diversifying the ssh service. 

The solution provided by the GA is V =[3,1,3,1,1,1,4] (see column b in figure 
4). Here V (1) and V (3) have changed from service instance 1 to 3, while V (7) have 
changed from service instance 1 to 4. The incurred cost for the http service is chttp = 
12+12=24 units and for the ssh service is cssh = 34 units. While the value of the k0d 
metric only rises from 1 to 2, the budget constraints are satisfied. 

As seen from the above test cases, our model and problem formulation makes it rel­
atively easy to apply any standard optimization techniques, such as the GA, to optimize 
the k0d metric through diversity while dealing with different budget constraints. 

4.2 Heuristic Algorithm 

All the test cases described above rely on the assumption that all the attack paths are 
readily available. However, this is not always the case in practice. Due to the well known 
complexity that resource graphs have inherited from attack graphs due to their common 
syntax [21], it is usually computationally infeasible to enumerate all the available attack 
paths in a resource graph for large networks. Therefore, we design a heuristic algorithm 
to reduce the search complexity when calculating and optimizing the k0d metric by only 
storing the m-shortest paths at each step, as depicted in Figure 5 and detailed below. 

Procedure Heuristic m-shortest
 
Input: Extended resource graph ⟨G, v⟩, goal condition cg , number of paths m,
 

diversified diversity control vector, D 
Output: O(cg ) 
Method: 
1. Let vlistbe any topological sort of G 
5. While all vlist elements are unprocessed 
6. If c ∈ CI and c is unprocessed 
7. Let O(c) = c 
8. Mark c as processed 
9. Else if e ∈ E (e is not processed) and (∀c ∈ C)((c, e) ∈ Rr ⇒ c is processed) 
10. Let {c ∈ C : (c, e) ∈ Rr } = {c1, c2, . . . , cn }
11. Let a(e) = a1 ∪ a2 . . . ∪ e : ai ∈ O(ci), 1 ≤ i ≤ n 

′ ′ ′ 13. Let a ′ (ov(e)) = a ∪ a2 . . . ∪ e : a ⊢ ai, 1 ≤ i ≤ n1 i 
12. If n > m 
13. Let O(e) = ShortestM(⟨a(e), | Unique(a ′ [ov(e)]) | ⟩,m)) 
14. Else 
15. O(e) = a1 ∪ a2 . . . ∪ e : ai ∈ O(ci), 1 ≤ i ≤ m 
16. Mark e as processed 
17. Else (c s.t. (e, c) ∈ Ri and c is unprocessed) 

′ ′ ′ 18. If (∀e ∈ E)((e∪, c) ∈ Ri ⇒ e is processed) 
′ 19. Let a(c) = ′ ′ O(e )e s.t. (e ,c)∈Ri ′ 20. Let a ′ (c) = 

∪ 
′ ′ O(ov(e ))e s.t. (e ,c)∈Ri 

21. If length(a(c)) > m 
22. Let O(c) = ShortestM(⟨a(c), | Unique(a ′ [ov(c)]) | ⟩,m)) 
23. Else ∪ ′ 24. Let O(c) = ′ ′ O(e )e s.t. (e ,c)∈Ri 
25. Mark c as processed 
26. Return O(cg ) 

Fig. 5. A Heuristic algorithm for calculating m-shortests paths 

The algorithm starts by topologically sorting the graph (line 1) and then proceeds 
to go through each one of the nodes on the resource graph collection of attack paths, as 



set of exploits C(), that reach that particular node. The main loop cycles through each 
unprocessed node. If a node is an initial conditions, the algorithm assumes that the node 
itself is the only path to it and it marks it as processed (lines 6-8). For each exploit e, all 
of its preconditions are placed in a set (line 10). The collection of attack paths o(e) is 
constructed from the attack paths of those preconditions (lines 10 and 11). In a similar 
way, C ′ (ov(e)) is constructed with the function ov() which, aside of using the exploits 
includes value of element of the diversity control vector that supervises that exploit. 

If there are more than m paths to that node, the algorithm will use the function 
Unique to first look for unique combinations of service and service instance in o ′ (ov(e)). 
Then, the algorithm creates a dictionary structure where the key is a path from o(e) and 
the value is the number of unique service/service instance combinations given by each 
one of the respective paths in o ′ (ov(e)). The function ShortestM() selects the top m 
keys whose values are the smallest and returns the m paths with the minimum num­
ber of distinct combination of services and service instances (line 13). If there are less 
than m paths, it will return all of the paths (line 15). After this, it marks the node as pro­
cessed (line 16). The process is similar when going through each one of the intermediate 
conditions (lines 17-24). 

Finally, the algorithm returns the collection of m paths that can reach the goal con­
dition cg . It is worth noting that the algorithm does not make any distinction in whether 
or not a particular path has a higher priority over another when they share the same 
number of unique service/service instance combinations. 

5 Simulations 

In this section, we show simulation results. All simulations are performed using a com­
puter equipped with a 3.0 GHz CPU and 8GB RAM in the Python 2.7.10 environment 
under Ubuntu 12.04 LTS and the MATLAB 2015a’s GA toolbox. To generate a large 
number of resource graphs for simulations, we first construct a small number of seed 
graphs based on real networks and then generate larger graphs from those seed graphs 
by injecting new hosts and assigning resources in a random but realistic fashion (e.g., 
the number of pre-conditions of each exploit is varied within a small range since real 
world exploits usually have a constant number of pre-conditions). The resource graphs 
were used as the input for the optimization toolbox where the objective function is to 
maximize the minimum k0d value subject to budget constraints. In all the simulations, 
we employ the heuristic algorithm described in section 4.2. 

Figure 6 shows that the processing time increases almost linearly as we increase the 
number of optimization variables or the parameter m of the heuristic algorithm. The 
results show that the algorithm is relatively scalable with a linear processing time. On 
the other hand, the accuracy of the results is also an important issue to be considered. 
Here the accuracy refers to the approximation ratio between the result obtained using 
the heuristic algorithm and that of the brute force algorithm (i.e., simply enumerating 
and searching all the paths while assuming all services and service instances are dif-
ferent). For the simulations depicted in Figure 7, we settled for 50 iterations per graph 
per m-paths. The diversity control vector provided by the GA is used to calculate the 
accuracy. From the results, we can see that when m is greater or equal to 4 the approxi­
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mation ratio reaches an acceptable level. For the following simulations, we have settled 
with an m value of 6 and 100 generations. 

Our simulations also showed that (detailed simulation results are omitted here due 
to page limitations), when no budget constraints are in effect, using the GA with a 
crossover probability of 80%, a mutation rate of 20%, and setting the number of gen­
erations to 50 will be sufficient to obtain good results. However, this is no longer the 
case when dealing with budget constraints. We have noticed that, by decreasing the 
crossover probability (and consequently increasing the mutation rate), we can reach a 
viable solution with less generations. We have therefore settled with a crossover prob­
ability of 40% which provides us with a fast (with less generations) way to converge 
to viable solutions. Additionally, our experiences also show that, when dealing with a 
diversity control vector (also known as a chromosome in the GA) of less than 100 vari­
ables (genes in the GA), the population size could be equal to the amount of variables 
in the diversity control vector; when dealing with a bigger number, the population size 
should be at least twice the amount of variables. 

Figure 8 shows the results when the diversity control vector has different numbers 
of sevice instances to take from (i.e., different sizes of the service pools). In this simula­
tion, we have picked graphs with a relative high difference in the length of the shortest 
path before and after all services are diversified using the algorithm (the maximum k0d 
value is 16 and the minimum 3). We can see an increasing gain in the k0d value after 
optimization, when more service instances are available. However, this trend begins to 
stall after a certain number (13). From this observation it can be inferred that the num­
ber of available service instances will affect the difference between the maximum k0d 
value possible and the minimum k0d, but such an effect also depends on the size of 
the network (or the extended resource graph) and increasing the number of available 
service instances does not always help. 

In Figure 9, we analyze the average gain in the optimized results for different sizes 
of graphs. In this figure, we can see that we have a good enough gain for graphs with a 
relatively high amount of nodes. As expected, as we increase the size of the graphs, the 
gain will decrease if we keep the same optimization parameters. For those simulations, 
we have used a population size of 300, 50 generations, and a crossover fraction of 50%. 
It is interesting to note that the decrease in gain is very close to being linear. 
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Figure 10 and Figure 11 show the optimization results on different shapes of re-
source graphs. While it may be difficult to exactly define the depth of a resource graph, 
we have relied on the relative distance, i.e., the difference of the shortest path before 
and after all services are diversified. There is a relative linear increase in the gain as we 
increase the relative distance in the shortest path. While this does not provide an accu-
rate description of the graph’s shape, it does provide an idea of how much our algorithm 
can increase the minimum k0d for graphs with different depths, as shown in Figure 10. 
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Finally, in Figure 11, we can see the effect of the network’s degree of exposure, 
which is defined as the number of exploits that are directly reachable by the attacker 
from the external host h0. As we increase the degree of exposure, the gain in optimiza­
tion decreases in almost a linear way. That is, there will less room for diversification if 
the network is more exposed. 

6 Conclusions 

In this paper, we have formulated service diversity as an optimization problem and 
proposed an automated diversity-based network hardening approach against zero-day 



attacks. This automated approach used a heuristic algorithm that helped to manage the 
complexity of computing the k0d value as well as limiting the time for optimization to 
an acceptable level. We have shown some sample cost constraints while our model and 
problem formulation would allow for other practical scenarios to be specified and opti­
mized. We have tested the scalability and accuracy of the proposed algorithms through 
simulation results, and we have also discussed how the gain in the k0d value will be 
affected by the number of available service instances in the service pools and different 
sizes and shapes of the resource graphs. 

We discuss several aspects of the proposed automated optimization technique where 
additional improvements and evaluations can be done. 

–	 While this paper focuses on diversifying services, a natural future step is to integrate 
this approach with other network hardening options, such as addition or removal of 
services, or relocating hosts or services (e.g., firewalls). 

–	 This study has relied on a simplified model by assuming all service instances to be 
completely different from each another and all service instances are equally likely 
to be exploited. A possible future research direction would be to model the degree 
of difference (or similarity) between the different types of service instances. 

–	 We have assumed an abstract cost model in this paper and an important direction 
is to elaborate the model from different aspects of potential cost for diversifying 
network resources. 

–	 We will also consider other optimization algorithms in addition to GA in searching 
for more efficient and effective solutions to our problem. 

Disclaimer Commercial products are identified in order to adequately specify certain 
procedures. In no case does such identification imply recommendation or endorsement 
by the National Institute of Standards and Technology, nor does it imply that the iden­
tified products are necessarily the best available for the purpose. 
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