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Abstract—Testing is a major approach for the detection of software defects, including vulnerabilities in security features. This article 
introduces metamorphic testing (MT), a relatively new testing method, and discusses how the new perspective of MT can help to conduct 
negative testing as well as to alleviate the oracle problem in the testing of security-related functionality and behavior. As demonstrated by 
the effectiveness of MT in detecting previously unknown bugs in real-world critical applications such as compilers and code obfuscators, 
we conclude that software testing of security-related features should be conducted from diverse perspectives in order to achieve greater 
cybersecurity. 

+ 

1 THE TEST ORACLE PROBLEM 

Internet and systems security are becoming a major 
concern, as deploying inadequately tested software can 
have serious consequences. To avoid “cyberspace catas
trophes,” there is a need to adopt smarter software testing 
techniques [1], especially when testing security-related 
functionality and behavior. 

Software testing, however, has a fundamental challenge: 
the oracle problem [2]. A test oracle is a mechanism against 
which testers can decide the correctness of test case 
execution outcomes. The majority of software testing 
techniques assume that an oracle is available and can be 
practically applied. In some circumstances, however, such 
an assumption does not hold true — a situation known as 
the oracle problem. To enhance cybersecurity by means 
of testing, the oracle problem must be addressed. 

1.1 The Oracle Problem when Testing Security-
related Software 

When testing security-enhancing features of software, 
the oracle problem can become particularly severe. The 
use of different kinds of cryptographic algorithms and 
the complexity of the applications and their environments 
may mean that an oracle is often unavailable, or is 
theoretically available but practically is too expensive 
to be used. 

Consider, for example, the testing of the certificate 
validation logic in SSL/TLS implementations [3]. If 
the program under test (PUT) accepts a nontrivial test 
certificate, how can testers be sure that it is indeed 
valid? If the PUT rejects the certificate, how can they 
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know whether or not the reason given for rejection is 
actually correct? As Brubaker et al. [3] have pointed out, 
manually deciding test certificate validity does not scale; 
and automating this procedure “essentially requires re
implementing certificate validation, which is impractical 
and has high potential for bugs of its own.” However, 
because a number of independently implemented pro
grams performing X.509 certificate validation exist (such 
as OpenSSL, NSS, and GnuTLS), Brubaker et al. were 
able to compare the outputs of these programs for the 
same input certificates, with discrepancies indicating that 
some implementations were incorrect. 

In situations where multiple implementations of the 
same specification cannot be obtained, the oracle problem 
becomes more serious. Consider the testing of code 
obfuscators, which transform a program’s original code 
into an equivalent, less readable form, to prevent it from 
being analyzed and understood by attackers. Testing 
an obfuscator requires being able to determine if the 
input (original) code and the output (obfuscated) code 
are equivalent, which can be extremely difficult. 

To the best of our knowledge, this is the first published 
report examining the testing of code obfuscators’ func
tional correctness, including the detection of real bugs 
(as will be presented in Section 3). 

1.2 The Oracle Problem in Negative Testing 

Two approaches to software testing are: positive testing, 
which uses valid input as test cases to ensure that a 
program behaves as expected in normal situations; and 
negative testing, which checks whether or not a program 
behaves reasonably when the input is invalid. Although 
positive testing is common to most software development, 
negative testing may often be omitted (perhaps due to 
resource constraints), potentially allowing security holes 
to persist into the released software [1], [4]. 

Fuzz testing, or fuzzing, is an important negative 
testing technique, where the PUT is tested using invalid, 
random, or semi-random inputs. Fuzzing is simple in 
concept, easy to implement, and supported by tools called 
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fuzzers. Fuzzers may crash a system in unexpected ways, 
and thus may offer a high benefit-to-cost ratio. Fuzzing, 
therefore, is recognized as an efficient automatic testing 
technique for the detection of software and network 
vulnerabilities [1], [4]. 

The oracle problem is a major challenge for fuzzing 
because verifying the output for large amounts of random 
or semi-random input data is extremely difficult, if not 
impossible. To cope with this, fuzzing only looks for 
crashes, or some other undesirable behavior of the PUT. 
Because fuzzing does not check the correctness of each 
individual output, millions of test cases may be executed 
before finding a crash [4]. It should be noted that many 
bugs, such as logic errors [5], do not crash the PUT, but 
instead produce incorrect output, a type of failure which 
is much more difficult to detect than a system crash. 
The notorious Heartbleed bug [1], for example, does not 
cause a crash, and therefore cannot be detected by simple 
fuzzing [4]. 

In the rest of this article, we will address the above 
issues using the concept of metamorphic testing. 

2 METAMORPHIC TESTING (MT) 
MT has been developed from a new perspective on 

testing: instead of focusing on the correctness of each 
individual output of a PUT, MT looks at the relationships 
among the inputs and outputs of multiple PUT executions. 
Such relationships are called metamorphic relations (MRs), 
and are necessary properties of the intended program’s 
functionality. In MT, even if a test case does not reveal a 
failure, it can be used to generate follow-up test cases by 
referring to the selected MRs, and the PUT can then be 
further tested automatically, regardless of whether or not 
an oracle is available. In other words, MT alleviates the 
oracle problem in software testing and analysis [5]–[9]. 

Consider, for example, a PUT implementing the sine 
function. The property sin (x) = sin (180 − x) can be 
identified as an MR. If t = 32.875 is a source test case, 
and gives the output 0.543, a result which may not be 
easily verified due to the oracle problem, then (regardless 
of whether or not an oracle is available), MT can be 
used to suggest a follow-up test case t' = 180 − 32.875. If, 
after taking rounding errors into consideration, the two 
outputs are not equal, then a failure is revealed. MT has 
been applied to test various applications, ranging from 
numerical programs performing scientific computation to 
non-numerical programs such as search engines. Various 
MRs have been identified for those applications, which 
include, but are not limited to, identity relations. 

MT has been proven to be highly effective in detecting 
failures [8], [10], [11], as illustrated by the following: 
In a PLDI’14 Distinguished Paper [12], researchers at UC 
Davis tested compilers “based on a particularly clever 
application of metamorphic testing” [13]. Basically, their 
MR is a special instance of the following: If source 
programs P and P ' are equivalent on input I , then 
their respective object programs O and O', generated 

by the compiler, should also be equivalent with respect 
to I . In their study, P ' is constructed as follows: First, 
execute O using arbitrary input I , and record code 
coverage information with respect to P . Then, create P ' by 
randomly pruning some unexecuted “dead” statements 
from P as recorded in the first step. A compiler bug 
is reported if the output of O' on I has changed. Le 
et al. generated “147 confirmed, unique bug reports for 
GCC and LLVM alone,” of which “more than 100 have 
already been fixed” [12]. The detection of compiler bugs 
is particularly important as compilers are used to compile 
other programs, some of which may perform safety- or 
security-related functions. 

3 DETECTING OBFUSCATOR BUGS USING MT 
As explained in Section 1.1, some security-related 

software can be difficult to test. In this section, we report 
on a case study of using MT to test code obfuscators. 

3.1 A Need for Diverse Testing Techniques 
Inspired by the success in compiler testing, UC Davis 

researchers also attempted to test C obfuscators by 
applying well-known compiler validation techniques [14]. 
In their testing process, each test case was a C source 
program P , generated by CSmith, a random program 
generator. An obfuscator O produced an obfuscated 
source program O(P ), and GCC was then used to compile 
P into executable code C(P ), and O(P ) into executable 
code C(O(P )). Finally, the tester ran both C(P ) and 
C(O(P )), comparing their outputs: If the outputs did not 
match, then it would be concluded that the obfuscator 
was at fault (assuming that GCC was correct). For each 
of the two obfuscators under test, millions of different 
test cases have been run. However, the researchers report 
that they “have not discovered any bugs” and that “bugs 
are hard to find.” 

This experience suggests that there is a need for more 
diverse testing techniques for obfuscators to be tested 
more effectively. In the following, we will address this 
challenge using MT: Instead of focusing on the correctness 
of each individual obfuscated program, we look at the 
relationships among multiple obfuscated programs — this 
is a perspective that has not been previously attempted. 

3.2 Subject Programs 
In this study, we tested four real-world obfuscators: 

Cobfusc (open source); Stunnix (commercial); Tigress (free 
software, but not open source), and Obfuscator-LLVM 
(open source). 

Cobfusc (http://manpages.ubuntu.com/manpages/ 
hardy/man1/cobfusc.1.html) is a Linux utility that 
makes a C source file unreadable, but compilable. 

Stunnix is “a leader in providing advanced solutions 
for source code obfuscation” (http://stunnix.com). Its 
clients include many large organizations including the 
US Army and Fortune 500 companies. Stunnix supports 
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several programming languages, but we tested its C/C++ 
obfuscator, CXX-Obfus, which was previously tested at 
UC Davis, where no failure was detected [14]. Clients 
of CXX-Obfus include Siemens, Ericsson, Sybase, Bosch, 
DELL, General Electric, Motorolla, and Cryptography 
Research. 

Tigress (http://tigress.cs.arizona.edu) is a C obfuscator 
that supports novel defenses against both static and 
dynamic reverse engineering. 

LLVM (http://www.llvm.org/) is a well-known 
compiler infrastructure project, with users including 
Adobe Systems, Apple, Intel, and Sony. Obfuscator-LLVM 
(https://github.com/obfuscator-llvm/obfuscator/wiki) 
is a part of the LLVM compilation suite, used to provide 
increased software security. Given a C source program, 
Obfuscator-LLVM can be enabled by running LLVM’s 
front end compiler Clang with specific options. The 
output is an obfuscated and compiled binary code. 

3.3 Identification of Diverse MRs 
MT tests programs by referring to predefined MRs. 

Because programmers can make various mistakes, we 
believe that diverse MRs, when used together, would 
have a stronger fault-detection capability than a single 
MR. We therefore identified the following MRs: 

(1) MR1: The first MR states that, if two different 
source programs (P1 and P2) are functionally equivalent, 
then their obfuscated versions (O(P1) and O(P2)) are 
also functionally equivalent and, therefore, the compiled 
obfuscated executable programs (C(O(P1)) and C(O(P2))) 
should have equivalent behavior — in the sense that they 
should give the same outputs for the same inputs. 

To conduct testing based on this MR requires gener
ation of equivalent source programs P1 and P2. Two 
automatic approaches for this involve either (i) use 
of a separate tool (such as a script written by the 
tester); or (ii) use of the obfuscator itself. We use 
MR1.1 and MR1.2 to denote these two approaches, 
respectively. An example of MR1.1 is: P1 is constructed 
as If (condition) {do A} else {do B} whereas 
P2 is constructed as If (not(condition)) {do B} 
else {do A}. An example of MR1.2 is: P1 is an arbitrary 
program and P2 is O(P1) — we use the obfuscator on P1 

to generate the (supposedly) equivalent program O(P1). 1 

This process can be repeated, and in the experiment we 
ran the obfuscation twice to obtain P2 = O(O(P1)). 

(2) MR2: The second MR states that an obfuscator 
should generate behaviorally equivalent programs for 
the same input program, regardless of the environment 
the obfuscator is run under. In our experiment, we 
considered a specific kind of “environment,” namely, 
time, with MR2 re-stated as: For the same input program, 
the obfuscator should generate behaviorally equivalent 
programs regardless of when the obfuscator is run. 

1. It is possible that O(P1) is not equivalent to P1, when the 
obfuscator is faulty, in which situation MR1.2 can still be applied to 
test the obfuscator and reveal the fault. 

if (i > j)

i -= 10;

else

i += 10;

if (i <= j)

i += 10;

else

i -= 10;

if ((int )((i > (long )j + 116) - 116)) {

i = (i - (10L + 116)) + 116;

} else {

i = (i + (10L + 116)) - 116;

}

if ((int )((i <= (long )j + 116) - 116)) {

i = (i + (10L + 116)) - 116;

} else {

i = (i - (10L + 116)) + 116;

}

P
1

P
2

O(P
1
)

O(P
2
)

Fig. 1: Tigress failure (version: Linux x86_64-unstable 
revision 1676), detected against MR1.1. 

(3) MR3: The final MR differs from the other three in 
that, whereas MR1.1, MR1.2, and MR2 examine the behav
ioral equivalence of the compiled obfuscated programs 
by running them on the same sets of inputs, MR3 only 
looks at the obfuscated source codes, without compiling 
them. MR3 checks whether the obfuscation rules have 
been applied consistently every time the obfuscator is 
run. Although it is assumed that the tester has no 
detailed knowledge of the obfuscation rules adopted 
by the obfuscators, the tester can still check whether the 
outputs are consistent. For example, if a variable name 
in program P was obfuscated when the obfuscator was 
run yesterday, then the same variable name should still 
become obfuscated when the obfuscator is run today. 

Because Obfuscator-LLVM only generates obfuscated 
binary code, without showing the obfuscated source code, 
MR1.2 and MR3 are not applicable to it. 

3.4 Issues detected 
We tested the subject obfuscators using 500 randomly 

generated source test cases (C programs), finding bugs 
or other issues in every obfuscator under test. We also 
observed different MRs detecting different types of issues. 
We next present one detected issue for each MR. 
(1) MR1.1: Figure 1 shows excerpts of input files that 
revealed a failure in Tigress, when tested against MR1.1. 
Program P1 (the source test case) has two integer 
variables i and j, each of which is assigned an initial 
value. Then an if statement is executed: If i > j then i is 
set to i − 10, otherwise i is set to i + 10. Finally, the value 
of i is printed. The upper left part of Figure 1 shows the 
essential part of the P1 code. The corresponding code 
of an equivalent program P2 (the follow-up test case) is 
shown in the lower left part of Figure 1. O(P1) and O(P2) 
are the obfuscated codes of P1 and P2, the essential parts 
of which are shown in the upper and lower right parts of 
Figure 1, respectively. In a metamorphic test, O(P1) and 
O(P2) were compiled into executable programs C(O(P1)) 
and C(O(P2)), which were then run on the same input, 
and their outputs compared. MT detected that the outputs 
of C(O(P1)) and C(O(P2)) were different: a bug in Tigress 
was therefore detected. 

In the case above, Tigress incorrectly obfuscated the P1 

statement “if (i > j)” into the O(P1) statement “if 
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$ clang -mllvm -bcf -mllvm -boguscf-loop=3 PBP.c
$ a.out 10000022
10000022
$ clang -mllvm -bcf -mllvm -boguscf-loop=3 PBP.c
$ a.out 10000022
14195494
$ clang -mllvm -bcf -mllvm -boguscf-loop=3 PBP.c
$ a.out 10000022
10000022

$ clang PBP.c 
$ a.out 10000022
14195494
$ clang PBP.c 
$ a.out 10000022
14195494
$ clang PBP.c 
$ a.out 10000022
14195494

1 #include <stdio.h>
2 int j = 1908; 
3 int k = 1662;  
4 int m = 1734; 
5 int n = 468;  
6 int p = 1046;  
7 int q = 613; 

1 #include <stdio.h>
2 int j = (0x1cc8+2138-0x1dae);  
3 int k = (0x734+890-0x430); 
4 int m = (0x9e7+132-0x3a5); 
5 int n = (0x11e1+3746-0x1eaf);  
6 int p = 1046;  
7 int q = (0x30b+5768-0x172e); 

1 #include <stdio.h>
2 int j = (0x1e12+3135-0x22dd); 
3 int k = (0xcb8+260-0x73e);  
4 int m = (0x1da8+1116-0x1b3e); 
5 int n = (0x239b+1251-0x26aa);  
6 int p = (0x90f+4654-0x1727);  
7 int q = (0x6d1+6323-0x1d1f);  

Fig. 2: Obfuscator-LLVM (version 3.4) command line. 

((int )((i > (long )j + 116) - 116))”: In the 
C language, the expression (i > (long )j + 116) is 
evaluated to either true (“1”) or false (“0”). Therefore, 
the expression ((i > (long )j + 116) - 116) is 
evaluated to either “−115” or “−116,” both of which are 
non-zero and hence mean true. This means that the if 
statement of O(P1) will always take the true branch, and 
the false branch is unreachable. This program is therefore 
not equivalent to P1. Similarly, the false branch of O(P2) is 
also unreachable. When testing against MR1.1, C(O(P1)) 
and C(O(P2)) are run on the same input (e.g., i = j = 
1000). After the if statement, C(O(P1)) sets i to i − 10 
(e.g., 990), but C(O(P2)) sets it to i + 10 (e.g., 1010), thus 
generating different outputs. A bug in the obfuscator was 
therefore revealed. 

One may argue that the bug could also be detected 
without MT, by compiling P1 into C(P1), running C(P1) 
and C(O(P1)) on the same input, and then comparing 
their outputs. It should be noted, however, that this 
conventional testing method can detect a failure only 
when the if statement of P1 takes the false branch (that 
is, only when the initial value of i is less than or equal 
to the initial value of j). In contrast, MT guarantees the 
detection of the bug, regardless of the initial values of 
i and j, and therefore appears superior to conventional 
testing methods, again emphasizing that testing should be 
conducted from diverse perspectives. 
(2) MR1.2: A failure of Cobfusc (in the package cutils 
version 1.6) was detected by MR1.2 as follows. A source 
test case P1 included the following statement: 
int k = 20; //Rz5Wq3OCvuqsA30uaEY0Evc95AIn 

We then recursively called the obfuscator, Cobfusc, to 
construct P2 as O(O(P1)). O(P1) and O(P2) were expected 
to be equivalent but, to our surprise, O(P2) could not 
pass the compiler because it included the following two 
lines of code (with a syntactically incorrect second line): 
int k = ((5*(1*1+0)+2)*((2*(1*1+0)+0)*(1*(1*1+0)+0)+0)+(3*(2*1+0)+0)); // 
Rz5Wq3OCvuqsA30uaEY0Evc95AIn 

The obfuscator had incorrectly moved the comment 
“Rz5Wq3OCvuqsA30uaEY0Evc95AIn” from its original 
line, into a separate new line without the “//”, causing a 
compiler error. A bug in Cobfusc was therefore detected. 

(3) MR2: MR2 states that when an obfuscator is run 
at different times for the same program, the output 
programs should be equivalent. Figure 2 (left), line 1, 
shows a source program PBP.c compiled by Clang — the 
command line parameters enabled the use of Obfuscator-
LLVM. The compiled obfuscated executable program 
(a.out) was run in line 2 with an input of 10000022, 

Fig. 3: Stunnix inconsistency (CXX-Obfus version 4.2). 

producing the output 10000022 (line 3). Lines 4, 5, and 
6 repeat the above obfuscation-compilation-execution 
procedure, but this time producing different output 
(14195494). Lines 7, 8, and 9 repeat the procedure once 
more, producing the output 10000022. It can be concluded, 
therefore, that the three obfuscated executable programs 
are not equivalent. 

The issue was caused by the following statements in 
PBP.c: int i; int j; i=atoi(argv[1]); i=i+j; 
printf(”%d\n”,i); In this piece of code, i is ini
tialized with the input value (10000022 in the above 
executions) and then updated by the statement “i=i+j;” 
— here, j is used without initialization and, therefore, 
the value of i after this statement cannot be predicted. 
This value of i is printed by the last printf statement. 
Figure 2 (left) does not indicate whether the output 
10000022 or 14195494 is wrong, but instead shows that 
the executable programs generated for the same input 
program are not behaviorally equivalent. To further 
investigate this issue, the same PBP.c program was 
again compiled using Clang, but without enabling the 
obfuscation function, as shown in Figure 2 (right). It 
was observed that the compiled executable programs 
(a.out) consistently produced the same output (14195494), 
regardless of the number of times the compiler was run. 

In summary, Clang generated behaviorally equivalent 
binary code (a.out) whenever it was compiled using PBP.c 
with obfuscation disabled (Figure 2 (right)), but this was 
not the case when obfuscation was enabled (Figure 2 (left)). 
(4) MR3: MR3 involves checking that obfuscated source 
files based on the same input source file are consistent. 
Figure 3 (left) shows an excerpt of source code before 
obfuscation. We ran Stunnix twice on this source code 
to generate two obfuscated output files, excerpts of 
which are shown in Figure 3 (middle) and (right). A 
comparison of these two output files reveals the following 
inconsistency: Line 6 of Figure 3 (middle) is the same 
as the original code, but line 6 of Figure 3 (right) is 
obfuscated. Although the obfuscation rules of Stunnix 
are unknown, this inconsistent behavior is undesirable: If 
a source statement is obfuscated in one run, it should also 
be obfuscated in other runs, allowing any confidential 
information to always be protected. An issue with Stunnix 
was thus revealed by MR3. 

3.5 Summary 
Obfuscators are important tools to help protect con

fidential software elements. As reported by Velez [14], 
however, it is difficult to find obfuscator bugs, even with 



5 

Fig. 4: MT detected an Internet banking login failure 
(https://www.nab.com.au) using an Acer Chromebook 
(model no. Q1VZC). Left: Normal with local guest 
account. Right: Failure with any non-guest local account. 

advanced compiler testing techniques. In this section, we 
reported on obfuscator testing using MT. We identified 
a small number of quite diverse MRs and, with a small 
set of test cases, tested four well-known, real-world 
obfuscators, detecting issues in every one of them. This 
study is further evidence supporting our argument that 
testing should be conducted from diverse perspectives. 

4 DETECTING WEB FAILURES USING MT 

We applied MT to test the Internet banking 
login page of the National Australia Bank (NAB, 
https://www.nab.com.au), looking for compatibility 
issues between the website and the client side. From 
the perspective of a website user (not developer), we 
designed a simple MR: When different users log into a 
(local) computer using different user names, they should 
always be able to follow the same steps to navigate to 
the website and click on the Internet banking “Login” 
button. In other words, changing of user names on a 
local computer should not affect access to the Internet 
banking, as long as all the user accounts’ local settings 
are standard. During testing, screenshots of different 
user sessions were also automatically captured and 
compared to identify potential issues in the website 
GUI (readers interested in Web testing using screenshot 
comparison are referred to Selay et al. [15]). 

Figure 4 shows an Internet banking login failure, 
automatically detected by our test driver. The left part 
of the figure corresponds to where a tester logged into 
the local computer (an Acer Chromebook with standard 
settings) using the default “guest” account: The user 
successfully opened the NAB website using the Chrome 
browser, and successfully clicked on the red “Login” 
button. The right part of Figure 4 shows what happened 
when the tester logged into the same computer with a 
different user name, using the same browser to open 
the same website (the environment settings were all 
standard): The website GUI was not displayed correctly, 
and neither the red “Login” button, nor the grey “Login” 
link could be clicked. 

Although developers might argue that this is not a 
verification bug (because the website was not designed 
to support this platform and configuration), it is obviously 
a validation problem from the user’s perspective. 

4.  Heartbeat Request and Response Messages 

   The Heartbeat protocol messages consist of their type and an 

   arbitrary payload and padding. 

 

   struct { 

      HeartbeatMessageType type; 

      uint16 payload_length; 

      opaque payload[HeartbeatMessage.payload_length]; 

      opaque padding[padding_length]; 

   } HeartbeatMessage; 

Fig. 5: Excerpt from Section 4 of RFC 6520 (available: 
http://tools.ietf.org/html/rfc6520). 

5 MT FOR NEGATIVE TESTING 

This section discusses how the new perspectives from 
MT can be used to guide negative testing. 

5.1 Heartbleed: A “Pattern” of Mistakes 
The Heartbleed bug is probably the most widely 

known cybersecurity breach in recent years [1]. The 
bug was in the OpenSSL implementation of the 
Transport Layer Security (TLS) and Datagram Transport 
Layer Security (DTLS) Heartbeat Extension (specified 
in RFC 6520). As shown in Figure 5, a Heartbeat 
protocol message consists of type, payload, padding, 
and payload_length, with the statement “opaque 
payload[HeartbeatMessage.payload_length];” 
meaning that the length of payload must be 
payload_length. When implementing this, the 
programmer assumed that the relationship between 
payload and payload_length would always hold 
true and, therefore did not include any bounds checking 
code. Furthermore, although the implementation was 
reviewed by a core OpenSSL developer, the reviewer 
had the same wrong assumption and did not find the 
bug. In other words, the bug is a result of a common 
type of mistake: overlooking the possibility of some 
parameters taking a value outside the expected range. 

5.2 MT Can Alleviate the Problem 
The Heartbleed bug cannot be detected by simple 

fuzzing because it only produces incorrect output, and 
does not crash the system. It is therefore necessary 
to incorporate multiple tools or techniques to increase 
fault detection capability [1]. Compared with most other 
testing and analysis methods, MT has a different per
spective: It considers the relationship among multiple ex
ecutions of the PUT. Consider the HeartbeatMessage 
shown in Figure 5. To conduct MT, the tester will ask 
the question: “What if I change some of the param
eter values?” More specifically, consider a source test 
case t = (type1, length1, payload1, padding ), where type ,1 1
length , payload , and padding represent concrete values 1 1 1 
of the parameters. To identify an MR, the tester will ask 
the following questions: 

1. “What if I change type to a different value?” 1 
2. “What if I change length to a different value?” 1 
3. “What if I change payload to a different value?” 1 
4. “What if I change padding to a different value?” 1 
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5. “What if I change two or more parameters?” 
Asking these questions will lead the tester to think be

yond the “normal” range of values or value combinations 
of the parameters. In other words, MT can lead the tester 
to think about negative testing. In this example, as soon 
as question 2 is asked, the tester will immediately realize 
that payload_length may not equal the actual length 
of payload, and hence may construct a follow-up test 

' case t by increasing the value of length while keeping 1 
the other parameters unchanged. The MR will require 
that the program’s outputs for t and t ' be different (as 
per RFC 6520): It should return a normal message for 
t, but “silently” discard t '. When the faulty program is 
tested against this MR, a failure will be revealed. 

It should be noted that, in the above example, there 
is indeed an oracle (that is, the RFC 6520), but MT still 
has the advantage of leading to negative testing. The 
Heartbleed bug could also be detected by using a fuzzer 
in conjunction with some dynamic analysis tools — tools 
which perform run-time monitoring for predefined types 
of memory errors [1]. Compared with dynamic analysis, 
MT is not limited to predefined error patterns — it can 
detect both system crashes (in which case the MRs are 
violated) and other types of errors. 

As Zhou et al. have shown [7], MT can be combined 
with fuzzing: When testing Microsoft Live Search, a 
random string “GLIF” was issued, for which the search 
engine returned 11, 783 results. Owing to the sheer 
volume of data on the Internet, it was difficult to assess 
the correctness of the results. Nevertheless, by referring 
to an MR, a follow-up test case “GLIF OR 5Y4W” was 
generated (where OR is the Boolean operator, not a 
search term), and the search engine returned zero results. 
This was obviously a failure — the number of Web 
pages containing either the string “GLIF” or the string 
“5Y4W” should be no less than 11, 783. When generating 
this incorrect result, the search engine did not crash. 
The failure, therefore, could not be detected by fuzzing 
or dynamic analysis (or a combination of the two). 
Nevertheless, MT detected the failure by comparing the 
outputs of multiple executions. 

6	 CONCLUSION AND FUTURE WORK 
In this article, we have shown that MT can help to 

achieve negative testing as well as to alleviate the oracle 
problem when testing security-related functionality and 
behavior. We have shown that MT successfully revealed 
real-life bugs not previously detected by other testing 
methods. This is not only because MT can be performed 
in the absence of an oracle, but also because it is based 
on a perspective not previously used by conventional 
testing techniques. As recently emphasized by Chen et 
al. [10], this is not to say that MT is necessarily better 
than the other testing methods, but rather that testing 
should be conducted from diverse perspectives, because 
programmers can make various kinds of mistakes. 

A future research direction is to study how to use 
MRs to perform automatic validation to detect security 

issues that concern users, and how users can specify their 
security requirements using MRs. One of the greatest 
advantages of using MRs is that, once identified, the 
testing can be fully automated. 

Further research is also needed to develop new test 
quality and adequacy criteria involving MRs, in the 
context of security testing. Such criteria will be com
plementary to the existing ones. We anticipate that the 
concept of diversity will be an underlying principle, from 
the selection of testing and analysis methods to test 
case generation strategies, through to result verification 
approaches, and to quality standards, and more. 
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