
1

Metamorphic Testing for Cybersecurity

Tsong Yueh Chen, Fei-Ching Kuo, Wenjuan Ma, Willy Susilo,

Dave Towey, Jeffrey Voas, and Zhi Quan Zhou

Abstract—Testing is a major approach for the detection of software defects, including vulnerabilities in security features. This article
introduces metamorphic testing (MT), a relatively new testing method, and discusses how the new perspective of MT can help to conduct
negative testing as well as to alleviate the oracle problem in the testing of security-related functionality and behavior. As demonstrated by
the effectiveness of MT in detecting previously unknown bugs in real-world critical applications such as compilers and code obfuscators,
we conclude that software testing of security-related features should be conducted from diverse perspectives in order to achieve greater
cybersecurity.

+

1 THE TEST ORACLE PROBLEM

Internet and systems security are becoming a major
concern, as deploying inadequately tested software can
have serious consequences. To avoid “cyberspace catas
trophes,” there is a need to adopt smarter software testing
techniques [1], especially when testing security-related
functionality and behavior.

Software testing, however, has a fundamental challenge:
the oracle problem [2]. A test oracle is a mechanism against
which testers can decide the correctness of test case
execution outcomes. The majority of software testing
techniques assume that an oracle is available and can be
practically applied. In some circumstances, however, such
an assumption does not hold true — a situation known as
the oracle problem. To enhance cybersecurity by means
of testing, the oracle problem must be addressed.

1.1 The Oracle Problem when Testing Security-
related Software

When testing security-enhancing features of software,
the oracle problem can become particularly severe. The
use of different kinds of cryptographic algorithms and
the complexity of the applications and their environments
may mean that an oracle is often unavailable, or is
theoretically available but practically is too expensive
to be used.

Consider, for example, the testing of the certificate
validation logic in SSL/TLS implementations [3]. If
the program under test (PUT) accepts a nontrivial test
certificate, how can testers be sure that it is indeed
valid? If the PUT rejects the certificate, how can they

Tsong Yueh Chen and Fei-Ching Kuo are with the Department of Computer
Science and Software Engineering, Swinburne University of Technology,
Australia. E-mails: {tychen,dkuo}@swin.edu.au.
Wenjuan Ma, Willy Susilo, and Zhi Quan Zhou (corresponding
author) are with the School of Computing and Information Technology,
University of Wollongong, Australia. E-mails: wm230@uowmail.edu.au,
{wsusilo,zhiquan}@uow.edu.au.
Dave Towey is with the School of Computer Science, The University of
Nottingham Ningbo China, China. E-mail: dave.towey@nottingham.edu.cn.
Jeffrey Voas is with the US National Institute of Standards and Technology
(NIST). E-mail: jeff.voas@nist.gov.

know whether or not the reason given for rejection is
actually correct? As Brubaker et al. [3] have pointed out,
manually deciding test certificate validity does not scale;
and automating this procedure “essentially requires re
implementing certificate validation, which is impractical
and has high potential for bugs of its own.” However,
because a number of independently implemented pro
grams performing X.509 certificate validation exist (such
as OpenSSL, NSS, and GnuTLS), Brubaker et al. were
able to compare the outputs of these programs for the
same input certificates, with discrepancies indicating that
some implementations were incorrect.

In situations where multiple implementations of the
same specification cannot be obtained, the oracle problem
becomes more serious. Consider the testing of code
obfuscators, which transform a program’s original code
into an equivalent, less readable form, to prevent it from
being analyzed and understood by attackers. Testing
an obfuscator requires being able to determine if the
input (original) code and the output (obfuscated) code
are equivalent, which can be extremely difficult.

To the best of our knowledge, this is the first published
report examining the testing of code obfuscators’ func
tional correctness, including the detection of real bugs
(as will be presented in Section 3).

1.2 The Oracle Problem in Negative Testing

Two approaches to software testing are: positive testing,
which uses valid input as test cases to ensure that a
program behaves as expected in normal situations; and
negative testing, which checks whether or not a program
behaves reasonably when the input is invalid. Although
positive testing is common to most software development,
negative testing may often be omitted (perhaps due to
resource constraints), potentially allowing security holes
to persist into the released software [1], [4].

Fuzz testing, or fuzzing, is an important negative
testing technique, where the PUT is tested using invalid,
random, or semi-random inputs. Fuzzing is simple in
concept, easy to implement, and supported by tools called

mailto:jeff.voas@nist.gov

2

fuzzers. Fuzzers may crash a system in unexpected ways,
and thus may offer a high benefit-to-cost ratio. Fuzzing,
therefore, is recognized as an efficient automatic testing
technique for the detection of software and network
vulnerabilities [1], [4].

The oracle problem is a major challenge for fuzzing
because verifying the output for large amounts of random
or semi-random input data is extremely difficult, if not
impossible. To cope with this, fuzzing only looks for
crashes, or some other undesirable behavior of the PUT.
Because fuzzing does not check the correctness of each
individual output, millions of test cases may be executed
before finding a crash [4]. It should be noted that many
bugs, such as logic errors [5], do not crash the PUT, but
instead produce incorrect output, a type of failure which
is much more difficult to detect than a system crash.
The notorious Heartbleed bug [1], for example, does not
cause a crash, and therefore cannot be detected by simple
fuzzing [4].

In the rest of this article, we will address the above
issues using the concept of metamorphic testing.

2 METAMORPHIC TESTING (MT)
MT has been developed from a new perspective on

testing: instead of focusing on the correctness of each
individual output of a PUT, MT looks at the relationships
among the inputs and outputs of multiple PUT executions.
Such relationships are called metamorphic relations (MRs),
and are necessary properties of the intended program’s
functionality. In MT, even if a test case does not reveal a
failure, it can be used to generate follow-up test cases by
referring to the selected MRs, and the PUT can then be
further tested automatically, regardless of whether or not
an oracle is available. In other words, MT alleviates the
oracle problem in software testing and analysis [5]–[9].

Consider, for example, a PUT implementing the sine
function. The property sin (x) = sin (180 − x) can be
identified as an MR. If t = 32.875 is a source test case,
and gives the output 0.543, a result which may not be
easily verified due to the oracle problem, then (regardless
of whether or not an oracle is available), MT can be
used to suggest a follow-up test case t' = 180 − 32.875. If,
after taking rounding errors into consideration, the two
outputs are not equal, then a failure is revealed. MT has
been applied to test various applications, ranging from
numerical programs performing scientific computation to
non-numerical programs such as search engines. Various
MRs have been identified for those applications, which
include, but are not limited to, identity relations.

MT has been proven to be highly effective in detecting
failures [8], [10], [11], as illustrated by the following:
In a PLDI’14 Distinguished Paper [12], researchers at UC
Davis tested compilers “based on a particularly clever
application of metamorphic testing” [13]. Basically, their
MR is a special instance of the following: If source
programs P and P ' are equivalent on input I , then
their respective object programs O and O', generated

by the compiler, should also be equivalent with respect
to I . In their study, P ' is constructed as follows: First,
execute O using arbitrary input I , and record code
coverage information with respect to P . Then, create P ' by
randomly pruning some unexecuted “dead” statements
from P as recorded in the first step. A compiler bug
is reported if the output of O' on I has changed. Le
et al. generated “147 confirmed, unique bug reports for
GCC and LLVM alone,” of which “more than 100 have
already been fixed” [12]. The detection of compiler bugs
is particularly important as compilers are used to compile
other programs, some of which may perform safety- or
security-related functions.

3 DETECTING OBFUSCATOR BUGS USING MT
As explained in Section 1.1, some security-related

software can be difficult to test. In this section, we report
on a case study of using MT to test code obfuscators.

3.1 A Need for Diverse Testing Techniques
Inspired by the success in compiler testing, UC Davis

researchers also attempted to test C obfuscators by
applying well-known compiler validation techniques [14].
In their testing process, each test case was a C source
program P , generated by CSmith, a random program
generator. An obfuscator O produced an obfuscated
source program O(P), and GCC was then used to compile
P into executable code C(P), and O(P) into executable
code C(O(P)). Finally, the tester ran both C(P) and
C(O(P)), comparing their outputs: If the outputs did not
match, then it would be concluded that the obfuscator
was at fault (assuming that GCC was correct). For each
of the two obfuscators under test, millions of different
test cases have been run. However, the researchers report
that they “have not discovered any bugs” and that “bugs
are hard to find.”

This experience suggests that there is a need for more
diverse testing techniques for obfuscators to be tested
more effectively. In the following, we will address this
challenge using MT: Instead of focusing on the correctness
of each individual obfuscated program, we look at the
relationships among multiple obfuscated programs — this
is a perspective that has not been previously attempted.

3.2 Subject Programs
In this study, we tested four real-world obfuscators:

Cobfusc (open source); Stunnix (commercial); Tigress (free
software, but not open source), and Obfuscator-LLVM
(open source).

Cobfusc (http://manpages.ubuntu.com/manpages/
hardy/man1/cobfusc.1.html) is a Linux utility that
makes a C source file unreadable, but compilable.

Stunnix is “a leader in providing advanced solutions
for source code obfuscation” (http://stunnix.com). Its
clients include many large organizations including the
US Army and Fortune 500 companies. Stunnix supports

http:http://stunnix.com
http://manpages.ubuntu.com/manpages

3

several programming languages, but we tested its C/C++
obfuscator, CXX-Obfus, which was previously tested at
UC Davis, where no failure was detected [14]. Clients
of CXX-Obfus include Siemens, Ericsson, Sybase, Bosch,
DELL, General Electric, Motorolla, and Cryptography
Research.

Tigress (http://tigress.cs.arizona.edu) is a C obfuscator
that supports novel defenses against both static and
dynamic reverse engineering.

LLVM (http://www.llvm.org/) is a well-known
compiler infrastructure project, with users including
Adobe Systems, Apple, Intel, and Sony. Obfuscator-LLVM
(https://github.com/obfuscator-llvm/obfuscator/wiki)
is a part of the LLVM compilation suite, used to provide
increased software security. Given a C source program,
Obfuscator-LLVM can be enabled by running LLVM’s
front end compiler Clang with specific options. The
output is an obfuscated and compiled binary code.

3.3 Identification of Diverse MRs
MT tests programs by referring to predefined MRs.

Because programmers can make various mistakes, we
believe that diverse MRs, when used together, would
have a stronger fault-detection capability than a single
MR. We therefore identified the following MRs:

(1) MR1: The first MR states that, if two different
source programs (P1 and P2) are functionally equivalent,
then their obfuscated versions (O(P1) and O(P2)) are
also functionally equivalent and, therefore, the compiled
obfuscated executable programs (C(O(P1)) and C(O(P2)))
should have equivalent behavior — in the sense that they
should give the same outputs for the same inputs.

To conduct testing based on this MR requires gener
ation of equivalent source programs P1 and P2. Two
automatic approaches for this involve either (i) use
of a separate tool (such as a script written by the
tester); or (ii) use of the obfuscator itself. We use
MR1.1 and MR1.2 to denote these two approaches,
respectively. An example of MR1.1 is: P1 is constructed
as If (condition) {do A} else {do B} whereas
P2 is constructed as If (not(condition)) {do B}
else {do A}. An example of MR1.2 is: P1 is an arbitrary
program and P2 is O(P1) — we use the obfuscator on P1

to generate the (supposedly) equivalent program O(P1). 1

This process can be repeated, and in the experiment we
ran the obfuscation twice to obtain P2 = O(O(P1)).

(2) MR2: The second MR states that an obfuscator
should generate behaviorally equivalent programs for
the same input program, regardless of the environment
the obfuscator is run under. In our experiment, we
considered a specific kind of “environment,” namely,
time, with MR2 re-stated as: For the same input program,
the obfuscator should generate behaviorally equivalent
programs regardless of when the obfuscator is run.

1. It is possible that O(P1) is not equivalent to P1, when the
obfuscator is faulty, in which situation MR1.2 can still be applied to
test the obfuscator and reveal the fault.

if (i > j)

i -= 10;

else

i += 10;

if (i <= j)

i += 10;

else

i -= 10;

if ((int)((i > (long)j + 116) - 116)) {

i = (i - (10L + 116)) + 116;

} else {

i = (i + (10L + 116)) - 116;

}

if ((int)((i <= (long)j + 116) - 116)) {

i = (i + (10L + 116)) - 116;

} else {

i = (i - (10L + 116)) + 116;

}

P
1

P
2

O(P
1
)

O(P
2
)

Fig. 1: Tigress failure (version: Linux x86_64-unstable
revision 1676), detected against MR1.1.

(3) MR3: The final MR differs from the other three in
that, whereas MR1.1, MR1.2, and MR2 examine the behav
ioral equivalence of the compiled obfuscated programs
by running them on the same sets of inputs, MR3 only
looks at the obfuscated source codes, without compiling
them. MR3 checks whether the obfuscation rules have
been applied consistently every time the obfuscator is
run. Although it is assumed that the tester has no
detailed knowledge of the obfuscation rules adopted
by the obfuscators, the tester can still check whether the
outputs are consistent. For example, if a variable name
in program P was obfuscated when the obfuscator was
run yesterday, then the same variable name should still
become obfuscated when the obfuscator is run today.

Because Obfuscator-LLVM only generates obfuscated
binary code, without showing the obfuscated source code,
MR1.2 and MR3 are not applicable to it.

3.4 Issues detected
We tested the subject obfuscators using 500 randomly

generated source test cases (C programs), finding bugs
or other issues in every obfuscator under test. We also
observed different MRs detecting different types of issues.
We next present one detected issue for each MR.
(1) MR1.1: Figure 1 shows excerpts of input files that
revealed a failure in Tigress, when tested against MR1.1.
Program P1 (the source test case) has two integer
variables i and j, each of which is assigned an initial
value. Then an if statement is executed: If i > j then i is
set to i − 10, otherwise i is set to i + 10. Finally, the value
of i is printed. The upper left part of Figure 1 shows the
essential part of the P1 code. The corresponding code
of an equivalent program P2 (the follow-up test case) is
shown in the lower left part of Figure 1. O(P1) and O(P2)
are the obfuscated codes of P1 and P2, the essential parts
of which are shown in the upper and lower right parts of
Figure 1, respectively. In a metamorphic test, O(P1) and
O(P2) were compiled into executable programs C(O(P1))
and C(O(P2)), which were then run on the same input,
and their outputs compared. MT detected that the outputs
of C(O(P1)) and C(O(P2)) were different: a bug in Tigress
was therefore detected.

In the case above, Tigress incorrectly obfuscated the P1

statement “if (i > j)” into the O(P1) statement “if

https://github.com/obfuscator-llvm/obfuscator/wiki
http:http://www.llvm.org
http:http://tigress.cs.arizona.edu

4

$ clang -mllvm -bcf -mllvm -boguscf-loop=3 PBP.c
$ a.out 10000022
10000022
$ clang -mllvm -bcf -mllvm -boguscf-loop=3 PBP.c
$ a.out 10000022
14195494
$ clang -mllvm -bcf -mllvm -boguscf-loop=3 PBP.c
$ a.out 10000022
10000022

$ clang PBP.c
$ a.out 10000022
14195494
$ clang PBP.c
$ a.out 10000022
14195494
$ clang PBP.c
$ a.out 10000022
14195494

1 #include <stdio.h>
2 int j = 1908;
3 int k = 1662;
4 int m = 1734;
5 int n = 468;
6 int p = 1046;
7 int q = 613;

1 #include <stdio.h>
2 int j = (0x1cc8+2138-0x1dae);
3 int k = (0x734+890-0x430);
4 int m = (0x9e7+132-0x3a5);
5 int n = (0x11e1+3746-0x1eaf);
6 int p = 1046;
7 int q = (0x30b+5768-0x172e);

1 #include <stdio.h>
2 int j = (0x1e12+3135-0x22dd);
3 int k = (0xcb8+260-0x73e);
4 int m = (0x1da8+1116-0x1b3e);
5 int n = (0x239b+1251-0x26aa);
6 int p = (0x90f+4654-0x1727);
7 int q = (0x6d1+6323-0x1d1f);

Fig. 2: Obfuscator-LLVM (version 3.4) command line.

((int)((i > (long)j + 116) - 116))”: In the
C language, the expression (i > (long)j + 116) is
evaluated to either true (“1”) or false (“0”). Therefore,
the expression ((i > (long)j + 116) - 116) is
evaluated to either “−115” or “−116,” both of which are
non-zero and hence mean true. This means that the if
statement of O(P1) will always take the true branch, and
the false branch is unreachable. This program is therefore
not equivalent to P1. Similarly, the false branch of O(P2) is
also unreachable. When testing against MR1.1, C(O(P1))
and C(O(P2)) are run on the same input (e.g., i = j =
1000). After the if statement, C(O(P1)) sets i to i − 10
(e.g., 990), but C(O(P2)) sets it to i + 10 (e.g., 1010), thus
generating different outputs. A bug in the obfuscator was
therefore revealed.

One may argue that the bug could also be detected
without MT, by compiling P1 into C(P1), running C(P1)
and C(O(P1)) on the same input, and then comparing
their outputs. It should be noted, however, that this
conventional testing method can detect a failure only
when the if statement of P1 takes the false branch (that
is, only when the initial value of i is less than or equal
to the initial value of j). In contrast, MT guarantees the
detection of the bug, regardless of the initial values of
i and j, and therefore appears superior to conventional
testing methods, again emphasizing that testing should be
conducted from diverse perspectives.
(2) MR1.2: A failure of Cobfusc (in the package cutils
version 1.6) was detected by MR1.2 as follows. A source
test case P1 included the following statement:
int k = 20; //Rz5Wq3OCvuqsA30uaEY0Evc95AIn

We then recursively called the obfuscator, Cobfusc, to
construct P2 as O(O(P1)). O(P1) and O(P2) were expected
to be equivalent but, to our surprise, O(P2) could not
pass the compiler because it included the following two
lines of code (with a syntactically incorrect second line):
int k = ((5*(1*1+0)+2)*((2*(1*1+0)+0)*(1*(1*1+0)+0)+0)+(3*(2*1+0)+0)); //
Rz5Wq3OCvuqsA30uaEY0Evc95AIn

The obfuscator had incorrectly moved the comment
“Rz5Wq3OCvuqsA30uaEY0Evc95AIn” from its original
line, into a separate new line without the “//”, causing a
compiler error. A bug in Cobfusc was therefore detected.

(3) MR2: MR2 states that when an obfuscator is run
at different times for the same program, the output
programs should be equivalent. Figure 2 (left), line 1,
shows a source program PBP.c compiled by Clang — the
command line parameters enabled the use of Obfuscator-
LLVM. The compiled obfuscated executable program
(a.out) was run in line 2 with an input of 10000022,

Fig. 3: Stunnix inconsistency (CXX-Obfus version 4.2).

producing the output 10000022 (line 3). Lines 4, 5, and
6 repeat the above obfuscation-compilation-execution
procedure, but this time producing different output
(14195494). Lines 7, 8, and 9 repeat the procedure once
more, producing the output 10000022. It can be concluded,
therefore, that the three obfuscated executable programs
are not equivalent.

The issue was caused by the following statements in
PBP.c: int i; int j; i=atoi(argv[1]); i=i+j;
printf(”%d\n”,i); In this piece of code, i is ini
tialized with the input value (10000022 in the above
executions) and then updated by the statement “i=i+j;”
— here, j is used without initialization and, therefore,
the value of i after this statement cannot be predicted.
This value of i is printed by the last printf statement.
Figure 2 (left) does not indicate whether the output
10000022 or 14195494 is wrong, but instead shows that
the executable programs generated for the same input
program are not behaviorally equivalent. To further
investigate this issue, the same PBP.c program was
again compiled using Clang, but without enabling the
obfuscation function, as shown in Figure 2 (right). It
was observed that the compiled executable programs
(a.out) consistently produced the same output (14195494),
regardless of the number of times the compiler was run.

In summary, Clang generated behaviorally equivalent
binary code (a.out) whenever it was compiled using PBP.c
with obfuscation disabled (Figure 2 (right)), but this was
not the case when obfuscation was enabled (Figure 2 (left)).
(4) MR3: MR3 involves checking that obfuscated source
files based on the same input source file are consistent.
Figure 3 (left) shows an excerpt of source code before
obfuscation. We ran Stunnix twice on this source code
to generate two obfuscated output files, excerpts of
which are shown in Figure 3 (middle) and (right). A
comparison of these two output files reveals the following
inconsistency: Line 6 of Figure 3 (middle) is the same
as the original code, but line 6 of Figure 3 (right) is
obfuscated. Although the obfuscation rules of Stunnix
are unknown, this inconsistent behavior is undesirable: If
a source statement is obfuscated in one run, it should also
be obfuscated in other runs, allowing any confidential
information to always be protected. An issue with Stunnix
was thus revealed by MR3.

3.5 Summary
Obfuscators are important tools to help protect con

fidential software elements. As reported by Velez [14],
however, it is difficult to find obfuscator bugs, even with

5

Fig. 4: MT detected an Internet banking login failure
(https://www.nab.com.au) using an Acer Chromebook
(model no. Q1VZC). Left: Normal with local guest
account. Right: Failure with any non-guest local account.

advanced compiler testing techniques. In this section, we
reported on obfuscator testing using MT. We identified
a small number of quite diverse MRs and, with a small
set of test cases, tested four well-known, real-world
obfuscators, detecting issues in every one of them. This
study is further evidence supporting our argument that
testing should be conducted from diverse perspectives.

4 DETECTING WEB FAILURES USING MT

We applied MT to test the Internet banking
login page of the National Australia Bank (NAB,
https://www.nab.com.au), looking for compatibility
issues between the website and the client side. From
the perspective of a website user (not developer), we
designed a simple MR: When different users log into a
(local) computer using different user names, they should
always be able to follow the same steps to navigate to
the website and click on the Internet banking “Login”
button. In other words, changing of user names on a
local computer should not affect access to the Internet
banking, as long as all the user accounts’ local settings
are standard. During testing, screenshots of different
user sessions were also automatically captured and
compared to identify potential issues in the website
GUI (readers interested in Web testing using screenshot
comparison are referred to Selay et al. [15]).

Figure 4 shows an Internet banking login failure,
automatically detected by our test driver. The left part
of the figure corresponds to where a tester logged into
the local computer (an Acer Chromebook with standard
settings) using the default “guest” account: The user
successfully opened the NAB website using the Chrome
browser, and successfully clicked on the red “Login”
button. The right part of Figure 4 shows what happened
when the tester logged into the same computer with a
different user name, using the same browser to open
the same website (the environment settings were all
standard): The website GUI was not displayed correctly,
and neither the red “Login” button, nor the grey “Login”
link could be clicked.

Although developers might argue that this is not a
verification bug (because the website was not designed
to support this platform and configuration), it is obviously
a validation problem from the user’s perspective.

4. Heartbeat Request and Response Messages

 The Heartbeat protocol messages consist of their type and an

 arbitrary payload and padding.

 struct {

 HeartbeatMessageType type;

 uint16 payload_length;

 opaque payload[HeartbeatMessage.payload_length];

 opaque padding[padding_length];

 } HeartbeatMessage;

Fig. 5: Excerpt from Section 4 of RFC 6520 (available:
http://tools.ietf.org/html/rfc6520).

5 MT FOR NEGATIVE TESTING

This section discusses how the new perspectives from
MT can be used to guide negative testing.

5.1 Heartbleed: A “Pattern” of Mistakes
The Heartbleed bug is probably the most widely

known cybersecurity breach in recent years [1]. The
bug was in the OpenSSL implementation of the
Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS) Heartbeat Extension (specified
in RFC 6520). As shown in Figure 5, a Heartbeat
protocol message consists of type, payload, padding,
and payload_length, with the statement “opaque
payload[HeartbeatMessage.payload_length];”
meaning that the length of payload must be
payload_length. When implementing this, the
programmer assumed that the relationship between
payload and payload_length would always hold
true and, therefore did not include any bounds checking
code. Furthermore, although the implementation was
reviewed by a core OpenSSL developer, the reviewer
had the same wrong assumption and did not find the
bug. In other words, the bug is a result of a common
type of mistake: overlooking the possibility of some
parameters taking a value outside the expected range.

5.2 MT Can Alleviate the Problem
The Heartbleed bug cannot be detected by simple

fuzzing because it only produces incorrect output, and
does not crash the system. It is therefore necessary
to incorporate multiple tools or techniques to increase
fault detection capability [1]. Compared with most other
testing and analysis methods, MT has a different per
spective: It considers the relationship among multiple ex
ecutions of the PUT. Consider the HeartbeatMessage
shown in Figure 5. To conduct MT, the tester will ask
the question: “What if I change some of the param
eter values?” More specifically, consider a source test
case t = (type1, length1, payload1, padding), where type ,1 1
length , payload , and padding represent concrete values 1 1 1
of the parameters. To identify an MR, the tester will ask
the following questions:

1. “What if I change type to a different value?” 1
2. “What if I change length to a different value?” 1
3. “What if I change payload to a different value?” 1
4. “What if I change padding to a different value?” 1

http://tools.ietf.org/html/rfc6520
https://www.nab.com.au
https://www.nab.com.au

6

5. “What if I change two or more parameters?”
Asking these questions will lead the tester to think be

yond the “normal” range of values or value combinations
of the parameters. In other words, MT can lead the tester
to think about negative testing. In this example, as soon
as question 2 is asked, the tester will immediately realize
that payload_length may not equal the actual length
of payload, and hence may construct a follow-up test

' case t by increasing the value of length while keeping 1
the other parameters unchanged. The MR will require
that the program’s outputs for t and t ' be different (as
per RFC 6520): It should return a normal message for
t, but “silently” discard t '. When the faulty program is
tested against this MR, a failure will be revealed.

It should be noted that, in the above example, there
is indeed an oracle (that is, the RFC 6520), but MT still
has the advantage of leading to negative testing. The
Heartbleed bug could also be detected by using a fuzzer
in conjunction with some dynamic analysis tools — tools
which perform run-time monitoring for predefined types
of memory errors [1]. Compared with dynamic analysis,
MT is not limited to predefined error patterns — it can
detect both system crashes (in which case the MRs are
violated) and other types of errors.

As Zhou et al. have shown [7], MT can be combined
with fuzzing: When testing Microsoft Live Search, a
random string “GLIF” was issued, for which the search
engine returned 11, 783 results. Owing to the sheer
volume of data on the Internet, it was difficult to assess
the correctness of the results. Nevertheless, by referring
to an MR, a follow-up test case “GLIF OR 5Y4W” was
generated (where OR is the Boolean operator, not a
search term), and the search engine returned zero results.
This was obviously a failure — the number of Web
pages containing either the string “GLIF” or the string
“5Y4W” should be no less than 11, 783. When generating
this incorrect result, the search engine did not crash.
The failure, therefore, could not be detected by fuzzing
or dynamic analysis (or a combination of the two).
Nevertheless, MT detected the failure by comparing the
outputs of multiple executions.

6	 CONCLUSION AND FUTURE WORK
In this article, we have shown that MT can help to

achieve negative testing as well as to alleviate the oracle
problem when testing security-related functionality and
behavior. We have shown that MT successfully revealed
real-life bugs not previously detected by other testing
methods. This is not only because MT can be performed
in the absence of an oracle, but also because it is based
on a perspective not previously used by conventional
testing techniques. As recently emphasized by Chen et
al. [10], this is not to say that MT is necessarily better
than the other testing methods, but rather that testing
should be conducted from diverse perspectives, because
programmers can make various kinds of mistakes.

A future research direction is to study how to use
MRs to perform automatic validation to detect security

issues that concern users, and how users can specify their
security requirements using MRs. One of the greatest
advantages of using MRs is that, once identified, the
testing can be fully automated.

Further research is also needed to develop new test
quality and adequacy criteria involving MRs, in the
context of security testing. Such criteria will be com
plementary to the existing ones. We anticipate that the
concept of diversity will be an underlying principle, from
the selection of testing and analysis methods to test
case generation strategies, through to result verification
approaches, and to quality standards, and more.

REFERENCES
[1]	 A. Vassilev and C. Celi, “Avoiding cyberspace catastrophes through

smarter testing,” Computer, pp. 102–106, Oct. 2014.
[2]	 E.T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The

oracle problem in software testing: A survey,” IEEE Trans. Software
Eng., vol. 41, no. 5, pp. 507–525, 2015.

[3]	 C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov,
“Using frankencerts for automated adversarial testing of certificate
validation in SSL/TLS implementations,” Proc. IEEE Symposium
on Security and Privacy, 2014, pp. 114–129.

[4]	 V. Okun and E. Fong, “Fuzz testing for software assurance,”
CrossTalk – The Journal of Defense Software Engineering, vol. 28,
no. 2, pp. 35–37, 2015.

[5]	 T.Y. Chen, T.H. Tse, and Z.Q. Zhou, “Semi-proving: An integrated
method for program proving, testing, and debugging,” IEEE Trans.
Software Eng., vol. 37, no. 1, pp. 109–125, 2011.

[6]	 T.Y. Chen, T.H. Tse, and Z. Zhou, “Fault-based testing in the
absence of an oracle,” Proc. 25th Annual International Computer
Software and Applications Conference (COMPSAC’01), 2001, pp. 172–
178, IEEE Computer Society Press.

[7]	 Z.Q. Zhou, S. Zhang, M. Hagenbuchner, T.H. Tse, F.-C. Kuo, and
T.Y. Chen, “Automated functional testing of online search services,”
Software Testing, Verification and Reliability, vol. 22, no. 4, pp. 221–
243, 2012.

[8]	 H. Liu, F.-C. Kuo, D. Towey, and T.Y. Chen, “How effectively does
metamorphic testing alleviate the oracle problem?” IEEE Trans.
Software Eng., vol. 40, no. 1, pp. 4–22, 2014.

[9]	 Z.Q. Zhou, S. Xiang, and T.Y. Chen, “Metamorphic testing for
software quality assessment: A study of search engines,” IEEE
Trans. Software Eng., to appear.

[10]	 T.Y. Chen, F.-C. Kuo, D. Towey, and Z.Q. Zhou, “A revisit of three
studies related to random testing,” SCIENCE CHINA Information
Sciences, vol. 58, pp. 052 104:1–052 104:9, 2015.

[11]	 M. Lindvall, D. Ganesan, R. Árdal, and R.E. Wiegand,
“Metamorphic model-based testing applied on NASA DAT – an
experience report,” Proc. 37th International Conference on Software
Engineering (ICSE’15), 2015, pp. 129–138.

[12]	 V. Le, M. Afshari, and Z. Su, “Compiler validation via
equivalence modulo inputs,” Proc. 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’14), 2014,
pp. 216–226.

[13]	 J. Regehr, “Finding compiler bugs by removing dead code,” http:
//blog.regehr.org/archives/1161, June 20, 2014.

[14]	 M. Velez, “Finding and understanding bugs in obfusca
tors,” https://bitbucket.org/martinvelez/obfuscator_bugs_paper/
downloads, 2013, University of California, Davis.

[15]	 E. Selay, Z.Q. Zhou, and J. Zou, “Adaptive random testing for
image comparison in regression web testing,” Proc. International
Conference on Digital Image Computing: Techniques and Applications
(DICTA’14), 2014.

https://bitbucket.org/martinvelez/obfuscator_bugs_paper

