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Abstract. Data analytics is proving to be very useful for achieving productivity 

gains in manufacturing. Predictive analytics (using advanced machine learning) 

is particularly valuable in manufacturing, as it leads to production improvement 

with respect to the cost, quantity, quality and sustainability of manufactured prod-

ucts by anticipating changes to the manufacturing system states. Many small and 

medium manufacturers do not have the infrastructure, technical capability or fi-

nancial means to take advantage of predictive analytics. A domain-specific lan-

guage and framework for performing predictive analytics for manufacturing and 

production frameworks can counter this deficiency. In this paper, we survey some 

of the applications of predictive analytics in manufacturing and we discuss the 

challenges that need to be addressed. Then, we propose a core set of abstractions 

and a domain-specific framework for applying predictive analytics on manufac-

turing applications. Such a framework will allow manufacturers to take ad-

vantage of predictive analytics to improve their production. 

Keywords: domain-specific modeling, predictive analytics, machine learning, 

manufacturing  

1 Introduction 

Manufacturers today face the unique challenge of improving productivity in industries 

that are already quite efficient [1]. They look to achieve productivity gains by improv-

ing efficiency in design and production, but are pushed to squeeze more and more out 

of already streamlined processes. One method that promises to deliver significant 

productivity gains is the application of data analytics. Manufacturing is one of the larg-

est data generators today [2]. The use of data analytics in manufacturing has steadily 

increased over the past several years [3]; however, we are still far away from taking full 

advantage of manufacturing data.  

Predictive analytics uses statistical techniques, machine learning, and data mining to 

discover facts in order to make predictions about unknown future events. Some of the 

applications of predictive analytics for manufacturing data include fault detection and 

failure prediction, forecasting product demand, cost modeling for product pricing, an-

alytics for predicting warranty and product maintenance, etc. Many small and medium 

manufacturing enterprises lack the infrastructure and technical know-how to collect, 

store, process, and analyze their data, and translate them to productivity gains. 



In this paper, we propose a domain-specific modeling framework for predictive an-

alytics of manufacturing data. Our goal for this framework is to integrate the tools and 

techniques for predictive analytics and data visualization with a domain-specific mod-

eling environment that makes problem specification easier for manufacturing domain 

experts. We first provide a survey of some of the applications of predictive analytics in 

manufacturing. We then describe the framework, which includes a domain-specific 

modeling environment and a set of data analytics and visualization components. The 

goal of this framework is to make powerful analytics and prediction methods more ac-

cessible to manufacturing domain experts. We also present some initial thoughts on the 

core concepts for a meta-model that the domain-specific modeling environment could 

instantiate.  

The paper is organized as follows: Section 2 provides some background material on 

predictive analytics methods; Section 3 presents some of the applications of predictive 

analytics techniques in manufacturing; Section 4 discusses our proposed domain-spe-

cific framework for performing predictive analytics for manufacturing applications; 

Section 5 provides some of the core concepts that must be included in the meta-model 

that defines a domain-specific language for specifying manufacturing application prob-

lems for predictive analytics; Section 7 discusses some of the related work; and finally, 

Section 8 provides a summary and  concluding remarks. 

2 Background 

In this section, we introduce important techniques involved in predictive analytics.  

Data mining [4] is the process of discovering patterns in large data sets. Data mining is 

a combination of various techniques from machine learning, artificial intelligence and 

statistics. The process is usually divided into three steps: pre-processing, discovery and 

validation. Pre-processing is used to clean the data by removing noise or resolving 

missing data. The discovery step involves structuring the data using various techniques. 

In this step, the relationships between the data are studied to classify the data, summa-

rize them, and provide a more compact structure. Finally the validation step uses new 

data sets to verify that the structure is compliant with all potential data sets. 

Machine learning is a branch of artificial intelligence. It involves building systems 

that can learn from data to make inferences and predictions about the future. There are 

two main classifications of machine learning algorithms: supervised learning algo-

rithms and unsupervised learning algorithms. In supervised learning, the training sets 

are composed of known input data and response values. The training sets feed the ma-

chine learning system that tries to generalize the function involved in mapping new data 

sets. In unsupervised learning, the output is unknown and the objective is to discover a 

classification for the data. Machine learning involves various approaches such as 

Bayesian networks and artificial neural networks. Each approach has its advantages and 

disadvantages in terms of accuracy and speed. An important concept in machine learn-

ing is the cost function, a function indicating the penalty for an incorrect prediction. 

Machine learning involves optimizing the cost function over the input data in order to 

determine the model coefficients.  



An artificial neural network (ANN) [5] is a machine learning approach that mimics 

the functioning of a nervous system. It is usually represented as a network of nodes 

called “neurons”. A weight is assigned to the connections between the neurons to rep-

resent the strength of a connection when the neurons are activated. A neural network is 

composed of several layers or neurons. The number of layers depends on the best fit 

for a model of the problem studied. When the neural network is fed with data, propa-

gation algorithms (backward or forward) run to update the connection strength and 

minimize the cost function. ANNs are used for solving problems that are not easily 

solved by classical logic programming. They are mainly used in speech recognition or 

object recognition. 

A Bayesian network (BN) [6] is a graphical representation of a joint probability dis-

tribution over a set of variables. It is a directed acyclic graph where nodes are the vari-

ables involved in the problem and edges represent the conditional dependencies be-

tween the variables. A probabilistic table is assigned to each node. This table represents 

the conditional probability of the variable represented by the node for each combination 

of its parent nodes. Bayesian networks may be constructed by learning from data sets, 

or by modeling expert domain knowledge. Once the network has been constructed, the 

probability value of a node can be set to one if the corresponding fact is observed in the 

scenario. Then, computations on the network will update the probability values of the 

other nodes depending on the new known fact. 

There are other approaches involved in machine learning such as Support Vector 

Machine [7], linear regression, etc. 

3 Applications of Predictive Analytics in Manufacturing 

In this section, we survey a number of articles in the literature about the application of 

predictive analytics in manufacturing. We have grouped them into the major problem 

areas within manufacturing where predictive analytics may be applied. The goal of this 

section is to illustrate the usefulness of these methods, and to highlight the effort in-

volved in developing dedicated solutions to specific problems in the domain. In Section 

4, we will discuss the idea of generalizing these methods in order to apply them to a 

wider range of manufacturing related problems. 

3.1 Applications in Manufacturing System Control 

Predictive analytics techniques have been applied to improve manufacturing system 

control. Several techniques can be applied such as statistical techniques or machine 

learning techniques to better regulate the manufacturing system by controlling current 

and future states of the system. In [8], Bayesian networks have been used to identify 

the major process variables that have an impact on the rolling process and lead to de-

fects. Rolling is a deformation process that reduces the thickness or changes the cross-

section of a long work piece. The authors studied seam defects, which are cracks 

aligned parallel to the metal surface. They identified twelve process variables involved 

in this defect and built a causal network that establishes the relationships between these 



variables. Finally they identified the variables that are likely to cause the defect, by 

training the causal network with records collected from 100 000 rolled bars. The study 

suggests that monitoring these variables carefully can increase the efficiency of the 

system. 

Other investigations on process control have been done, such as [9] where the au-

thors have developed a tool to run diagnosis and prognosis against source terms (the 

amount of radio-active material released in an accident) in nuclear power plants. The 

tool uses the NETICA [10] application. NETICA is a software application that enables 

users to build Bayesian networks, to assign the probabilities associated with the varia-

bles, and run algorithms for performing Bayesian inference. 

3.2 Applications in Manufacturing Quality Control 

Predictive techniques have also been used to address challenges in product quality. In 

[11], a Bayesian network approach has been developed to predict and avoid defects in 

castings called “micro-shrinkage” or “secondary contraction”. Micro-shrinkage is a re-

sult of tiny pores that develop as the casting cools. The predictive technique is com-

posed of five steps. First, relevant variables are identified and divided into those that 

are metal-related and those that are mold-related. Metal-related variables are subdi-

vided into composition variables, nucleation potential and melt quality variables, and 

pouring variables. Mold-related variables are subdivided into sand variables and mold-

ing variables. In addition, the authors add several variables to control the dimension 

and the geometry of the casting and the configuration of the machines as well. In total, 

about fifty variables are defined. Next, the model is trained with data collected over a 

year. Once these two steps have been done, the authors start their third step, which 

involves structural learning to refine their model. An algorithm called PC-Algorithm 

described in [12] is used to discover the causal structure. Some other algorithms to 

discover causal structure are also described in [12]. The fourth step consists in para-

metrical learning that leads to recalculating the probability based on new data and the 

structure defined from the third step. At this stage, 60 % of the variables can be elimi-

nated without reducing the network accuracy. Finally, the inference capability of the 

Bayesian network helps to calculate the values of the variables. In addition to the Bayes-

ian network, the authors developed a module that records the different variables’ values 

to trace the impact of each value on the appearance of micro-shrinkage. Related works 

on predicting defects for quality control in manufacturing have been done such as pre-

dicting ferrite number in austenitic stainless steel welds with Bayesian Neural Net-

works1 [13] or predicting surface roughness using regression and neural networks [14]. 

In [15], the authors introduce an automated data mining system for quality control. 

Knowledge discovery in database (KDD) techniques are used to extract characteristics 

of a production process that are not directly accessible by reading the data. The KDD 

process is composed of two steps called “discovery” and “verification”. The data min-

ing system is created to automatically execute the two KDD steps and to allow users to 

                                                           
1  Bayesian Neural Network applies artificial neural network techniques in a Bayesian frame-

work 



find the cause of production process problems. First, a preprocessing step transforms 

the data and categorizes them. Then to discover the data and extract the rules that rep-

resent the relationships between the data, the authors run an algorithm called CHRIS 

[16]. This algorithm extracts rules in the form of “if A then B”. The algorithm looks for 

the feature A that is the most present in the instance that populates B. This first step is 

executed without human intervention. By using a process of rules ranking, the authors 

are able to quickly find the cause of a production problem that has been recorded pre-

viously in the factory. The data mining system extracts the rules related to the fault and 

these rules get a higher rank close to the time that the fault occurred.  

3.3 Applications in Manufacturing in Fault Diagnosis 

Identifying faults early and preventing faults from happening can provide significant 

savings for manufacturing enterprises. Predictive techniques have been used for fault 

diagnosis in manufacturing applications. In [17], the authors present a system called 

“Wisdom”. This system has been developed to enhance fault diagnosis on a Base Trans-

ceiver Station (BTS) in a Motorola factory. The system makes a probabilistic diagnosis 

of the cause of failure and suggests remedies. The authors use a Bayesian network and 

identify the variables involved in the system such as the state of a cable used to run a 

fan test or whether the hardware is in service. The fan test is a test to ensure the alarm 

monitor will generate a correct message under normal working conditions. They con-

duct interviews in the factory to extract expert knowledge from factory employees. 

Based on these interviews, they define the procedure of the fan test that is the subject 

of the diagnosis in their example. Each step of the procedure is a node in the Bayesian 

network. Probabilities of failure are assigned to each node depending on the collected 

data in the factory and the previous fault diagnoses. The authors use the inference ca-

pabilities to infer the probability of each node when a failure occurs. The system also 

provides a visualization of the results by using an intelligent user interface (IUI). When 

a test fails, the IUI loads the Bayesian network built from the collected data and looks 

for the node with the highest probability of failure. Based on these results, the IUI dis-

plays advice to fix the problem.  The Wisdom system runs tests on fans, and on test 

equipment, system, module, interconnection, test cable, antenna matrix, transceiver, 

alarm module, software, test solution and power supply. If a test fails, the system sug-

gests advice until the test passes. Once the test passes, the system starts testing the next 

fault type. Results show that the system decreases the time to correct the fault, espe-

cially complex faults. 

In [18], the authors develop a system based on artificial neural networks for fault 

diagnosis of power transformers. The transformer station under study is composed of 

two sides (primary and secondary) that can lead to a fault. The system is designed to 

detect faults, estimating the faulty side, classifying the fault type and identifying the 

faulted phase. The system consists of three hierarchical levels. The first level is a pre-

processing level to clean the data. The second level is an ANN to detect the faulted side. 

The third level is composed of two parallel side diagnosis systems (SDS). Each SDS is 

assigned to a side and is used to detect the fault type and the faulted phase. Each SDS 

is composed of one ANN in series with four ANNs in parallel. Each ANN has a specific 



task to do to identify the fault type or the faulted phase. First, the system cleans the data 

in its first level. Once it is done, the ANN at the second level defines whether the situ-

ation is normal, failed on the primary side, or failed on the secondary side. To do so, 

the ANN has three levels of output that are low for the normal situation, medium for a 

fault on the secondary side, and high for a fault on the primary side. In the case of fault 

detection, the third level and the SDS in charge of the faulted side runs the evaluation 

to define the fault type and the faulted phase. The first ANN of the SDS is in charge of 

the fault type, and the four parallel ANNs are in charge of finding the faulted phase. 

This system does not work on real time data. To train their ANNs and define the ANNs 

structure, they use generated data from the electromagnetic transient program (EMTP). 

Based on case studies that the authors define, they build their ANNs structure with a 

number of nodes defined using a training set and observing the results for different 

structures. They keep the structure that works with the best results for the training sets 

that they submit to the ANNs. This work is developed in MATLAB using its Neural 

Network Toolbox [19] to design the ANNs. Observed results prove that the system is 

fast and quite accurate. 

3.4 Applications in Manufacturing Maintenance 

Maintenance is a critical area for manufacturing enterprises. Enterprises can take ad-

vantage of predictive modeling to plan for maintenance and achieve significant cost 

savings during maintenance. In [20], the authors define a Bayesian network to predict 

machine maintenance needs. The equipment has two condition monitoring values 

called CM1 and CM2, and can have six different states (good, wear 1, wear 2, wear 3, 

failure mode 1 and failure mode 2) which represent the “True Condition” of the equip-

ment. CM1 gives the True Condition while CM2 gives an indication of the machine 

vibration, which can be low, medium, or high. The load of the machine leads to a 

change of the “True Condition” of the machine. This change depends on the current 

“True Condition” and on whether the load is normal or abnormal. The authors define a 

Bayesian network to model the machine condition and the transition probabilities of the 

condition modification. To simulate the machine states, they use a software called Ge-

NIe [21] that enables them to construct a dynamic Bayesian network (DBN) [22], which 

consists of multiple copies over time of a static Bayesian network (the DBN expands 

the Bayesian network to reflect temporal changes to system variables). They implement 

two different scenarios. In the first one, the machine does not get any maintenance. 

They observe that the probability that the machine is in failure condition increases 

quickly and goes above 0.5 after 277 iterations. In the second scenario, they permit 

maintenance based on the two indicators CM1 and CM2. Maintenance can be reset that 

makes the machine return to its previous wear state, or maintenance can be replace that 

makes the machine return to good condition. A policy is defined for the maintenance. 

As an example, if CM1 is “Good” or “Wear 1” and CM2 reports “High Vibration”, then 

the equipment is “Reset”. They observe that the system maintains a steady state where 

the probabilities of being in failed state are very low. Future work could lead to model-

ing the maintenance as the decision taken depending on the probability of the other 

characteristics involved in the Bayesian network.  



Artificial Neural Networks have also been applied on manufacturing maintenance, 

as in [23]. The authors develop a system to support predictive maintenance of rotating 

equipment. The system is composed of three components: a degradation database, an 

artificial neural network model, and cost matrix and probabilistic replacement model. 

The objective of this system is to optimize the expected cost of the maintenance per 

unit time. The degradation database is built from collected data during tests from the 

point of installation until bearing failure (bearing failure is considered as a machine 

failure in this study). They observe two phases in the degradation data. Phase I repre-

sents operation with no defect. Phase II represents operations with defects that lead to 

failure state at a failure time. The authors divide their database into two parts:  training 

set and data set. An ANN is modeled to predict the life percentage of each bearing. To 

train their ANN, they use the training set part of their database. Next, they validate the 

model by using the validation data set part of their database. Based on the ANN and the 

real-time data collected from monitoring thirteen bearings, the authors develop a resid-

ual life distribution. The last component is the cost matrix, developed by using the re-

sidual life distribution and defining two types of cost. The first type of cost is the cor-

rective maintenance cost after a failure occurs. The second type of cost is the planned 

replacement cost before failure. Based on this matrix and the data from monitoring, the 

system can suggest the machine maintenance with the minimum cost.  If the value of 

planned replacement is too high compared to the cost of the corrective maintenance, 

the strategy would be to wait for failure. Alternatively, support vector machine (SVM) 

can also help in this area as shown in [24]. In this work, the authors develop an intelli-

gent tool breakage detection system to recognize process abnormalities during a man-

ufacturing process, specifically in a milling process. The system can initiate corrections 

on the process to fix the detected problem. 

4 Predictive Analytics Framework for Manufacturing 

In the previous section, we surveyed a number of papers on the use of machine learning 

and predictive analytics for manufacturing applications. Each of these applications has 

been addressed with a point solution, with specific models built using specific tools. 

We believe that the underlying techniques are very powerful, and are very valuable if 

they can be generalized to be applicable to a wide range of manufacturing related prob-

lems. In this section, we propose an idea for a framework towards achieving this gen-

eralization. Our vision for this framework is illustrated in Fig. 1. The intended func-

tions, requirements, and interrelationships of the components of this framework are de-

scribed below. 



 

Fig. 1. Overview of the domain-specific framework for predictive analytics in manufacturing 

4.1 Domain-Specific Modeling Environment 

The goal of this framework is to make it easier for manufacturing domain experts to 

build models and run diagnostic and predictive analytics. With the framework, these 

tasks should not require extensive knowledge of machine learning techniques. We be-

lieve that this can be addressed through an intuitive interface that allows manufacturers 

to specify their production systems, and automatically generate the necessary analytical 

models from the system specification. This interface is the central module of our frame-

work, the Domain-Specific Modeling Environment (DSME). It should provide tools to 

model problems that the framework users want to solve. An intuitive graphical domain-

specific language (DSL) should be available to allow users to easily design manufac-

turing system specifications. The DSL should allow users to instantiate concepts from 

the meta-models or reuse existing models from existing libraries. From this system de-

scription, it must be possible to automatically generate the predictive models and exe-

cute algorithms necessary to make predictions. The components of the domain-specific 

language must be easy to understand and to use by manufacturing domain experts.  



4.2 Meta-Model Repository 

The meta-model repository consists of meta-models that define the various concepts 

that will be used to specify various aspects of the manufacturing analytics problem. 

This will include abstractions to represent various manufacturing scenarios such as ma-

chine and process abstractions. Abstractions for failures, maintenance states, or any 

characteristics that the users would like to predict also need to be represented. The meta-

model must also incorporate abstractions to represent the data formats and operations 

that the framework must support. These abstractions will be discussed in Section 5. 

4.3 Data Collection Module 

The data collection module contains the tools needed to collect and pre-process data for 

performing predictive analytics. As we have observed during our survey, data in man-

ufacturing can come from many different sources and have differing formats. This data 

can be archived data collected from previous operations, simulated data (if the real data 

are not available), or real time data collected from machine monitoring. The data mod-

ule should be able to collect the data from a wide variety of sources and formats. More-

over the data can be collected from a data stream and the module must support the tools 

needed to handle data flows of high volume and velocity. Data collected from sensors 

in manufacturing operations are generally structured data. However, their structure is 

not always usable for processing with the available technologies. The data collection 

module must be able to understand different data formats, such as MTConnect [25], to 

pre-process and transform the data into a workable form, to make it understandable by 

the other modules.   

4.4 Diagnostic and Predictive Model Generation Module 

The most important functionality provided by this framework is the automatic genera-

tion of a predictive analytics model from the system specification created using the 

DSME. The diagnostic and predictive model to be defined depends on the variables 

that the user wants to observe and predict, and the characteristics of the systems being 

defined. Manufacturers should be able to define their objectives by using abstractions 

of the meta-model. The meta-model must also provide abstractions for analytical mod-

els to support automatic generation of the predictive model from the system specifica-

tion. Standards such as Predictive Model Markup Language [26] could help to achieve 

this. In addition, data are needed to make the model accurate through training and val-

idation. There must be a communication between the diagnostic and predictive model 

generation module and the data collection module to support training and validation. 

4.5 Data Visualization Module 

The data visualization module will enable framework users to understand the results of 

the study. The visualization module needs to display the collected data and the infor-

mation inferred from the data. The visualization module must closely interact with the 



DSME to provide the appropriate data visualization for corresponding elements in the 

system specification model. In addition, users need to understand trends and other in-

formation that they cannot extract by reading the data. The visualization module will 

need to transform the results from the diagnostic and predictive model generation mod-

ule into understandable information for the system users. This could be done by defin-

ing rules to classify the results of the diagnostic and predictive model, for example by 

using color codes to describe different fault criticality levels. 

5 Building a Meta-model for Manufacturing Analytics 

Building a meta-model to provide the high-level abstract concepts that will encompass 

the wide range of objects involved in manufacturing systems is a challenge. To simplify 

the problem in the manufacturing context, we discuss the concepts by dividing them 

into three main categories: objects, flows and metrics. Objects represent the machines 

or mechanical processes involved in the system. Flows are the resources that are going 

through the systems such as energy or material. Metrics are the data and indicators that 

allow manufacturers to evaluate their systems. The meta-models need to abstract these 

different concepts while managing the information that they represent. 

5.1 Objects  

One of the main components of a discrete manufacturing system is the machine tool. In 

our meta-model, the machine tool needs to be represented in a way that allows users to 

model the machine, to interconnect several machines, and to model the parameters of 

the machine. In addition, many machine tools can run a variety of different processes. 

Classifications such as [27] show that classification will differ based on the criteria used 

to classify. The meta-model must allow handling the different characteristics and pa-

rameters of a process. The meta-model must provide abstractions to represent processes 

as they appear in the manufacturing scenario, and also as they are represented in the 

predictive model. There must be a mapping between these two aspects of the process, 

to support the generation of predictive models from the system specification. To allow 

predictive modeling for identifying faulty products or evaluating product quality, the 

meta-model must provide abstractions that represent fault characteristics and failures. 

In addition, product characteristics such as design, geometry or feature should also be 

representable. The meta-model must provide relationships to allow the specification of 

any combination of these features as a prediction objective for the predictive model. 

5.2 Flows   

Material, information and energy are the main flows in the manufacturing system. Rep-

resentation of material properties [28] is a crucial aspect of specifying a manufacturing 

system. The meta-model must support the specification and management of a wide 

range of material properties and material interactions. In addition, these properties 

evolve through the manufacturing system. For instance, a material can take different 



shapes depending on the process that uses this material. Energy used by the processes 

or the machines can have many forms. The meta-model must support monitoring the 

energy input to the system, and the energy lost due to heat and waste. The meta-model 

should provide an easy way for users to model and follow the evolution of the materials 

and the energy in the system. 

5.3 Metrics  

By metrics, we refer to the data and indicators associated with machines and manufac-

turing processes that allow manufacturers to evaluate their production systems. Ma-

chine tools are data producers. The kind of data generated depends on the machine and 

the sensors that collect the data, and the data may be collected in differing formats. An 

emerging standard to facilitate the exchange of data between shop floor equipment and 

software applications used for monitoring and data analysis is the MTConnect [29] 

standard. Supervisory systems have been developed for manufacturing systems by us-

ing MTConnect that allow communications through an entire system. The meta-model 

must understand these kinds of data formats. The meta-model must also support other 

abstractions to represent data formats from machines that do not support MTConnect. 

Performance metrics [30, 31] allow manufacturing experts to evaluate their processes 

or their systems. The meta-model must support the representation of these metrics to 

allow the evaluation of the system. Finally, the meta-model must provide abstractions 

to represent the maintenance of the machine in order to enable maintenance planning 

from the predictive model. 

6 Example: Domain-Specific Model for a Production System 

In this section, we will introduce a simple example to highlight the potential capabilities 

of the described domain-specific framework. Let’s suppose that a manufacturer wants 

to model a factory production chain as shown in Fig. 2. The production chain consists 

of a series of machines. Parts and raw materials come in from three different flows 

(starting from the green points on the left) and merge into a fastening machine. In this 

production chain, parts from the die casting machine are distributed into three different 

turning machines running in parallel (the machines may have different performance 

parameters, and therefore different energy use and throughput). A possible requirement 

for the manufacturer would be to optimize energy or time by controlling how the parts 

are distributed among three turning machines. Our goal is to provide a DSME that will 

allow manufacturers to specify systems like these, and perform analyses to predict met-

rics such as energy use and throughput.  

 



 

Fig. 2. Example of a production chain 

In the example, the manufacturer needs to represent the machines that are involved in 

the production plan. A simple example meta-model that could be built by domain ex-

perts is shown in Fig. 3. For this example, we used the Generic Modeling Environment 

tool [32]. In this meta-model, we create the meta-concepts that allow the manufacturer 

to represent the production plan. We modeled concepts to represent the machines de-

scribed in the scenario above. The meta-model could be extended if a manufacturer 

wishes to add a sub-concept for a new type of machine or take advantage of existing 

classification as mentioned in [27]. One of the challenges in the design of a meta-model 

for the domain-specific environment for manufacturing will be leveraging existing clas-

sification schemes in the literature, while managing the large scale of machines and 

processes that need to be defined. In addition to creating meta-concepts, developing a 

meta-model also enables us to define rules for interpreting the models.  



 

Fig. 3. Example meta-model for manufacturing production 

Manufacturers can use the meta-model through the domain-specific environment to 

model the production plan. Libraries that partially instantiate the meta-concepts can be 

defined for the DSME. These libraries would define commonly used objects in the do-

main. Fig. 4 shows an example of a machine library. A production plan designed in the 

DSME is the basis for analysis. For example, we can compute the energy consumed in 

the system from attribute values of the machines and the processes in the model, or 

generate an optimization model for optimizing energy use or throughput. In our exam-

ple, if the manufacturer wants to know how to split the flow between the three turning 

machines to improve throughput, the model must be transformed to a model that an 

optimization software will be able to understand. The optimization software would then 

compute the best way to split the flow to optimize the throughput, and this information 

can be used to reconfigure the model in the DSME. An example of generating an opti-

mization model is in [33], where the authors introduce the Sustainable Process Analyt-

ical Formalism (SPAF) for modeling process component, flow and metrics for sustain-

ability related optimization. SPAF has been applied to a use case of energy optimization 

[34] where SPAF models have been translated to mathematical models that an optimi-

zation software can manage. 



 

 

Fig. 4. Example of machine library 

7 Related work 

Model representations for discrete manufacturing have generally focused on two as-

pects: representing shapes and features of manufactured products, and representing 

manufacturing capabilities of enterprises. In [35], a Core Product Model (CPM) is pre-

sented as an open, generic and extendable product model. CPM captures product infor-

mation using key concepts called Artifact and Feature. The Open Assembly Model [36] 

was developed as an extension to CPM to represent assembly operations. The STEP 

series of standards [37] provide more granular representations to model various aspects 

of manufactured products, especially product geometry and tolerances. [38] presents a 

manufacturing information model to support design for manufacturing in virtual enter-

prises. It uses the EXPRESS language which is also defined in ISO 10303 [37], and 

provides information models to facilitate design for manufacturing. 

Manufacturing capability models are used to represent the manufacturing capability 

of an enterprise. They typically provide concepts to represent manufacturing resources 

such as machine tools, and the types of manufacturing processes supported by the en-

terprise.  In [39], the authors provide a model representation for a flexible manufactur-



ing facility. They present a four-level model to represent the functionality of a manu-

facturing facility, which involves modeling at the factory, shop floor, cell, and station 

level. [40] presents an ontology based manufacturing service capability (MSC) by an-

alyzing several use cases and supplier capability descriptions. MSC models are used to 

model product and process requirements between OEMs (Original Equipment Manu-

facturers) and suppliers. 

Apart from the above models, we also discussed classification systems for manu-

facturing processes and resources in the previous sections. We are not aware of any 

work on generic model representations that relate manufacturing operations to predic-

tive analytical models. With the increased capabilities of data processing and machine 

learning techniques available today, we believe that it is an important area for model 

development. 

8 Summary 

Predictive analytics is a very valuable tool for improving productivity in a wide range 

of manufacturing applications. In this paper, we surveyed a number of uses of predic-

tive analytics for various manufacturing scenarios, to highlight the importance and 

value of these techniques. The papers surveyed generally offer point solutions applying 

specific predictive modeling techniques for specific application scenarios. In this paper, 

we proposed a framework to make predictive analytics techniques available for a ge-

neric range of manufacturing problems. We discussed the main components of the 

framework, and provided some initial thoughts on their development.  We also provided 

some initial thoughts on the meta-model for specifying the DSME.  

This paper only provides an overview and initial thoughts on the structure and capa-

bilities of the predictive analytics framework for manufacturing. Our future work will 

involve a detailed study of the abstractions necessary to specify manufacturing systems 

for the purposes of predictive analytics. We are also studying ways to generate predic-

tive models such as Bayesian networks automatically or semi-automatically from the 

system description models specified in the DSME. We are also investigating tools for 

creating and managing domain-specific models. We believe that this framework will 

eventually have a great impact on the manufacturing industry, as it will make the power 

of predictive analytics available to a larger number of manufacturers, and help them 

achieve greater efficiency in their operations. 

 

Disclaimer 

Certain commercial products may have been identified in this paper. These products 

were used only for demonstration purposes. This use does not imply approval or en-

dorsement by NIST, nor does it imply that these products are necessarily the best for 
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