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ABSTRACT 

Devices in mobile tactical edge networks are often resource 

constrained due to their lightweight and mobile nature, and 

often have limited access to bandwidth. In order to maintain 

situational awareness in the cyber domain, security logs 

from these devices must be transmitted to command and 

control sites. We present a lightweight packing step that 

takes advantage of the restricted semantics and regular 

format of certain kinds of log files to render them 

substantially more amenable to compression with standard 

algorithms (especially Lempel-Ziv variants). We 

demonstrate that we can reduce compressed file sizes to as 

little as 21% of that of the maximally compressed file 

without packing. We can also reduce overall compression 

times up to 64% in our data sets. Our packing step permits 

lossless transmission of larger log files across the same 

network transmission medium, as well as permitting existing 

sets of logs to be transmitted within smaller network 

availability windows. 
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1. INTRODUCTION 
Compression algorithms are typically designed to be general 

purpose; encoding arbitrary binary sequences into more 

compact representations by removing any inherent 

redundancy in the message. As such, they typically do not 

take advantage of specific features of some data formats that 

might enable more efficient compression. In contrast to 

general binary formats, many information technology (IT) 

logs allow for significant syntactic modifications without 

loss of semantics. In this work, we identify lightweight 

lossless syntactical packing that can be applied to security 

logs to make them more amenable to compression. 

We focus on packing that will optimize the Lempel-Ziv 

Markov Chain Algorithm (LZMA); a widely used and 

effective lossless file compression algorithm, which is 

(anecdotally if not formally) known to be highly effective at 

compressing structured data [1]. Some version of the LZ77 

algorithm [2], from which LZMA is derived [1], is used by 

                                                                 

1 Any mention of commercial products or reference to 

commercial organizations is for information only; it does not 

imply recommendation or endorsement by the U.S. government 

default on many Unix and Windows systems and is included 

in many file compression suites [3] [4].  

For our approach to apply, the data must conform to two pre-

requisites often existent within IT logs and database tables. 

The data must be either explicitly tabular, or capable of being 

converted to one or more tabular representations. Also, the 

rows of each table must contain ordering identifiers (e.g., 

time stamps) or be atomic in nature, allowing for reordering 

without loss of semantics. We exploit these properties to 

construct collections of row sorted matrices that are then 

transposed and serialized prior to compression.  While both 

explicit and implicit transposition of matrices has seen 

historical use in the area of statistical databases for both 

compression and speed of access [5] [6], this approach 

appears to have seen limited application to the area of 

general purpose log compression (though see related work, 

below). 

We demonstrate that our general-purpose packing approach 

allows us to reduce maximally compressed file sizes to as 

little as 21% of that attainable without packing. At higher 

compression levels, our approach also significantly reduces 

overall compression times, up to 64% in our data sets. 

While enhanced file compression itself is a generally useful 

capability, there are four IT security scenarios in which our 

approach may be of substantial assistance. 1) In mobile 

tactical edge networks and emergency response networks, 

bandwidth may be low or of extreme value and thus 

minimizing throughput of traffic is critical. 2) Centralizing 

security logs from distributed cloud applications 

geographically dispersed across multiple data centers (such 

data movement is typically expensive and slow). 3) 

Centralizing security logs from all IT devices on an 

enterprise network for correlation analysis. 4) Archiving 

enterprise wide security logs for long term storage. 

We test our approach by applying LZMA compression to 

Windows security logs, Snort [7] intrusion detection system 

alerts, data from the National Software Reference Library 

(NSRL) [8], and a publically available set of log data (the 

“fighter-planes.com” HTTP log data [9])1. We then compare 

the results to applying LZMA on the same data after using 

nor does it imply that the products mentioned are necessarily the 
best available for the purpose.  



our data packing techniques. We also apply other popular 

compression algorithms for comparative purposes. 

2. RELATED WORK 
The work of both [10] and [11] have similar goals to ours, 

focusing on pre-processing log files in preparation for 

further treatment by a general-purpose compression 

algorithm.  The work of [10] is general purpose, like ours, 

and exploits the line-to-line similarity of log files by use of 

back references.  The work of [11] focuses exclusively on 

Apache HTTP logs and utilizes the same ‘transposition’ step 

that we exploit.  Both works make use of the fighter-pilot 

HTTP log data set [9] (hereafter denoted “FP”) as one test 

case, enabling direct comparisons.  We compare the results 

with respect to packing followed by compression with the 

LZMA algorithm in Table 1.  Our method outperforms the 

general purpose method of [10] on the FP data set while 

underperforming the application specific optimized method 

of [11].  While the work of [11] provides a higher 

compression ration than our own, their method (as they note) 

is not extensible to other formats, as they use  several 

optimizations specific to web logs. 

Table 1 - Comparison to related work, bits per character 

(bpc) 

Approach LZMA  Packing+LZMA 

Present work 0.323 bpc 0.186 bpc 

Grabowski and Deorowicz [11] 0.360 bpc 0.129 bpc 

Skibinski and Swacha [10] 0.317 bpc 0.246 bpc 

Other related work in [12] also discusses the compression of 

log files via transformation to matrices; however they focus 

on lossy compression via the use of numerical encoding 

followed by factorization to sparse matrices.   

3. DATA PRE-REQUISITES 
Our approach for packing data applies only to data with 

certain properties. The data to be packed must consist of a 

sequence of entries, which must all either have the same 

number of fields (referred to as columns) or have some 

column (denoted a ‘key’ field) such that all entries with the 

same key have the same number of columns. The data can 

thus be treated as either a single matrix or converted through 

use of the key into a collection of matrices. In addition, the 

rows must either explicitly contain ordering information 

(e.g., a timestamp or sequence identifier) to enable 

reconstruction of the original ordering of the matrix, or any 

given ordering of the rows must be equivalent (i.e., the 

ordering of the rows must have no semantic significance). 

These properties are exhibited by many, but certainly not all, 

security logs. 

4. OVERVIEW OF LEMPEL-ZIV 

COMPRESSION 
Two variants of Lempel-Ziv compression were originally 

proposed; the LZ78 algorithm [13] (later extended into the 

more popular LZW algorithm [14]) which constructs a 

dictionary of observed sequences in an on-line fashion, and 

the LZ77 algorithm [2] which treats some fixed number of 

recently observed uncompressed bytes in the input stream 

(the “sliding window”) as a dictionary. The LZMA 

algorithm – discussed in more detail below – is derived 

primarily from the LZ77 algorithm. 

The original implementation of LZ77 searches the sliding 

window for prefixes to the current substring, and uses fixed-

width encoding to indicate the starting position, the number 

of bytes to replicate, and the single-character suffix to the 

string.  Practical implementations using the LZ77 algorithm 

(such as DEFLATE [15]) typically incorporate other 

modifications such as Huffman coding.   

The LZMA algorithm, despite being an open-source 

implementation [1], is not well documented, and formal 

descriptions of the algorithm (outside of source code) do not 

appear to be available. LZMA is based on the LZ77 [2] 

algorithm, but contains a number of modifications (including 

special tokenization, look-aheads, and binary range coders) 

to improve compression efficiency. While the details of the 

different LZ77 based implementations are complex, the 

fundamental process of encoding the current portion of the 

stream in terms of some previously observed portion remains 

consistent. This forms the basis for the optimization which 

we discuss below. 

5. DATA PACKING METHOD 
Our data packing method enables the LZMA sliding window 

greater opportunity for reuse of recently processed data. 

While the design goal is similar to that of the Burrows-

Wheeler transform [16] used in the BZip2 algorithm, that is, 

placing similar data close together to enhance the ability of 

other algorithms to compress it, our approach is significantly 

simpler both in concept and implementation. Our approach 

is shown in Figure 1. 

1. Read in a log file or sets of log files 

2. Add each log entry to a minimal set of matrices 

with particular properties (see text) 

3. Sort each matrix 

4. Transpose each matrix 

5. Compose all matrices into a single data structure 

by creating a dictionary in which all matrices are 

stored by hashing a unique field name  

6. Serialize the dictionary to disk using a general 

purpose serialization routine 

7. Compress with a standard compression algorithm 

Figure 1. Packing Steps 

Packing occurs in seven steps. In step 1, log data is imported. 

In step 2, each log entry is added to a set of matrices such 

that the number of columns of the matrix match the number 

of fields in the entry, and the semantics of each matrix 

column and entry field match. If no such matrix is available 

for a particular log entry, a new matrix is created to hold that 

entry. This operation can be implemented in O(n) time and 

space with respect to the number of entries in the data.   



In step 3, once the structure of the data has been normalized 

to a collection of matrices in which each row corresponds to 

an entry and each column to a field, we permute the rows of 

these matrices by sorting based upon the value of the first 

column, breaking ties by the value of columns to the right if 

required.  Such a sorting operation is of worst-case time 

complexity O(nlogn) and space complexity O(n), however 

note that by subdividing the data based on the key field as 

described above, the overall time complexity may be 

reduced substantially.  This occurs in some of our data sets 

where the number of matrices formed is a function of the size 

of the input set. 

In step 4 we transpose the sorted matrices, such that the first 

column of each matrix now becomes the first row.  Matrix 

transposition is of time and space complexity O(n) as well.   

In step 5, we store each group in a dictionary, keyed using 

the key field value associated with each matrix. This 

dictionary is serialized to disk using a general purpose 

serialization routine in step 6. The serialized dictionary is 

then compressed in step 7 using a standard compression 

algorithm. We may have been able to achieve better 

compression by creating a custom serialization for each log 

type (similar to the customizations used in [11]), however 

such fine-tuning limits the generality of the approach. 

Serialization is O(n) in time and space complexity, while the 

complexity of the final compression step will be dependent 

on the algorithm selected. 

The second step of packing allows the data to be coerced into 

a matrix form so that the transposition operation of the fourth 

step may be performed.  The combination of the sorting in 

the third step and the transposition of the fourth step places 

similar data adjacent in memory, allowing for a greater 

degree of matching within the sliding window of the LZ-

based compressor, and thus a higher degree of compression.  

In addition, as the columns representing the same type of 

data will often have more similar formats and content than 

different columns in the same record, the transposition 

allows for significant improvement even when the sorting 

step does not penetrate significantly to those columns in the 

pre-transposed matrix.  

We also note that the order of the columns within each 

particular matrix plays a role in the effectiveness of the sort 

operation. We tried reordering the columns by increasing 

and decreasing entropy but found no consistent approach to 

apply to optimally order the columns for each group within 

a log type. It is not clear that this is a tractable approach 

because the algorithm to reorder the columns may take 

significant computational complexity. Our entropy ordering 

experiments often more than doubled the overall 

compression time. It would also require storing the column 

reordering information within the final compressed file. We 

leave such an approach and the possible discovery of an 

optimal column reordering algorithm to future work. 

6. EXPERIMENTAL DESIGN 
We evaluate our approach through packing and compressing 

data in 4 distinct file formats: 

1. Microsoft Windows security logs collected in 

Windows Event Viewer (.evtx) format from 11 

Windows 7 workstations in a large network over a 6 

month period in 2013, comprising approximately 1.62 

million records.   
2. Snort [7] network intrusion detection system (NIDS) 

alerts from an enterprise-scale production network, 

collected approximately 2.25 million alerts over a 

period of 27 days in 2012 using a combination of the 

Snort Emerging Threats (ET) and Vulnerability 

Research Team (VRT) rule sets. 

3. National Software Reference Library (NSRL) [8] data, 

primarily used to whitelist files during computer 

forensic examinations. This data was subsampled to 

the first 3 million records and serialized from the 

January 2014 ‘unique’ data file, excluding file hash 

values (which are large and incompressible thus 

inhibiting compression algorithm comparison).  We 

also examined smaller subsets to evaluate the impact 

of source data size on packing effectiveness. 
4. Publically available HTTP server log data (attributed 

to the “fighter-planes.com” website) recording a series 

of HTTP requests to the server between the hours of 

03:07 and 19:14 on February 3, 2003. The data 

includes IP address, date/timestamps, the HTTP 

request type and URI, response codes, referrers, and 

user agent information for 109,481 distinct requests. 
For compression, we used the open source 7-Zip software 

[17] running on a commodity computer with a quad-core 

processor and 8GB of memory. With respect to compression 

algorithms, we performed experiments using all 

implemented algorithms: LZMA, LZMA2, PPMD, BZip2 

(see the 7-Zip documentation for algorithm details). 7-Zip 

offers 5 levels of compression for each algorithm (levels 1, 

3, 5, 7, and 9).  While this does not represent a resource-

constrained environment, it does provide a common baseline 

for comparison between all reference implementations we 

examined.  Preliminary experimentation (data not shown due 

to space limitations) on a Raspberry Pi microcomputer 

indicates that the relative performance between the 

approaches is consistent with the results we report here, 

though absolute performance clearly is degraded. 

For serializing our packed data, we selected the general 

purpose serializer MessagePack [18] due to its speed of 

serialization and relatively low size overhead compared to 

other standard serialization libraries such as Pickle or JSON. 

7. RESULTS 
We now provide empirical results for our experiments in 

terms of compression effectiveness and execution time. Our 



packing approach reliably increased compression 

effectiveness for the LZMA and LZMA2 methods at all 

levels of compression and reduced overall compression time 

at the higher 7-Zip compression levels (7 and 9). Results for 

the non LZ-based compression methods were more variable 

but often very good, somewhat surprising as our packing 

approach was not designed to support those compression 

algorithms. 

7.1 Compression Effectiveness 
Figures 1 through 4 display the various results of our 

compression experiments.  In figure 2 we focus on the effect 

of packing and LZMA compression level on overall 

compression effectiveness relative to the compressed size of 

the unpacked files.  Regardless of data set or compression 

level, the ratio of the packed and compressed file size to the 

unpacked and compressed file size remains relatively 

constant for each data set.  In the best case, packing the Snort 

logs produced a final file only 21% the size of the 

compressed unpacked file at compression level 1. In the 

worst case, packing the FP data the final file was 66% the 

size of the compressed unpacked file at compression level 3. 

Plots analogous to Figure 2 for other compression algorithms 

are not shown due to space limitations.  LZMA2 results were 

almost identical to Figure 2. PPMd and BZip2 showed 

increased compression (up to a 79% reduction in final file 

size) using our packing approach, except for PPMd 

compression of the FP data at levels 1 and 3 (where our 

approach increased the final file size by 2.7%).  

 

Figure 2 - Ratio of packed compressed file size to baseline 

compressed file size 

For the remainder of our compression results, we focus on 

the highest compression level. In Figures 3, 4, 5, and 6 we 

examine each data set individually at the highest 7-Zip 

compression level (9) with all available compression 

algorithms. All other settings were left at default values.   

In each plot, both total compression time and final file size 

are presented relative to the time and file size information 

for compressed files without packing.  Results of 1.0 for time 

and size indicate that the packed and compressed file was the 

same size as the compressed file and required the same 

amount of time in total (including both packing and 

compression) to process, for no advantage.  Values less than 

1.0 for size indicate that the packed and compressed file was 

smaller than the unpacked, compressed file; less than 1.0 for 

time indicate that the end-to-end processing, including 

packing and compression, required less time in total than 

straightforward compression. 

 

Figure 3-"Fighter Pilot" HTTP server log results 

 

Figure 4 - Snort alert results 

 

Figure 5 - NSRL results 

 

Figure 6 - Windows EVTX  log results 

While the packing step produced an improvement with 

respect to file size for all compression algorithms, we obtain 

the best results with the LZ-based methods of LMZA and 



LZMA2.  As BZip2 uses several stages of preprocessing, 

including run length encoding, the Burroughs-Wheeler 

transform, and move to front encoding, the latter two of 

which serve primarily to reorder the data into a more 

compressible format prior to applying Huffman coding, it is 

likely that our packing is partially redundant, resulting in 

increased processing times without benefits as substantial as 

those obtained by the LZ-based algorithms.  While 

implementation details vary, PPMd based compression 

constructs adaptive contextual probabilistic models for 

upcoming symbols in the data stream, and uses this 

prediction to achieve high compression rates.  Due to the 

adaptive probabilistic model that PPMd uses for 

compression, the reorganization of the column entries to be 

adjacent in memory likely assists with the stability of the 

codebook, however the relevant context for successor 

symbols will be largely unchanged between packed and 

unpacked data except at entry boundaries; this likely 

accounts for our weaker results using the PPMd algorithm.  

7.2 Timing Results 
Our packing approach co-locates similar data, enabling the 

LZMA algorithm to reuse more data and thus execute faster, 

often sufficiently fast to overcome the extra time required by 

packing.  These results are displayed in Figure 7, where we 

compare the ratio of compression time for packed and 

unpacked data for the 5 possible LZMA compression levels.  

In all cases, the total compression process, including 

packing, requires less time for packed than unpacked data at 

levels 7 and 9.  Performance at lower compression levels 

appears to be substantially impacted by the sorting 

operation.  Note the relatively high performance of NSRL 

data despite the large number of records. In this case, the 3 

million NSRL records were segmented into 8419 separately 

sorted sub-tables which reduced the total cost of the sorting 

operation significantly.  In the best case, packing EVTX data 

reduced the overall level 9 compression time by 64%. In the 

worst case, packing Snort data increased overall level 1 

compression time by 228%. 

   

Figure 7 - timing results for LZMA compression relative to 

unpacked data 

Additional timing information for the other algorithms at 

compression level 9 is also included in figures 3, 4, 5, and 6, 

comparing the impact of our packing scheme against 

unpacked compression. 

The results and complexity analysis suggest that the main 

bottleneck in the packing step is the O(𝑛log𝑛) sort 

operation, and so the selection of a ‘key’ value may also be 

optimized to fragment the total data as effectively as 

possible.   

While we defer detailed examination of such possibilities to 

future work, we do note that the compression time and 

effectiveness had a variable relationship. For Snort data, as 

shown in Figure 8, while we selected column 8 as our key to 

subdivide the data into matrices, this was based entirely on 

compression size considerations. The selection of key 3 

would have allowed a small tradeoff of compression 

effectiveness for speed. 

 

Figure 8 - Effect of key selection on Snort data 

7.3 Effect of file size  
To investigate the impact of file size on the compression 

effectiveness and timing for packed versus unpacked files, 

we used the NSRL data set to examine increasing input sizes.  

We sampled an increasing number of records, in 500,000 

record increments, and compressed both unpacked and 

packed files using the LZMA method at a compression level 

of 9 (results in Figure 9).  As in all other trials, timing results 

for packed data include all stages of packing, serialization, 

and compression.  It is worth remarking on the fact that – 

despite the worst-case performance of our packing being 

greater than O(n) – the combination of packing and 

compression is empirically remarkably linear within the 

range we examine (a simple linear best-fit line suggests a 

slope of  15.42 seconds per million records with 𝑅2 =
0.9864, with the intercept forced to 0).  Regardless of source 

file size, total required processing time for the packed file is 

approximately one-half that of the unpacked file, while the 

ratio of packed and compressed file size to compressed file 

size without packing slowly decreases from 0.7032 at 0.5 

million records to 0.6056 at 3 million records, indicating an 

increasing advantage with respect to size from packing as 

larger data sets are compressed. 



 

Figure 9 - Effect of variable source file size on packed vs 

unpacked files 

8. CONCLUSIONS 
We have presented a method for the lossless packing of log 

files that greatly enhances LZ-based algorithm compression 

effectiveness. Despite the overhead of packing, the approach 

can actually reduce overall compression time at higher 

compression levels. 

This method leverages the fact that many kinds of logs may 

be converted into a matrix, which then allows sorting and 

transposition.  We have generalized this operation to allow 

it to be performed on log files which may be considered a 

mixture of tables, possibly with a varying number of 

columns, and demonstrated our results on a range of formats 

of different sizes.  We show that using LZMA compression, 

our packing method allows us to reliably obtain better 

compressed files, from 21% to 66% the size of files treated 

only with straightforward compression.  In addition, our 

method is capable of accelerating the compression process 

at higher compression levels to sufficiently outweigh the 

time required to preprocess them, thus reducing the overall 

time to compress the file, sometimes significantly (up to a 

64% reduction).  This method is thus well-suited to resource-

constrained networks such as tactical networks, in which 

transmission windows for log files may be short and difficult 

to anticipate and available bandwidth may be limited, but 

nevertheless entire log files must be transmitted.  In future 

work, we plan to examine in more detail optimal methods 

for key selection, as well as the effect of permuting columns 

of the data prior to sorting.   
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