
Lightweight Packing of Log Files for Improved
Compression in Mobile Tactical Networks

Peter Mell
National Institute of Standards and Technology

Gaithersburg, MD

peter.mell@nist.gov

Richard E Harang

U.S. Army Research Laboratory
Adelphi, MD

richard.e.harang.civ@mail.mil

ABSTRACT

Devices in mobile tactical edge networks are often resource

constrained due to their lightweight and mobile nature, and

often have limited access to bandwidth. In order to maintain

situational awareness in the cyber domain, security logs

from these devices must be transmitted to command and

control sites. We present a lightweight packing step that

takes advantage of the restricted semantics and regular

format of certain kinds of log files to render them

substantially more amenable to compression with standard

algorithms (especially Lempel-Ziv variants). We

demonstrate that we can reduce compressed file sizes to as

little as 21% of that of the maximally compressed file

without packing. We can also reduce overall compression

times up to 64% in our data sets. Our packing step permits

lossless transmission of larger log files across the same

network transmission medium, as well as permitting existing

sets of logs to be transmitted within smaller network

availability windows.

Keywords

security, logs, compression, Lempel-Ziv

1. INTRODUCTION
Compression algorithms are typically designed to be general

purpose; encoding arbitrary binary sequences into more

compact representations by removing any inherent

redundancy in the message. As such, they typically do not

take advantage of specific features of some data formats that

might enable more efficient compression. In contrast to

general binary formats, many information technology (IT)

logs allow for significant syntactic modifications without

loss of semantics. In this work, we identify lightweight

lossless syntactical packing that can be applied to security

logs to make them more amenable to compression.

We focus on packing that will optimize the Lempel-Ziv

Markov Chain Algorithm (LZMA); a widely used and

effective lossless file compression algorithm, which is

(anecdotally if not formally) known to be highly effective at

compressing structured data [1]. Some version of the LZ77

algorithm [2], from which LZMA is derived [1], is used by

1 Any mention of commercial products or reference to

commercial organizations is for information only; it does not

imply recommendation or endorsement by the U.S. government

default on many Unix and Windows systems and is included

in many file compression suites [3] [4].

For our approach to apply, the data must conform to two pre-

requisites often existent within IT logs and database tables.

The data must be either explicitly tabular, or capable of being

converted to one or more tabular representations. Also, the

rows of each table must contain ordering identifiers (e.g.,

time stamps) or be atomic in nature, allowing for reordering

without loss of semantics. We exploit these properties to

construct collections of row sorted matrices that are then

transposed and serialized prior to compression. While both

explicit and implicit transposition of matrices has seen

historical use in the area of statistical databases for both

compression and speed of access [5] [6], this approach

appears to have seen limited application to the area of

general purpose log compression (though see related work,

below).

We demonstrate that our general-purpose packing approach

allows us to reduce maximally compressed file sizes to as

little as 21% of that attainable without packing. At higher

compression levels, our approach also significantly reduces

overall compression times, up to 64% in our data sets.

While enhanced file compression itself is a generally useful

capability, there are four IT security scenarios in which our

approach may be of substantial assistance. 1) In mobile

tactical edge networks and emergency response networks,

bandwidth may be low or of extreme value and thus

minimizing throughput of traffic is critical. 2) Centralizing

security logs from distributed cloud applications

geographically dispersed across multiple data centers (such

data movement is typically expensive and slow). 3)

Centralizing security logs from all IT devices on an

enterprise network for correlation analysis. 4) Archiving

enterprise wide security logs for long term storage.

We test our approach by applying LZMA compression to

Windows security logs, Snort [7] intrusion detection system

alerts, data from the National Software Reference Library

(NSRL) [8], and a publically available set of log data (the

“fighter-planes.com” HTTP log data [9])1. We then compare

the results to applying LZMA on the same data after using

nor does it imply that the products mentioned are necessarily the
best available for the purpose.

our data packing techniques. We also apply other popular

compression algorithms for comparative purposes.

2. RELATED WORK
The work of both [10] and [11] have similar goals to ours,

focusing on pre-processing log files in preparation for

further treatment by a general-purpose compression

algorithm. The work of [10] is general purpose, like ours,

and exploits the line-to-line similarity of log files by use of

back references. The work of [11] focuses exclusively on

Apache HTTP logs and utilizes the same ‘transposition’ step

that we exploit. Both works make use of the fighter-pilot

HTTP log data set [9] (hereafter denoted “FP”) as one test

case, enabling direct comparisons. We compare the results

with respect to packing followed by compression with the

LZMA algorithm in Table 1. Our method outperforms the

general purpose method of [10] on the FP data set while

underperforming the application specific optimized method

of [11]. While the work of [11] provides a higher

compression ration than our own, their method (as they note)

is not extensible to other formats, as they use several

optimizations specific to web logs.

Table 1 - Comparison to related work, bits per character

(bpc)

Approach LZMA Packing+LZMA

Present work 0.323 bpc 0.186 bpc

Grabowski and Deorowicz [11] 0.360 bpc 0.129 bpc

Skibinski and Swacha [10] 0.317 bpc 0.246 bpc

Other related work in [12] also discusses the compression of

log files via transformation to matrices; however they focus

on lossy compression via the use of numerical encoding

followed by factorization to sparse matrices.

3. DATA PRE-REQUISITES
Our approach for packing data applies only to data with

certain properties. The data to be packed must consist of a

sequence of entries, which must all either have the same

number of fields (referred to as columns) or have some

column (denoted a ‘key’ field) such that all entries with the

same key have the same number of columns. The data can

thus be treated as either a single matrix or converted through

use of the key into a collection of matrices. In addition, the

rows must either explicitly contain ordering information

(e.g., a timestamp or sequence identifier) to enable

reconstruction of the original ordering of the matrix, or any

given ordering of the rows must be equivalent (i.e., the

ordering of the rows must have no semantic significance).

These properties are exhibited by many, but certainly not all,

security logs.

4. OVERVIEW OF LEMPEL-ZIV

COMPRESSION
Two variants of Lempel-Ziv compression were originally

proposed; the LZ78 algorithm [13] (later extended into the

more popular LZW algorithm [14]) which constructs a

dictionary of observed sequences in an on-line fashion, and

the LZ77 algorithm [2] which treats some fixed number of

recently observed uncompressed bytes in the input stream

(the “sliding window”) as a dictionary. The LZMA

algorithm – discussed in more detail below – is derived

primarily from the LZ77 algorithm.

The original implementation of LZ77 searches the sliding

window for prefixes to the current substring, and uses fixed-

width encoding to indicate the starting position, the number

of bytes to replicate, and the single-character suffix to the

string. Practical implementations using the LZ77 algorithm

(such as DEFLATE [15]) typically incorporate other

modifications such as Huffman coding.

The LZMA algorithm, despite being an open-source

implementation [1], is not well documented, and formal

descriptions of the algorithm (outside of source code) do not

appear to be available. LZMA is based on the LZ77 [2]

algorithm, but contains a number of modifications (including

special tokenization, look-aheads, and binary range coders)

to improve compression efficiency. While the details of the

different LZ77 based implementations are complex, the

fundamental process of encoding the current portion of the

stream in terms of some previously observed portion remains

consistent. This forms the basis for the optimization which

we discuss below.

5. DATA PACKING METHOD
Our data packing method enables the LZMA sliding window

greater opportunity for reuse of recently processed data.

While the design goal is similar to that of the Burrows-

Wheeler transform [16] used in the BZip2 algorithm, that is,

placing similar data close together to enhance the ability of

other algorithms to compress it, our approach is significantly

simpler both in concept and implementation. Our approach

is shown in Figure 1.

1. Read in a log file or sets of log files

2. Add each log entry to a minimal set of matrices

with particular properties (see text)

3. Sort each matrix

4. Transpose each matrix

5. Compose all matrices into a single data structure

by creating a dictionary in which all matrices are

stored by hashing a unique field name

6. Serialize the dictionary to disk using a general

purpose serialization routine

7. Compress with a standard compression algorithm

Figure 1. Packing Steps

Packing occurs in seven steps. In step 1, log data is imported.

In step 2, each log entry is added to a set of matrices such

that the number of columns of the matrix match the number

of fields in the entry, and the semantics of each matrix

column and entry field match. If no such matrix is available

for a particular log entry, a new matrix is created to hold that

entry. This operation can be implemented in O(n) time and

space with respect to the number of entries in the data.

In step 3, once the structure of the data has been normalized

to a collection of matrices in which each row corresponds to

an entry and each column to a field, we permute the rows of

these matrices by sorting based upon the value of the first

column, breaking ties by the value of columns to the right if

required. Such a sorting operation is of worst-case time

complexity O(nlogn) and space complexity O(n), however

note that by subdividing the data based on the key field as

described above, the overall time complexity may be

reduced substantially. This occurs in some of our data sets

where the number of matrices formed is a function of the size

of the input set.

In step 4 we transpose the sorted matrices, such that the first

column of each matrix now becomes the first row. Matrix

transposition is of time and space complexity O(n) as well.

In step 5, we store each group in a dictionary, keyed using

the key field value associated with each matrix. This

dictionary is serialized to disk using a general purpose

serialization routine in step 6. The serialized dictionary is

then compressed in step 7 using a standard compression

algorithm. We may have been able to achieve better

compression by creating a custom serialization for each log

type (similar to the customizations used in [11]), however

such fine-tuning limits the generality of the approach.

Serialization is O(n) in time and space complexity, while the

complexity of the final compression step will be dependent

on the algorithm selected.

The second step of packing allows the data to be coerced into

a matrix form so that the transposition operation of the fourth

step may be performed. The combination of the sorting in

the third step and the transposition of the fourth step places

similar data adjacent in memory, allowing for a greater

degree of matching within the sliding window of the LZ-

based compressor, and thus a higher degree of compression.

In addition, as the columns representing the same type of

data will often have more similar formats and content than

different columns in the same record, the transposition

allows for significant improvement even when the sorting

step does not penetrate significantly to those columns in the

pre-transposed matrix.

We also note that the order of the columns within each

particular matrix plays a role in the effectiveness of the sort

operation. We tried reordering the columns by increasing

and decreasing entropy but found no consistent approach to

apply to optimally order the columns for each group within

a log type. It is not clear that this is a tractable approach

because the algorithm to reorder the columns may take

significant computational complexity. Our entropy ordering

experiments often more than doubled the overall

compression time. It would also require storing the column

reordering information within the final compressed file. We

leave such an approach and the possible discovery of an

optimal column reordering algorithm to future work.

6. EXPERIMENTAL DESIGN
We evaluate our approach through packing and compressing

data in 4 distinct file formats:

1. Microsoft Windows security logs collected in

Windows Event Viewer (.evtx) format from 11

Windows 7 workstations in a large network over a 6

month period in 2013, comprising approximately 1.62

million records.
2. Snort [7] network intrusion detection system (NIDS)

alerts from an enterprise-scale production network,

collected approximately 2.25 million alerts over a

period of 27 days in 2012 using a combination of the

Snort Emerging Threats (ET) and Vulnerability

Research Team (VRT) rule sets.

3. National Software Reference Library (NSRL) [8] data,

primarily used to whitelist files during computer

forensic examinations. This data was subsampled to

the first 3 million records and serialized from the

January 2014 ‘unique’ data file, excluding file hash

values (which are large and incompressible thus

inhibiting compression algorithm comparison). We

also examined smaller subsets to evaluate the impact

of source data size on packing effectiveness.
4. Publically available HTTP server log data (attributed

to the “fighter-planes.com” website) recording a series

of HTTP requests to the server between the hours of

03:07 and 19:14 on February 3, 2003. The data

includes IP address, date/timestamps, the HTTP

request type and URI, response codes, referrers, and

user agent information for 109,481 distinct requests.
For compression, we used the open source 7-Zip software

[17] running on a commodity computer with a quad-core

processor and 8GB of memory. With respect to compression

algorithms, we performed experiments using all

implemented algorithms: LZMA, LZMA2, PPMD, BZip2

(see the 7-Zip documentation for algorithm details). 7-Zip

offers 5 levels of compression for each algorithm (levels 1,

3, 5, 7, and 9). While this does not represent a resource-

constrained environment, it does provide a common baseline

for comparison between all reference implementations we

examined. Preliminary experimentation (data not shown due

to space limitations) on a Raspberry Pi microcomputer

indicates that the relative performance between the

approaches is consistent with the results we report here,

though absolute performance clearly is degraded.

For serializing our packed data, we selected the general

purpose serializer MessagePack [18] due to its speed of

serialization and relatively low size overhead compared to

other standard serialization libraries such as Pickle or JSON.

7. RESULTS
We now provide empirical results for our experiments in

terms of compression effectiveness and execution time. Our

packing approach reliably increased compression

effectiveness for the LZMA and LZMA2 methods at all

levels of compression and reduced overall compression time

at the higher 7-Zip compression levels (7 and 9). Results for

the non LZ-based compression methods were more variable

but often very good, somewhat surprising as our packing

approach was not designed to support those compression

algorithms.

7.1 Compression Effectiveness
Figures 1 through 4 display the various results of our

compression experiments. In figure 2 we focus on the effect

of packing and LZMA compression level on overall

compression effectiveness relative to the compressed size of

the unpacked files. Regardless of data set or compression

level, the ratio of the packed and compressed file size to the

unpacked and compressed file size remains relatively

constant for each data set. In the best case, packing the Snort

logs produced a final file only 21% the size of the

compressed unpacked file at compression level 1. In the

worst case, packing the FP data the final file was 66% the

size of the compressed unpacked file at compression level 3.

Plots analogous to Figure 2 for other compression algorithms

are not shown due to space limitations. LZMA2 results were

almost identical to Figure 2. PPMd and BZip2 showed

increased compression (up to a 79% reduction in final file

size) using our packing approach, except for PPMd

compression of the FP data at levels 1 and 3 (where our

approach increased the final file size by 2.7%).

Figure 2 - Ratio of packed compressed file size to baseline

compressed file size

For the remainder of our compression results, we focus on

the highest compression level. In Figures 3, 4, 5, and 6 we

examine each data set individually at the highest 7-Zip

compression level (9) with all available compression

algorithms. All other settings were left at default values.

In each plot, both total compression time and final file size

are presented relative to the time and file size information

for compressed files without packing. Results of 1.0 for time

and size indicate that the packed and compressed file was the

same size as the compressed file and required the same

amount of time in total (including both packing and

compression) to process, for no advantage. Values less than

1.0 for size indicate that the packed and compressed file was

smaller than the unpacked, compressed file; less than 1.0 for

time indicate that the end-to-end processing, including

packing and compression, required less time in total than

straightforward compression.

Figure 3-"Fighter Pilot" HTTP server log results

Figure 4 - Snort alert results

Figure 5 - NSRL results

Figure 6 - Windows EVTX log results

While the packing step produced an improvement with

respect to file size for all compression algorithms, we obtain

the best results with the LZ-based methods of LMZA and

LZMA2. As BZip2 uses several stages of preprocessing,

including run length encoding, the Burroughs-Wheeler

transform, and move to front encoding, the latter two of

which serve primarily to reorder the data into a more

compressible format prior to applying Huffman coding, it is

likely that our packing is partially redundant, resulting in

increased processing times without benefits as substantial as

those obtained by the LZ-based algorithms. While

implementation details vary, PPMd based compression

constructs adaptive contextual probabilistic models for

upcoming symbols in the data stream, and uses this

prediction to achieve high compression rates. Due to the

adaptive probabilistic model that PPMd uses for

compression, the reorganization of the column entries to be

adjacent in memory likely assists with the stability of the

codebook, however the relevant context for successor

symbols will be largely unchanged between packed and

unpacked data except at entry boundaries; this likely

accounts for our weaker results using the PPMd algorithm.

7.2 Timing Results
Our packing approach co-locates similar data, enabling the

LZMA algorithm to reuse more data and thus execute faster,

often sufficiently fast to overcome the extra time required by

packing. These results are displayed in Figure 7, where we

compare the ratio of compression time for packed and

unpacked data for the 5 possible LZMA compression levels.

In all cases, the total compression process, including

packing, requires less time for packed than unpacked data at

levels 7 and 9. Performance at lower compression levels

appears to be substantially impacted by the sorting

operation. Note the relatively high performance of NSRL

data despite the large number of records. In this case, the 3

million NSRL records were segmented into 8419 separately

sorted sub-tables which reduced the total cost of the sorting

operation significantly. In the best case, packing EVTX data

reduced the overall level 9 compression time by 64%. In the

worst case, packing Snort data increased overall level 1

compression time by 228%.

Figure 7 - timing results for LZMA compression relative to

unpacked data

Additional timing information for the other algorithms at

compression level 9 is also included in figures 3, 4, 5, and 6,

comparing the impact of our packing scheme against

unpacked compression.

The results and complexity analysis suggest that the main

bottleneck in the packing step is the O(𝑛log𝑛) sort

operation, and so the selection of a ‘key’ value may also be

optimized to fragment the total data as effectively as

possible.

While we defer detailed examination of such possibilities to

future work, we do note that the compression time and

effectiveness had a variable relationship. For Snort data, as

shown in Figure 8, while we selected column 8 as our key to

subdivide the data into matrices, this was based entirely on

compression size considerations. The selection of key 3

would have allowed a small tradeoff of compression

effectiveness for speed.

Figure 8 - Effect of key selection on Snort data

7.3 Effect of file size
To investigate the impact of file size on the compression

effectiveness and timing for packed versus unpacked files,

we used the NSRL data set to examine increasing input sizes.

We sampled an increasing number of records, in 500,000

record increments, and compressed both unpacked and

packed files using the LZMA method at a compression level

of 9 (results in Figure 9). As in all other trials, timing results

for packed data include all stages of packing, serialization,

and compression. It is worth remarking on the fact that –

despite the worst-case performance of our packing being

greater than O(n) – the combination of packing and

compression is empirically remarkably linear within the

range we examine (a simple linear best-fit line suggests a

slope of 15.42 seconds per million records with 𝑅2 =
0.9864, with the intercept forced to 0). Regardless of source

file size, total required processing time for the packed file is

approximately one-half that of the unpacked file, while the

ratio of packed and compressed file size to compressed file

size without packing slowly decreases from 0.7032 at 0.5

million records to 0.6056 at 3 million records, indicating an

increasing advantage with respect to size from packing as

larger data sets are compressed.

Figure 9 - Effect of variable source file size on packed vs

unpacked files

8. CONCLUSIONS
We have presented a method for the lossless packing of log

files that greatly enhances LZ-based algorithm compression

effectiveness. Despite the overhead of packing, the approach

can actually reduce overall compression time at higher

compression levels.

This method leverages the fact that many kinds of logs may

be converted into a matrix, which then allows sorting and

transposition. We have generalized this operation to allow

it to be performed on log files which may be considered a

mixture of tables, possibly with a varying number of

columns, and demonstrated our results on a range of formats

of different sizes. We show that using LZMA compression,

our packing method allows us to reliably obtain better

compressed files, from 21% to 66% the size of files treated

only with straightforward compression. In addition, our

method is capable of accelerating the compression process

at higher compression levels to sufficiently outweigh the

time required to preprocess them, thus reducing the overall

time to compress the file, sometimes significantly (up to a

64% reduction). This method is thus well-suited to resource-

constrained networks such as tactical networks, in which

transmission windows for log files may be short and difficult

to anticipate and available bandwidth may be limited, but

nevertheless entire log files must be transmitted. In future

work, we plan to examine in more detail optimal methods

for key selection, as well as the effect of permuting columns

of the data prior to sorting.

9. ACKNOWLEDGMENTS
This research was sponsored by the U.S. Army Research

Labs and the National Institute of Standards and Technology

(NIST). It was partially accomplished under Army Contract

Number W911QX-07-F-0023. The views and conclusions

contained in this document are those of the authors, and

should not be interpreted as representing the official policies,

either expressed or implied, of the Army Research

Laboratory, NIST, or the U.S. Government. The U.S.

Government is authorized to reproduce and distribute

reprints for Government purposes, notwithstanding any

copyright notation hereon.

10. REFERENCES

[1] I. Pavlov, "LZMA SDK (Software Development Kit)," 2013.

[Online]. Available: http://www.7-zip.org/sdk.html.

[Accessed 15 Jan 2014].

[2] J. Ziv and A. Lempel, "A Universal Algorithm for Sequential

Data Compression," IEEE Transactions on Information

Theory , vol. 23, no. 3, pp. 337-343, 1977.

[3] P. Deutsch, RFP 1952: "GZIP file format specification

version 4.3", 1996.

[4] A. Roshal, "WinRAR archiver, a powerful tool to process

RAR and ZIP files," win.rar GmbH, 2014. [Online].

Available: http://www.rarlab.com/. [Accessed 14 Jan 2014].

[5] H. K. Wong and J. Z. Li, "Transposition algorithms on very

large compressed databases," in 12th International

Conference on Very Large Data Bases, 1986.

[6] H. K. Wong, H.-F. Liu, F. Olken, D. Rotem and L. Wong,

"Bit Transposed Files," in VLDB, 1985.

[7] M. Roesch, "Snort -- lightweight intrusion detection for

networks," Proceedings of the 13th USENIX conference on

System administration, pp. 229--238, 1999.

[8] "National Software Reference Library," [Online]. Available:

http://www.nsrl.nist.gov. [Accessed 17 1 2014].

[9] W. Bergmans, "Maximum Compression (lossless data

compression software)," [Online]. Available:

http://www.maximumcompression.com/. [Accessed 17

January 2014].

[10] P. Skibinski and J. Swacha, "Fast and efficient log file

compression," in Proceedings of 11th East-European

Conference on Advances in Databases and Information

Systems, 2007.

[11] S. Grabowski and a. S. Deorowicz, "Web log compression,"

Institute of Computer Science, Silesian Technical University,

Gliwice, Poland, 2007.

[12] G. Aceto, A. Botta, A. Pescapé and a. C. Westphal, "An

efficient storage technique for network monitoring data," in

IEEE International Workshop on Measurements and

Networking, 2011.

[13] J. Ziv and A. Lempel, "Compression of individual sequences

via variable-rate coding," IEEE Transactions on Information

Theory, vol. 24, no. 5, pp. 530-536, 1978.

[14] T. A. Welch, "A technique for high-performance data

compression.," Computer, vol. 17, no. 6, pp. 8-19, 1984.

[15] P. Deutsch, RFP 1951: "DEFLATE Compressed Data

Format Specification version 1.3", 1996.

[16] M. Burrows and D. J. Wheeler, "A block-sorting lossless data

compression algorithm.," Digital Systems Research Center,

Palo Alto, CA, 1994.

[17] I. Pavlov, "7-zip," 2013. [Online]. Available: http://www.7-

zip.org/. [Accessed 2013 15 Jan].

[18] S. Furuhashi, "MessagePack," 2013. [Online]. Available:

http://msgpack.org/. [Accessed 2014 14 Jan].

