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Abstract

Before selecting an alternative based on attribute values that have been determined through a measurement process
that has error, a decision-maker can, in some cases, collect additional data to reduce uncertainty. Unlike previous
work in the area of ranking and selection, this study considered the problem of allocating limited data collection
resources across multiple attributes rather than across multiple alternatives. In this work we assumed the multiple
attribute values are measurements (samples) of physical characteristics and have a normally distributed
measurement error. We conducted a simulation study to investigate how the sample allocation affects the likelihood
that the best alternative will be selected and how this relationship is influenced by the relative importance of the
attributes and the amount of attribute value uncertainty. The results suggested allocation rules based on the decision
model and the general shape of the frontier. These rules were compared to a default rule that allocated the
experimental budget evenly across the attributes. Better allocations increase the likelihood that the best alternative
will be selected.
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1. Introduction

In 2008 the United States Congress mandated that the Domestic Nuclear Detection Office (DNDO) of the U.S.
Department of Homeland Security work with the U.S. Customs and Border Protection (CBP) to evaluate and
improve radiation detection systems in U.S. based international airports. As a result of this mandate, DNDO initiated
the PaxBag pilot program to identify the best possible system design for detecting, identifying, and localizing illicit
radiological or nuclear material entering the United States through international passenger and baggage screening.
This challenge was met by testing and evaluating, in a laboratory environment, available radiation detection
equipment suitable for such an application, followed by an operational demonstration of the system that displayed
the strongest potential for improved capability over currently deployed technology. To select the radiation detection
system to put forth for the operational demonstration, DNDO and CBP formulated a multiple attribute decision
model and developed a laboratory experimental plan to support the estimation of the true attribute values. This led to
the following question: how should the limited laboratory experimental budget be allocated across the multiple
alternatives and multiple attributes to generate information that leads to selecting the true best technology? This
question, which is not limited to the selection of a radiation detection system, applies to all decision processes where
the true values of multiple attributes are estimated based upon experimental evaluations.

When attribute values are estimated using experimental measurement data, intrinsic variability in the data leads to
measurement uncertainty associated with the estimates that is relevant to the selection problem. In particular, this
attribute value uncertainty can limit the decision-maker’s ability to identify and select the system (alternative) that
truly maximizes the decision-maker’s value (or utility). Since the decision-maker can reduce the amount of attribute
value uncertainty associated with each attribute by increasing the amount of information used in its assessment, the
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allocation of experimental effort (sample allocation) across the decision attributes plays an important role in
maximizing the probability of selecting the truly best alternative.

In the following section we indicate how the sample allocation problem considered in this paper differs from the
extensive work done in the field of ranking and selection. Expanding our previous work in this area which focused
on pass-fail testing (Bernoulli trials) [1], in this paper we address the sample allocation problem for a two attribute
selection decision in which the measurement error for each attribute is normally distributed with unknown variance;
details of this problem setting are provided in Section 3. Section 4 describes the simulation study that we designed to
determine how well different procedures used to determine the allocation of experiments for the evaluation of the
attribute values perform and is part of a larger study of this problem. Results from our simulation study and
conclusions are presented in the final sections of this paper.

2. Ranking and Selection and Experimental Design
Finding the best alternative, out of a set of alternatives, when performance is a random variable and an alternative’s
true performance must be estimated using experimentation — either physical measurements or computer simulation —

is known as the selection problem. The result of an experiment can be used to estimate y, = f (AJ. ), where Y is the

true value of the response variable (performance) for A;, the j™ alternative within the given set of alternatives. When
the total number of available experimental runs (samples) is limited, the problem is to determine how many
experimental runs should be allocated to each alternative. The indifference zone (IZ), the expected value of
information procedure (VIP), and the optimal computing budget allocation (OCBA) are sequential approaches that
have been developed to find good allocation solutions (see [2, 3, 4]). In these approaches, the problem is to
determine which alternatives should be observed (simulated) next and when to stop. Computational results presented
by Branke, Chick and Schmidt [4] demonstrated the strengths and weaknesses of these procedures. LaPorte, Branke
and Chen [5] developed a version of OCBA that is useful when the computing budget is extremely small.

As described in the next section, we also address a selection problem, but our work is concerned with the allocation
of information-gathering resources across the different attributes, not the different alternatives. Given a set of
alternatives, each described by k attributes, the decision-maker’s value for a particular alternative A; may be

represented by y, = f(Aj):v(le,...,Xjk) . Instead of directly observing and estimating the alternative’s

performance measure, Y;, we can only estimate the alternative’s multiple true attribute values, Xjjoeees X based on

different information-gathering tasks (e.g., experiments). The estimated attribute values are then combined through a
multiple attribute decision (value or utility) model to provide an alternative’s overall performance measure (see [6]
as an example of this approach for the selection problem). Our challenge is to determine how many experiments
should be allocated to the evaluation of each attribute.

The statistical design of experiments provides the foundation for defining experimental factors and levels in
developing a design space, identifying optimal locations to sample within the design space, and determining the
appropriate sample size. Box, Hunter, and Hunter [7] and Montgomery [8] provide extensive guidance for the

principles and methods of statistical design of experiments. These problems can be represented by y = f (Il yeres |p ) s

where y is the response variable of interest, p is the number of multiple level experimental factors under study, and I;
is the level of the i-th experimental factor. A primary focus of the design of experiments discipline is how to best
allocate the total experimental budget of N observations across the design space defined by the factors and their
levels. The designer must choose which particular combinations of factors and levels will be included in the
experiment. Bayesian experimental design [9] is an alternative approach that leverages the information available
prior to experimentation to find the best set of factors and levels, and to determine the appropriate sample size.

3. Problem Statement
As classified by Roy [10], the decision problem we consider is one of choice: given a set of alternatives,

{A,...,Am} , the decision-maker will select a single alternative. Each alternative A; is described by attributes,
X,s.., X, which are quantified by specific attribute values, X, ,...,X, , and by its overall value (utility), as

determined by y, = V(XjI seees Xy ) . The decision-maker will select the alternative that provides the greatest overall
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value. We assume that the corresponding tradeoffs condition is satisfied [11], and hence an additive value function
of the form displayed in Equation (1) is valid to model the decision. Let X; be the value of attribute X;, let 4; be the

weight of attribute X;, and letV, (X.) be the individual value function for attribute X;, fori =1,...,k . Then the

decision-maker’s overall value for alternative A is:

Y, :v(le,...,xjk):/llvl(xj1)+---+ﬂkvk(xjk) 1)
The individual value functions V, (Xi) in Equation (1) map the attribute values, which are determined by the
characteristics of the alternative, to decision values, and are scaled such thatv, (XIO ) =0 for the least desirable

attribute value, Xi0 , andV, (X:) =1for the most desirable attribute value, X: . The attribute weights, 4;, reflect the

decision-maker’s preferences and satisfy the constraint Z : A =1.

The best alternative is the one that has the greatest overall value, which is a function of its true attribute values.
There are no other influences (e.g., uncertain events) relevant to the decision that must be resolved. While true
values for the K attributes exist for each alternative, they are unknown to the decision-maker and will be estimated
through a series of experiments. In this setting, an “experiment” is an information-gathering activity that provides a
value for one attribute of one alternative. Due to randomness in the experiment, the observed value is a random
variable that depends primarily upon the true value of the attribute for that alternative. The uncertainty associated
with the attribute (attribute value uncertainty) is a function of the values that are collected from experimentation.
(More experiments gather more information about an attribute and will reduce the uncertainty of the estimate for the
true attribute value.) After the information is gathered, the experimental results are used to model the uncertainty of
the estimated attribute values, which is then propagated onto the decision-maker’s overall value for the alternative.

We assume that the decision-maker is concerned with finding the best alternative and is thus facing a selection
problem. Furthermore, we assume that, to make his decision, the decision-maker prefers (and will select) the
alternative that has the greatest probability of being the best among the given set of alternatives. (Of course, there
are other preferences that may be considered, each with their own virtues, but that is beyond the scope of this paper.)
To estimate this probability, while propagating the attribute value uncertainty through the decision model, we use a
very generalizable Monte Carlo approach. Further details of this approach are provided in Section 4.2, with a
complete discussion found in [12].

If the experimental budget is sufficiently large, then the decision-maker can gather enough information about every
attribute of every alternative to reduce the attribute value uncertainty to a point where it is clear which alternative is
truly the best. In practice, however, especially when experiments are expensive, this is not possible. For this work,
we assume that the experimental budget is fixed and all experimentation will occur in a single phase. We will be
considering sequential allocation policies in future work.

The information-gathering resource allocation problem can be stated as follows: The overall experimental budget,
B, is fixed and will be divided equally among the m alternatives. The budget for each alternative must be further
divided among the k attributes. In general, the budgets for different alternatives could be divided differently, but we
made the simplifying assumption that the allocation is the same for all alternatives (this constraint will be relaxed in
future work). For a given alternative, let n; denote the number of measurements (samples) of attribute X;. Let N

denote the total number of measurements for each alternative, thus,n +---+n,_= N . The problem is to find values

.,N, that maximize the probability that the decision-maker will choose the truly best alternative (the probability

of correct selection), given the decision-maker’s values and preferences.

4. Simulation Study

In general, obtaining more measurements on those attributes that have the most uncertainty and are the most
important to the decision-maker is an obvious strategy for allocating the overall experimental budget. To test this
intuition, we conducted a simulation study to understand how the experimental sample allocation affects the
probability of correct selection. The following subsections briefly describe the details of the simulation study and the
sample allocation rules that were tested.
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We considered the situation in which an alternative is described by two attributes, X; and X,, that are measured using
two different techniques. The error of each measurement technique is normally distributed with unknown variance.
The alternatives, when characterized by their true values of X; and X,, form a concave efficient frontier in R? space.

The individual value functions Vv, (X1 ) andv, (X2 ) were both defined to be linear.

4.1 Training Cases and Measurement Error

Based on the results of previous work that considered pass-fail testing to estimate attribute values in terms of
probabilities [1], we expected that sample allocation rules might provide the decision-maker with guidance. We first
generated a set of 20 training cases (sets of alternatives) and used these to guide the values of the parameters in our
sample allocation rules. Each training case consisted of five alternatives described by two attributes. The true values
of the attributes were randomly assigned from the domain of [100, 200], subject to the constraints necessary for non-
dominance and concavity. We measured two characteristics of each case: a measure of nonlinearity and a measure
of general angle. The measure of nonlinearity is defined as a scaled area between the piecewise linear concave curve
formed by the alternatives on the concave frontier and the line segment connecting the two extreme alternatives. The
measure of general angle is defined as the acute angle formed by the line segment connecting the two extreme
alternatives and the horizontal line that goes through the point with the greatest value on attribute two. The measures

of general angle, @ (measured in degrees), and nonlinearity, NL, are related by 0 < NL < sin (f—(”)) . The 20 training

cases provided efficient frontiers that varied with regards to general angle and nonlinearity. Figure 1 displays the
true attribute values of the 20 training cases (left panel) and an illustration of the measures of general angle and
nonlinearity (right panel).
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Figure 1: Twenty training cases (left panel) with the case number displayed by the numeric plotting character. The
right panel illustrates the measures of nonlinearity (scaled shaded area) and general angle (6).

For our simulation, it was assumed that each of the two attributes was measured with a different measurement
technique and that technique maintained a measurement variability that was consistent across all alternatives

measured. We set the actual measurement variance of each attribute (0'12 and 0'22 ) to 1, 10% 20% and 30% which

created 16 different “measurement error scenarios.”

4.2 Evaluating Sample Allocations

An experimental sample generates one (random) measurement of one attribute of one alternative. Given an
experimental budget of N =n; +n, =10 samples for each alternative, the problem is to determine n; and n,, the
number of samples of attribute 1 and attribute 2, to maximize the probability of correct selection. That is, the
decision-maker wants to maximize the likelihood of selecting the alternative whose true values of the attributes yield
the greatest overall value defined by Equation (1).

We evaluated, using the 20 training cases, all of the possible sample allocations for N = 10 total samples per
alternative (n;=0, 1, ..., 10; n,=N-n,) over a range of values of A4; and A,, the weights in the decision value
function. In particular, 19 decision weight pairs (4, 4,) = (0.05, 0.95), (0.10, 0.90), ..., (0.95, 0.05). To do this, for
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each case (20), measurement error scenario (16), and sample allocation (11) — a total of 3520 combinations — we
simulated 1000 sets of measurements. (Henceforth, a case under a particular measurement error scenario is referred
to as a subcase.) Each set included 50 measurements, 10 for each of the 5 alternatives, with n; measurements
observed from attribute 1 and n, measurements observed from attribute 2. Each measurement was created by
observing a single random draw from a normal distribution with a mean equal to the true attribute value and a
variance defined by the measurement error scenario.

Upon observing the sample measurements, we modeled the attribute value uncertainty, propagated this uncertainty
through the decision model and selected an alternative for each of the 3520 sets of sample measurements. The
uncertain attribute values were modeled, a priori, with a normal distribution with mean of 150 and variance of 352
The unknown measurement variability was modeled, a priori, with a scaled inverse-chi-square distribution with
parameters 0.01 and 1 (note that this distribution closely resembles that of a non-informative Jeffrey’s prior
distribution). A Bayesian semi-conjugate prior model for normally distributed data [13] was then used to update the
attribute value models based on the observed sample measurements to provide posterior distributions.

The uncertainty was propagated through the decision model and onto the decision value parameter by drawing 1000
Monte Carlo samples from the posterior distributions of each of the two attributes and calculating the overall
decision value of the alternative using each of the 19 decision value functions (as defined by the 19 decision weight
pairs). For each decision weight pair, the alternative that most frequently displayed the best (largest) decision value
across the Monte Carlo replications was selected and checked whether this alternative was the true best. Repeating
this selection process over all 1,000 sets of measurements allowed us to define the frequency of correct selection
(fcs) evaluation measure as the number of times that the best alternative had been selected divided by 1000 sets.

The result of this simulation was an fcs value for each of the 11 sample allocations, for each of the 19 decision
weights, across the 320 subcases. For each of the 320 subcases and each of the 19 decision weights, there is at least

one optimal sample allocation for attribute 1, denoted nl* , that produced the maximum fcs value. This optimal

sample allocation should maximize the probability of choosing the true best alternative. For each subcase and
decision weight, we defined the relative frequency of correct selection (rel fcs) for each sample allocations as the

ratio of the frequency of correct selection for that sample allocation to the frequency of correct selection for the n:

allocation. Within the confines of the problem which include the alternatives’ attribute values and the total
experimental budget, this relative frequency of correct selection measure allows us to quantify how much better the
selection could have been if a different sample allocation were chosen.

The shaded contour plots of Figure 2 present the rel fcs as a function of n; and A4, ranging from dark (low rel fcs
values) to light (high, desirable rel fcs values) for training case 16. The solid squares within the plots denote n]* , the

optimal sample allocation for attribute 1 at each A; value. The contour plots of Figure 2 serve to illustrate two
general trends observed across the 20 training cases.

First, consider left panel of Figure 2 (subcase 16.30.1) where the measurement variability associated with attribute 1
is large (0'12 =30") and that associated with attribute 2 is small (0'22 =1%). When attribute 1 is very important to the

decision-maker (4, is near 1), then only sample allocations that allocate nearly all 10 samples to attribute 1 (n; is
near 10) produce favorable rel fcs values. When, however, attribute 1 is not important (4; is near 0), nearly all
sample allocations produce very favorable results. Although attribute 2 is very important in this situation, because it
has low measurement variability, sample allocations with small values of n, still produce favorable rel fcs values.
This phenomenon is seen in reverse in subcase 16.1.30 (right panel, Figure 2). Subcase 16.30.30 (center panel,
Figure 2) combines the restrictive observations of the previous two subcases because both attributes have large

measurement variability (0'12 = 0'22 =30"). That is, only sample allocations that allocate nearly all 10 samples to

attribute 1 produce favorable rel fcs results when attribute 1 is very important, and only sample allocations that
allocate nearly all 10 samples to attribute 2 produce favorable rel fcs results when attribute 2 is very important.
These observations begin to illustrate the complex tradeoff between apportioning samples based on measurement
variability and sampling the important attribute.
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Figure 2: Contour plots displaying rel fcs as a function of n; and A, for training case 16 under measurement error
scenarios (30%, 1%), (30%, 30%), and (17, 30%). For each A;, the solid squares denote n: , the optimal sample allocation
for attribute 1.

The second trend illustrated in Figure 2 is that, in general, as the importance of attribute 1 increases (that is, as the
weight A; increases from 0 to 1), the n; values that generate the most desirable sample allocations increase. This
relationship is not strictly linear, but it can be reasonably represented by an “S-curve” such as the logistic function.
This can be seen most clearly in subcase 16.30.30 (center panel, Figure 2). Although the location and shape of a
representative S-curve varied from case to case, we saw that these parameters depended on the shape of the frontier.

4.3 Creating Sample Allocation Rules

In general, the optimal sample allocation rule depends upon the information that the decision-maker has. If he has no
information, the decision-maker will have no reason to allocate more samples to either attribute and would use a
balanced allocation of n; = n, = N/2. We refer to this sample allocation as the uniform allocation rule. This
allocation is consistent with the principle of balance in the traditional design of experiments discipline.

If the values of A, and 4, are available, then the decision-maker may choose to assign n; and n, proportional to A,
and 4,. The observations made from Figure 2 in Section 4.2 showed that the optimal sample allocation generally
increased as A, increased. Since n; and N, must be integer values, rounding is necessary, e.g., N; = round(4;N),
n, =N —n;. We refer to this sample allocation approach as the proportional allocation rule.

Although the proportional allocation rule is simple, the evaluations showed that the relationship between 4, and nf

was usually not linear, but rather, distinctly nonlinear. To approximate this relationship, we used a step-like function
that we called the step rule. For 0 < ¢, < ¢, < 1 and 0 < 4, < 1, the step rule assigns n; and n, as follows:

0 if 4 <c
A4 —C
n =qround|| —= [N | if ¢ <c,andc <4 <c, ; n=N-n (2)
¢, —¢
N if 4 >c,

We determined, for each training case, the values of the parameters ¢; and C, that maximized the average relative
frequency of correct selection across all measurement error scenarios. We used those results to generate insights into
how these parameter values depend upon the shape of the concave frontier (the values of the general overall angle 6
and the nonlinearity measure NL). From this, we hypothesized a quadratic relationship between & and ¢, (and c,) and
found the best fit using restricted least-squares regression:

c,=f(0)=847x10"0+1.14x10" 6"’
c,=1,(0)=209x10"6-1.09x10"¢’

We also hypothesized a bivariate relationship between 6 and NL and c; (and c;) and found the best fit using
restricted least-squares regression:

3
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¢, =f(6,NL)=1.11x10"6+0.674NL-5.94x10 "0 NL
c,=f,(6,NL)=1.11x10"0+4.56NL - 5.69x 1076 - NL

(The details of these derivations are omitted due to space constraints.) Thus, if the decision-maker had information
about the shape of the concave frontier, a specific step rule could be generated and used to determine the sample
allocation. Note that when & = 0 (a horizontal frontier), then NL = 0 and ¢; = ¢; = 0. When 8 = 90 (a vertical
frontier), then NL = 0 and ¢; = ¢, = 1. The corresponding sample allocations are (n;, n,) = (10, 0) and
(ny, np) = (0, 10) for any values of 4, and 4,.

“

An illustration of the sample allocations generated by each allocation rule and their resulting rel fcs values over the
range of A, for subcase 8.20.20 is provided in Figure 3. As in Figure 2, the shaded contour plots of Figure 3 present
the rel fcs as a function of n; and A, ranging from dark (low rel fcs values) to light (high, desirable rel fcs values).

The solid squares within the plots denote nf , the optimal sample allocation for attribute 1 at each A, value. The solid
line in each plot represents the sample allocation generated by the specified allocation rule for the range of decision
weight ;.

uniform proportional step: 1 parameter step: 2 parameter
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Figure 3: Sample allocations (solid line) generated by each allocation rule for training subcase 8.20.20. The shaded
contour plots display the rel fcs as a function of n; and 4. The solid squares denote n; , the optimal sample

allocation for attribute 1.

A good allocation rule provides sample allocations that result in high rel fcs values for any decision weight (4,
value); an ideal rule provides a sample allocation equal to nf at each A; value. While no rule presented in Figure 3

provides an optimal sample allocation at every A, value, the step allocation rules provide sample allocations that
provide high — and often optimal — rel fcs values for most A, values. Sample allocations provided by the uniform and
proportional allocation rules are seen to result in less desirable (darkly shaded) rel fcs values over many values of 4;.

4.4 Testing the Sample Allocation Rules

To test the sample allocation rules, we generated 500 new concave frontiers (testing cases). Each case was a set of 5
randomly generated alternatives. Again, the instance generation process ensured that the alternatives formed a
concave efficient frontier with attribute values restricted to the domain of [100, 200]. We calculated the nonlinearity
(NL) and general angle (6) measures for each case.

We tested the sample allocation rules using all 500 testing cases and 19 decision weight pairs in the value function,
(41, A&) = (0.05, 0.95), (0.10, 0.90), ..., (0.95, 0.05. To each of the 500 testing cases, we assigned a pair of

measurement variability values, ‘712 and 0'22 , to be associated with the two attributes, X, and X,. The assigned o;

values (i = 1, 2) were independent, random draws from a uniform distribution with parameters min = 1 and
max = 30. Then, for each of the 11 sample allocations, for each of the 19 decision weight pairs, across the 500
testing cases, we evaluated the performance of the sample allocation using the process described in Section 4.2 and
obtained a rel fcs value. For each testing case and decision weight combination, we used each of the sample
allocation rules to identify a sample allocation. The rel fcs value for these allocations were identified. The
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performance of a rule, for each decision weight, was defined to be the average rel fcs of its sample allocation across
the 500 test cases. The uncertainties in the average rel fcs were expressed as 95 % confidence intervals based upon
the normality assumptions provided by the Central Limit Theorem.

5. Results

The four sample allocation rules studied (uniform, proportional, one-parameter step, and two-parameter step)
provided larger average rel fcs values across the range of decision weights than an arbitrary (random) allocation of
experimental samples across alternatives. This underscores the importance of the experimental design process when
embarking upon a data collection exercise to support a selection decision. The general ranking of the allocation rules
in terms of performance (average rel fcs) from best-performing to worst-performing is as follows: two-parameter
step, one-parameter step, proportional, uniform. At 4; values very near 0 and very near 1 the proportional allocation
rule and the step rules provide similar sample allocations (n; =0 at 4; =0 and n; =N at 4; = 1) and thus displayed
similar performance at these decision weight values. At A; values near 0.5 the proportional allocation rule and the
uniform allocation rule provide similar sample allocations (n; = n, = N/2) and thus displayed similar performance at
these decision weight values. Figure 4 illustrates these general conclusions by displaying, for each of the four
allocation rules studied and the random allocation (provided as a reference), the relative frequency of correct
selection averaged across all evaluation cases and the 95 % confidence interval at each A, value.

w
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Figure 4: Relative frequency of correct selection averaged across all testing cases for each A; value. The dotted lines
represent the 95 % confidence intervals.

As shown in Figure 4, the sample allocations generated by the uniform allocation rule led, on average, to a rel fcs
near 0.80, and this performance is nearly constant over most values of A;. The average rel fcs for the proportional
allocation rule increases as 4; moves away from 0.5 and towards either A, = 0 or A; = 1. Overall, the average rel fcs
for the proportional allocation rule is approximately 0.83. The one-parameter step rule provides a maximum average
rel fcs value of 0.95 at 4; = 0.95, a minimum average value of 0.83 at 4; = 0.5, and an overall average rel fcs of
0.88. The two-parameter step rule provides a maximum average rel fcs value of 0.97 at A4; = 0.95, a minimum
average value of 0.89 at 4; = 0.5, and an overall average rel fcs of 0.92. We thus conclude that, for nearly all values
of 4,, the two-parameter step rule, which leverages the frontier characteristic measures of overall theta and
nonlinearity, provides average relative frequency of correct selection values that are statistically distinguishable
(non-overlapping confidence intervals) and superior to the other allocation rules.

When 4, is near 0.5 (attributes are equally important), sample allocations that are not optimal perform very poorly
because they fail to provide enough information about one of the attributes, which reduces the likelihood of
selecting the truly best alternative. When one attribute is largely more important than the other (i.e., when A, is near
0 or 1), and the less important attribute also has more uncertainty, we have seen that there is a range of near-optimal
sample allocations that have a high rel fcs. Thus, it appears that it is easier to generate a near-optimal sample
allocation when A, is near 0 or 1, which would perhaps explain why the curves in Figure 4 tend be lower when 4, is
near 0.5 and higher when 4, is near 0 or 1.
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6. Summary and Conclusions

The ultimate goal of this work was to provide guidance on allocating a fixed experimental budget (samples) across
multiple attributes — when collecting data to support a selection decision — to maximize the probability that the
decision-maker will choose the true best alternative. Through a simulation study, we have demonstrated that the
allocation of experimental samples across the multiple attributes does indeed impact the ability of the decision-
maker to choose the true best alternative when the estimated attribute values are subject to normally distributed
measurement error. This was clearly illustrated by the contour plots in Figure 2 of Section 4.2 where it was shown
that for any given set of decision weights the relative frequency of correct selection can vary considerably based on
the implemented sample allocation. We have shown that a sample allocation based upon the decision model weights
as well as the characteristics of the set of alternatives (and their associated true attribute values) improves the
probability of selecting the true best alternative over a sample allocation that does not consider this information.
This emphasizes the importance for projects focused on a selection decision to be managed so that the decision
modeling and the experimental planning are done jointly rather than in isolation (which, unfortunately, is currently
not uncommon). Such a cooperative approach can improve the overall selection results of the project.

For the two-attribute case where the decision alternatives form a concave efficient frontier and the attribute value
estimates are subject to normally distributed measurement error, we evaluated four sample allocation rules: uniform
allocation, proportional allocation, and the one- and two-parameter step rules. When the experiment is planned
without any knowledge of the decision model or the alternatives’ attribute values, then the uniform allocation rule
would be a reasonable approach for allocating the experimental budget. We have displayed, however, that this
allocation rule nearly always provides an allocation that is sub-optimal. By simply defining the decision model prior
to the data collection phase, the proportional allocation rule can be utilized, providing sample allocations that
improve the probability of correct selection over those provided by the naive uniform allocation rule, particularly for
A1 < 0.25 and A; > 0.75 (See Figure 4). If, in addition to the decision model, the decision-maker can provide
information regarding the shape of the concave frontier formed by the considered alternatives, then the proposed
step rules can be leveraged. The one-parameter step rule requires knowledge of the general slope of the efficient
frontier and prescribes sample allocations that provided, on average, a significant improvement in the relative
frequency of correct selection over the allocations provided by the uniform allocation and the proportional allocation
rules for nearly all the decision model weights considered. The two-parameter step rule requires additional
information in the form of the nonlinearity measure of the efficient frontier, but the resulting sample allocations
provide even further improvement in the frequency of correct selection over the allocations provided by the one-
parameter step rule, particularly for 0.20 < 4; < 0.80.

We observed these same general trends in the performance of the uniform, proportional, and one-parameter step
allocation rules in our previous work that considered attributes evaluated using pass-fail testing. (We did not
consider the two-parameter step allocation rule in our previous work.) A notable difference was that the case to case
variability in the allocation rule performance was substantially smaller in the pass-fail testing study. We attributed
this to the bounded nature of the Bernoulli parameter versus the unbounded positive range of values that the
measurement variability can take in the normally distributed measurement error case.

Although the amount of measurement variability associated with each attribute was seen to impact the optimal
sample allocations on an individual case basis (see Section 4.2), it was not seen to have an impact on the overall
performance of the allocation rules. When one attribute is more important than the other, but the less important
attribute has more uncertainty, we have seen that there is a range of near-optimal sample allocations that have a high
rel fcs.

We expect that these results will hold in cases with more than five alternatives and decision situations with more
than two attributes. A nonlinear single-attribute value function may alter the influence of attribute value uncertainty,
however, which could influence the impact of the sample allocation. In situations with a non-additive value function,
the trends described here may not hold.

This work on allocating experimental samples across multiple attributes in a selection decision when the attribute
values are subject to normally distributed measurement error expands upon our previous work in this area which
focused on pass-fail testing (Bernoulli trials). While both of these studies considered only a single-phased
experiment with two attributes, our future work will consider sequential allocation policies and will expand beyond
two attributes.
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