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Abstract- Some conflicting results have been reported on the 
comparison between t-way combinatorial testing and random 
testing. In this paper, we report a new study that applies t-way 
and random testing to the Siemens suite. In particular, we 
investigate the stability of the two techniques. We measure 
both code coverage and fault detection effectiveness. Each 
program in the Siemens suite has a number of faulty versions. 
In addition, mutation faults are used to better evaluate fault 
detection effectiveness in terms of both number and diversity 
of faults. The experimental results show that in most cases, t-
way testing performed as good as or better than random 
testing. There are few cases where random testing performed 
better, but with a very small margin. Overall, the differences 
between the two techniques are not as significant as one would 
have probably expected. We discuss the practical implications 
of the results. We believe that more studies are needed to 
better understand the comparison of the two techniques. 

Keywords- Combinatorial Testing, Random Testing, 
Software Testing. 

I. Introduction 
Software failures are often caused by interactions of a 

few input parameters. A technique called t-way 
combinatorial testing, or t-way testing, employs a test set 
that covers all t-way interactions, i.e. interactions that 
involve no more than t parameters. If parameters and values 
are modeled correctly, a t-way test set guarantees to expose 
all failures that involve no more than t parameters. In 
practical applications, t is typically a small integer that is no 
more than six [13]. 

Many empirical studies show that t-way testing can be 
very effective in fault detection while significantly reducing 
the number of tests. However, a question that is often asked 
by the research community is about the comparative 
effectiveness of t-way testing. That is, how does t-way 
testing compare to other testing techniques? In particular, 
how does t-way testing compare to random testing? 

Some conflicting results have been reported in the 
literature. The studies such as [5][8][9][11] find that t-way 
testing is more effective than random testing. However, 
other studies such as [1][4][6][7] suggest that there is no 
significant difference between t-way testing and random 
testing. This lack of consensus suggests a need for more 
studies to better understand the effectiveness of these two 
techniques. 

In this paper, we report a new study that responds to the 
above need. In particular, we investigate the stability of the 
two testing techniques. For a given test strength t, multiple 
test sets can be generated to satisfy t-way coverage. 

Similarly, multiple random test sets of the same size can be 
generated. The notion of stability refers to the degree to 
which the effectiveness of such multiple test sets varies. In 
practice, testers normally execute only one test set that is 
essentially an arbitrary selection among multiple possible 
test sets. The more stable a testing technique, the more 
confidence one has about the effectiveness of the test set 
that is actually executed. 

In our study, we use the Siemens suite as our subject 
programs. The Siemens suite has been used a benchmark to 
evaluate the effectiveness of many testing techniques. The 
suite consists of seven programs, each of which has a 
number of faulty versions. Our earlier work modeled the 
input space of these programs [17]. In this current study, for 
a given test strength t, a total of 100 t-way test sets are 
generated for each program. For each t-way test set, a 
random test set of the same size is also generated. Both t-
way and random test sets are generated using the same input 
models in [17]. 

The effectiveness of an individual test set is measured in 
terms of code coverage and fault detection. Code coverage 
data are collected by running test sets on the error-free 
version of each program. For fault detection, we run test sets 
on the error-free version and the faulty versions of each 
program. A fault is detected if the faulty version produces a 
different output than the error-free version. A mutation test 
tool called Milu [18] is used to generate additional faulty 
versions for three programs in the Siemens suite. Mutation 
faults increase the number and diversity of the faults used in 
our experiments and thus helps to better evaluate fault 
detection effectiveness. 

The results of our study suggest that in most cases, t-way 
testing performed as good as or better than random testing. 
There are few cases where random testing performed better 
but with a very small margin. Overall, the differences 
between the two are not as significant as one would have 
probably expected. This can be partially explained by the 
fact that most random test sets have a high percentage of t-
way coverage. That is, while a random test set does not 
cover all the t-way combinations, it covers most of them. A 
small number of combinations being missing does not 
always make a difference on code coverage and fault 
detection results. 

It is important to make several notes about the results of 
our study. First, we used the same input model for t-way and 
random testing. While t-way test generation is 
computationally more expensive than random test 
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Table I. Characteristics of subject programs 

Programs LOC Number of Number of faulty  

functions versions 

printtokens 472 18 7 

printtokens2 399 19 10 

replace 512 21 32 

schedule 292 18 9 

schedule2 301 16 10 

tcas 141 9 41 

totinfo 440 7 23 

 
Model 

(22)	× (24) 	× (5) × (8) × (2 × 7)3 * 

(47 × 22) 
(22)	× (24) 	× (5) × (8) × (2 × 7)3 * 

(47 × 22) 
(24 × 416) 

(21 × 38 × 82) 
(21 × 38 × 82) 

(27 × 32 × 41 × 102) 
(33 × 52 × 61) 

Number of 

constraints 

4** 

14 

4** 

14 

36 

0 

0 

0 

0 
∗	 The model of the replace program has two levels; sub level consists of 7 sub models and the top model with 9 

parameters. Three out of 7 sub models share the same model, two parameters with 2 and 7 values.   

**   The second sub model with (24)	 input model, has 4 constraints and the other does not have any constraints.  

generation, both procedures are automated. Thus the 
advantage of random testing in terms of reducing test 
generation cost is not as significant in practice as one would 
probably have perceived. Second, in our experiments, the 
size of a random test set is set to be the same as its 
corresponding t-way test. However, when we apply random 
testing in practice, we need to decide when to stop, i.e., how 
many tests are sufficient. This can be a difficult decision. In 
this respect, t-way testing has an advantage in that it has a 
well-defined stopping point, i.e., achieving full t-way 
coverage. Finally, we must acknowledge that our study is 
limited in terms of both the number and sizes of the subject 
programs, and the number and types of faults. More studies 
are needed to obtain a better understanding.  

The remainder of this paper is organized as follows. In 
section II, we describe our experimental design. Section III 
reports experimental results. Section IV provides some 
general discussion about the experimental results. Section V 
describes threats to validity. Section VI gives an overview 
of work that is related to ours. Section VII provides 
concluding remark. 

II. Experimental Design 
This section describes the design of our experiments, 

including the subject programs, the evaluation metrics, and 
the test generation procedure used by our experiments.  

A. Subject Programs 

Our experiments use the Siemens suite from the 
Software Infrastructure Repository [16]. This suite contains 
7 programs. Two programs, printtokens and printtokens2, 
have the same specification but different implementations. 
They tokenize a text file and determine the type of each 
token. The replace program takes three inputs, pattern, 
substitute and input text, and it replaces every match of 
pattern in input text with substitute. Two programs, 
schedule and schedule2, provide two different 
implementations of a scheduling scheme that determines the 
execution order of a set of processes based on their 
priorities. The tcas program is an aircraft collision 

 
avoidance system. The totinfo program takes as input a file 
containing one or more tables, and computes the total 
degree of freedom and chi-square of rows and columns. 

In the Siemens suite, each program has an error-free 
version and several faulty versions. There also exists a test 
set for each program. These test sets are not used in our 
experiments. Table I shows some characteristics of the 
subject programs. The second column shows the number of 
lines of (uncommented) code. The third column shows the 
number of functions. The fourth column shows the number 
of faulty versions. The fifth column shows the input models 
used for test generation. The input models are shown in an 
exponential format. For example, totinfo has six parameters, 
where three, two and one of them have a domain size of 3, 5 
and 6, respectively. The model of this program is shown in 
an exponential format by (33 × 52 × 61). The last column 
shows the number of constraints in the input model. The 
details of the models are explained in [17].   

In addition to the faulty versions that come with the 
Siemens suite, a mutation testing tool called Milu [18] is 
used to generate additional faulty versions. This helps to 
better evaluate fault detection effectiveness both in terms of 
number and diversity of faults. The number of mutants 
generated by Milu is typically large, and running hundreds 
of test sets over them is very time consuming. In our 
experiments, we select three programs, replace, schedule 
and totinfo, and for each of the three programs, we select a 
few functions, for mutant generation.  

We refer to faults in the faulty versions provided by the 
Siemens suite as Siemens faults, and faults that are 
generated by mutation as mutation faults.    

 Table II shows some characteristics of generated 
mutants. The second column shows the number of functions 
selected for each program. Note that schedule is smaller 
than the other two programs, the mutants are generated for 
the entire program. The third column indicates the number 
of mutants generated. The fourth column shows that the 
number of terminating mutants that are used by our 
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Table II Characteristics of generated mutants 

Programs Number of Number of Number of 

functions used for mutants terminating 

mutants mutants 

generation 

replace 4 143 128 

schedule 18 94 93 

totinfo 2 151 149 

experiments. Mutants that did not terminate after 1 minute 
were excluded in our experiments.1)  

We do not select printtokens and printtokens2 for mutant 
generation because of the hierarchical nature of their input 
models. We do not select schedule2 since it has the same 
model as schedule. Also tcas is not selected because it has 
complex decision logic and its mutants are likely to 
represent faults with strength of more than 6. 

B. Evaluation Metrics 

We measure the effectiveness of an individual test set in 
two dimensions, i.e., code coverage and fault detection. 

For code coverage, line and branch coverage collected 
for each test set run with the error-free version of each 
program. A tool called gcov is used to gather coverage data. 
The tool is executed with the “branch-probabilities” option, 
and the “line executed” output is taken for line coverage and 
the “taken at least once” output is used for branch coverage.  

For fault detection, we check how many faults can be 
detected by a test set. A fault is detected if the output of a 
faulty version is different from the output of the error-free 
version by one or more tests in a test set.  

For code coverage and fault detection data collected 
from a group of test sets, we compute minimum, first 
quartile, median, third quartile, maximum, spread and 
relative standard deviation. The first five measures 
summarize the effectiveness of the test sets as a group, 
whereas the latter two summarize how stable the results are 
across different test sets in the group.  

C. Test Generation 

For each subject program, we generate 100 t-way test 
sets for each strength t, where t is from 2 to 5. There are a 
total of 400 t-way test sets for each program. We use PICT 
[20] to generate t-way test sets. PICT uses a greedy, random 
algorithm for t-way test generation and allows the user to 
specify a seed. In order to obtain different test sets, a 
different seed is given each time a test set is generated. Test 
sets are compared to ensure that no two test sets are exactly 
the same. In our experiments no redundant test sets are 
detected.  

For replace, we did not generate 5-way test sets as they 
are very large, and take too much time to execute. On 
                                                                 
1 In retrospect, this exclusion is not necessary. Instead, non-terminating 

mutants should be considered killed. Due to insufficient time we were not 
able to re-do the experiments by the time of this submission. If this paper 
is accepted, we will re-do the experiments without this exclusion. 

average, there are 12604.22 tests in a 5-way test set for 
replace and it takes 3.22 seconds to execute each test 
(against all the 32 faulty versions in the Siemens suite). 
Thus it takes about 11.27 hours to execute each test set. The 
time needed to execute 100 test sets is prohibitive and thus 
we did not conduct 5-way testing for replace in our 
experiments. Note that our experiments are conducted on a 
PC that has a Pentium (R) 4 (2.40 GHZ) processor and 2 
GB memory and that runs Ubuntu 12.04 LTS (32bit). 

For each t-way test set, we generate a random test set of 
the same size. The same input model used by t-way test 
generation is used for random test generation. If the input 
model of a program does not have any constraint, a random 
test is generated by simply giving each parameter a random 
value of its domain. Otherwise, additional care needs to be 
taken to ensure that all the constraints are satisfied.  More 
details about random test generation with the presence of 
constraints can be found in [17]. 

III. EXPERIMENTAL RESULTS 
In this section, we first present the test generation 

results, i.e., some important properties and statistics of the 
test sets generated in our experiments. Then we present the 
test execution results in terms of code coverage and fault 
detection that are achieved by these test sets.  

A. Test generation result 

Table III shows some statistics about the sizes of the 
generated test sets including minimum, maximum, average  

  

Table III Test sets’ size  

Program Strength Min Max Average RelStdDev 

printtokens 2 42 47 44.46 2.72 

3 113 127 119.6 2.17 

4 307 330 319.97 1.64 

5 763 791 776.38 0.80 

2 200 220 210.86 2.18 

replace 3 904 955 928.66 1.10 

4 3730 3805 3773.07 0.41 

2 64 64 64 0 

3 244 259 251.22 1.45 
schedule 

4 1060 1088 1075.30 0.57 

5 3788 3806 3812.26 0.26 

tcas 2 100 100 100 0 

3 400 409 403.38 0.47 

4 1401 1447 1423.28 0.65 

5 4240 4321 4277.85 0.36 

totinfo 2 31 35 32.41 3.10 

3 150 158 153.26 0.92 

4 532 560 544.5 1.05 

5 1554 1613 1586.35 0.72 
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Table IV Combinatorial coverage of random sets Table V Maximum line and branch coverage results  

Program Strength Min Max Average RelStdDev Programs Max of line coverage Max of branch coverage 

2 52.94 82.58 72.03 7.88 (46.15) (46.67) (45.13) (35.78) (36.7) (38.53) 

3 54.29 88.54 76.95 11.45 (43.08) (74.36) (35.38) (40.37) (57.8) (27.52) 
printtokens printtokens (47.69) (35.78) 4 61.10 94.27 86.31 9.24 

69.74 55.05 5 73.68 95.31 91.76 4.13 

2 89.38 96.06 94.85 0.95 (58.5) (58.5) (57)  (71) (45.68) (46.91) (46.3) 
replace (73.5) (56.5) (74.5) (58.02) (67.9) (40.74) 3 89.27 96.41 94.46 1.73 printtokens2 

(70.99) 
2 91.15 96.53 93.64 1.06 

80.5 76.54 
3 92.51 94.07 93.43 0.39 

schedule replace 88.93 80.56 
4 94.85 95.68 95.30 0.17 schedule 94.74 80.30 

5 95.66 96.19 95.89 0.08 schedule2 94.57 75 

tcas 2 92.23 96.18 94.25 0.74 tcas 89.23 90.91* 

totinfo 92.68 84.09 3 93.51 95.19 94.30 0.34 
*  In this program maximum branch coverage is greater than 

4 95.15 96.00 95.52 0.17 maximum line coverage, the reason is that || and && operators (in 
an if statement) introduce new branches, in gcov.  5 96.05 96.45 96.26 0.08 

totinfo 2 75.78 88.67 82.64 2.96 by a random test set. The exceptions are for printtokens with 
3 83.18 88.86 86.20 1.31 t = 2 and 3, where the average t-way coverage is more than 

70% but lower than 80%. ACTS was not able to compute 
4 83.47 87.15 85.05 0.79 

the t-way coverage for replace when t = 4. The reason is 
5 81.92 83.73 82.96 0.46 that replace has a relative large and complex input model 

 while the option for computing t-way coverage in ACTS is 
mainly experimental and is thus not optimized.   and relative standard deviation. Note that printtokens and 

printtokens2 use the  same  input model and  thus  have  the B. Test execution result 
same test sets, and so do schedule and schedule2. Also note 

The test execution results are presented in three parts, that printtokens and printtokens2 have a hierarchical input 
including code coverage results, Siemens fault detection model. Due to limited space, we only show statistics for the 
results, and mutation fault detection results.  test sets generated from the top model.  
Code Coverage: Code coverage is collected by running  Table IV shows the statistics of the t-way coverage 
each test set on the error-free version of each subject achieved by the random test sets. The t-way coverage of a 
program. Table V shows the maximum line and branch test set is computed using the ACTS tool with a special 
coverage achieved by these test sets. Maximum coverage option on the command line interface [19]. For most cases, 
indicates to certain degree the quality of the input model. more than 80% (on average) of t-way coverage is achieved 
For printtokens  and  printtokens2, the maximum  line and 

Table VI Coverage results of replace 

Metric Strength Method Min Q1 Median Q3 Max Spread RelStdDev 

T-way Testing 88.84 88.84 88.84 88.84 88.84 0 0 

2 Random Testing 88.84 88.84 88.84 88.84 88.84 0 0 

Line T-way Testing 88.84 88.84 88.84 88.84 88.84 0 0 

Coverage 3 Random Testing 88.84 88.84 88.84 88.84 88.84 0 0 

T-way Testing 88.84 88.84 88.84 88.84 88.84 0 0 

4 Random Testing 88.84 88.84 88.84 88.84 88.84 0 0 

T-way Testing 79.44 79.44 79.44 80.56 80.56 1.12 0.69 

2 Random Testing 79.44 79.44 79.44 80.56 80.56 1.12 0.70 

Branch T-way Testing 79.44 80.56 80.56 80.56 80.56 1.12 0.39 

Coverage 3 Random Testing 79.44 80.56 80.56 80.56 80.56 1.12 0.24 

T-way Testing 80.56 80.56 80.56 80.56 80.56 0 0 

4 Random Testing 80.56 80.56 80.56 80.56 80.56 0 0 
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Table VII Coverage results of schedule 

Metric Strength Method Min Q1 Median Q3 Max spread RelStdDev 

T-way Testing 94.74 94.74 94.74 94.74 94.74 0 0 

2 Random Testing 94.74 94.74 94.74 94.74 94.74 0 0 

T-way Testing 94.74 94.74 94.74 94.74 94.74 0 0 

Line 3 Random Testing 94.74 94.74 94.74 94.74 94.74 0 0 

Coverage T-way Testing 94.74 94.74 94.74 94.74 94.74 0 0 

4 Random Testing 94.74 94.74 94.74 94.74 94.74 0 0 

T-way Testing 94.74 94.74 94.74 94.74 94.74 0 0 

5 Random Testing 94.74 94.74 94.74 94.74 94.74 0 0 

T-way Testing 80.3 80.3 80.3 80.3 80.3 0 0 

2 Random Testing 80.3 80.3 80.3 80.3 80.3 0 0 

T-way Testing 80.3 80.3 80.3 80.3 80.3 0 0 

Branch 3 Random Testing 80.3 80.3 80.3 80.3 80.3 0 0 

Coverage T-way Testing 80.3 80.3 80.3 80.3 80.3 0 0 

4 Random Testing 80.3 80.3 80.3 80.3 80.3 0 0 

T-way Testing 80.3 80.3 80.3 80.3 80.3 0 0 

5 Random Testing 80.3 80.3 80.3 80.3 80.3 0 0 

 

Table VIII Coverage results of totinfo 

Metric Strength Method Min Q1 Median Q3 Max Spread RelStdDev 

T-way Testing 26.83 28.46 41.46 73.17 86.99 60.16 41.37 

2 Random Testing 26.83 26.83 38.21 73.17 86.99 60.16 47.17 

T-way Testing 39.84 77.24 78.86 89.23 92.68 52.84 17.23 

Line 3 Random Testing 28.46 75.61 77.24 88.62 92.68 64.22 15.61 

Coverage T-way Testing 78.86 92.68 92.68 92.68 92.68 13.82 5.47 

4 Random Testing 77.24 78.86 92.68 92.68 92.68 15.44 6.94 

T-way Testing 92.68 92.68 92.68 92.68 92.68 0 0 

5 Random Testing 78.86 92.68 92.68 92.68 92.68 13.82 1.49 

T-way Testing 27.27 30.68 42.615 68.18 77.27 50 34.92 

2 Random Testing 27.27 29.55 38.64 67.05 77.27 50 39.32 

T-way Testing 39.77 72.73 75 80.11 84.09 44.32 14.78 

Branch 3 Random Testing 30.68 71.59 72.73 78.41 84.09 53.41 13.36 

Coverage T-way Testing 75 84.09 84.09 84.09 84.09 9.09 3.94 

4 Random Testing 72.73 75 84.09 84.09 84.09 11.36 5.03 

T-way Testing 84.09 84.09 84.09 84.09 84.09 0 0 

5 Random Testing 75 84.09 84.09 84.09 84.09 9.09 1.08 

branch coverage are shown for the top model and all the programs are included since they are selected for mutation 
sub-models. The maximum line and branch coverage testing. Orange cells show cases where random testing 
achieved by t-way and random test sets are the same. This is performs better than t-way testing. 
consistent with the fact that both types of test set use the For the replace program, t-way and random testing 
same input model.  produce the same results for line coverage. However, when 

Tables VI, VII and VIII show some statistics of the code t = 3, random testing has a slightly smaller relative standard 
coverage results for three programs, replace, schedule and deviation for branch coverage than t-way testing (Table 
totinfo.  Due to limited space, we do not show statistics for VI). For the totinfo program, t-way testing outperforms 
the other programs, which can be found in [21]. These three random testing in many cases. For example the minimum 
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line and branch coverage of t-way testing are greater, 
Table IX Maximum number of Siemens faults detected  

sometimes significantly greater, than random testing for t = 
3, 4, and 5 (Table VII). When t = 3, random testing has a Programs Total Max number of faults detected 

smaller standard deviation than t-way testing for both line 
printtokens 7 2 

and branch coverage. However t-way testing has higher min, 
printtokens2 10 7 Q1, median and Q2 than random testing. For the schedule 
replace 32 32 programs, t-way and random testing have exactly the same 

statistics (Table VII).  schedule 9 7 

schedule2 10 3   For t-way test sets, spread and standard deviation are 
tcas 41 41 non - increasing as t increases. This   indicates that as t 
totinfo 23 12 increases, code coverage becomes more stable for t-way 

test sets. This is true for the other four programs whose 
maximum number of faults that are detected by the t-way results are not shown in the paper. This is, however, not 
and random test sets generated in our experiments. For true for random test sets. For example, for totinfo (Table 
printtokens and printtokens2, the results are shown for the VIII), the spreads of both line and branch coverage when t 
top model and all the sub-models. The faults detected by the = 3 are greater than when t =2. 
different models may overlap. For example, the fifth sub-

Note on programs whose results are not shown here: model detected faulty versions 1, 2, 4, and 7, whereas the 
For schedule2 and printtokens, t-way and random testing sixth and seventh sub-models detected faulty versions 4 and 
had exactly the same results. For printtokens2, t-way 7. However, all the faulty versions are killed by all the 
testing had better result than random testing in all cases. In models together.  
addition, t-way test sets achieved the maximum coverage 

Tables X, XI, and XII show the results for three when t = 2, while random test sets achieve the maximum 
programs, i.e., replace, schedule and totinfo respectively. coverage when t = 4. For tcas, random testing performed 
Again, due to limited space, the results for the other better than t-way testing when t = 2, while t-way testing 
programs are not shown. Instead, they are made available in performed better when t > 2.  
[21]. Also, orange cells show cases where random test sets 

Siemens Faults: Each program has a number of faulty have better results than t-way testing. 
versions in the Siemens suite in SIR [16]. Table IX show the 

 

Table X Siemens faults detection of replace 

Strength Method Min Q1 Median Q3 Max Spread RelStdDev 

T-way Testing 16 16 18 32 32 16 32.34 

2 Random Testing 16 18 32 32 32 16 25.46 

T-way Testing 18 32 32 32 32 14 8.61 

3 Random Testing 18 32 32 32 32 14 6.21 

T-way Testing 32 32 32 32 32 0 0 

4 Random Testing 32 32 32 32 32 0 0 

 

Table XI Siemens fault detection of schedule 

Strength Method Min Q1 Median Q3 Max Spread RelStdDev 

T-way Testing 7 7 7 7 7 0 0 

2 Random Testing 7 7 7 7 7 0 0 

T-way Testing 7 7 7 7 7 0 0 

3 Random Testing 7 7 7 7 7 0 0 

T-way Testing 7 7 7 7 7 0 0 

4 Random Testing 7 7 7 7 7 0 0 

T-way Testing 7 7 7 7 7 0 0 

5 Random Testing 7 7 7 7 7 0 0 
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Table XII Siemens faults detection of totinfo 

Strength Method Min Q1 Median Q3 Max Spread RelStdDev 

T-way Testing 1 3 5 6 11 10 45.84 

2 Random Testing 1 3 3 6 9 8 48.35 

T-way Testing 4 9 10 11 12 8 19.88 

3 Random Testing 4 9 10 11 12 8 17.97 

T-way Testing 10 12 12 12 12 2 4.02 

4 Random Testing 9 12 12 12 12 3 7.04 

T-way Testing 12 12 12 12 12 0 0 

5 Random Testing 12 12 12 12 12 0 0 

 
For replace, random testing has better Q1, Median, and Table XIII Maximum number of mutation faults detected 

RelStdDev when t = 2, and better RelStdDev when t = 3 
(Table X). For schedule, random and t-way testing have Programs Total Max number of faults detected 

exactly the same results (Table XI). For totinfo, when t = 2, 
replace 128 128 

random testing has a smaller Spread but it has a higher 
schedule 93 71 

Median and Maximum. When t = 3, random testing has a 
totinfo 149 122 smaller RelStdDev, but all the other measures are the same. 

When t = 4, t-way testing clearly outperforms random 
random testing performed better when t = 4. More testing, and when t = 5 both reach the maximum results. 
discussion on the latter case is discussed later. For schedule, 

For both t-way and random test sets, spread and t-way and random testing have the same results. For totinfo, 
RelStdDev are non-increasing as t increases. This suggests when t = 2, t-way testing have better results in all measures 
that the fault detection results become more stable as t except for Q3 and Max. When t = 3, random testing seems 
increases. to perform better as it has better results in Min, Q1, Spread, 

Note on programs whose results are not shown here: and RelStdDev. However, when t = 4, t-way testing clearly 
For printtokens2 and schedule2, t-way and random testing outperforms, and also it reaches the maximum point where 
have exactly the same results. For printtokens, t-way and the maximum number of faults are detected by all test sets. 
random testing have exactly the same results in all the When t = 5, both t-way and random testing reach the 
models except for the second sub-model t-way testing maximum point. 
outperforms random testing. For tcas, random testing For replace, when t = 4, the minimum number of faults 
performs better when t = 2 and 3, whereas t-way testing detected by a t-way test is 26 less than that by a random test 
performs better when t = 4 and 5. For tcas, the fault set. We randomly selected 4 out of these 26 mutants and 
detection results do not become stable as t increases. The analyzed their degrees of faults. 
reason is probably because the degree of all the faults in tcas 

Our investigation showed that all these faults are more than is more than 5 [17]. 
9-way, i.e., they involve more than 9 parameters. Whereas 

Mutation Faults: Only the first 30 (out of 100) test sets the probability is not high, we conjecture that the reason 
are executed on each mutant. This is because running all test why there exists a t-way test set that detects none of these 
sets for each mutant is prohibitively time consuming. For 26 mutants is because this test set does contain any 
example, it takes 13.19 hours to execute (and evaluate) a 4 combinations that trigger these higher-degree faults. In 
way test set on all the 128 mutants of the replace program. contrast, it happens to be that all the random tests happen to 

Table XIII show the maximum number of mutants contain at least one triggering combination for each of these 
detected by t-way and random testing. For the replace 26 mutants.  
program all 128 mutants are detected. For schedule and 

IV. Discussion totinfo, 22 and 27 mutants could not be detected, 
respectively.  In most cases, t-way testing performed as good as or better 

than random testing. There are few cases where random Tables XIV, XV, and XVI show some statistics of 
testing performed better but with a very small margin. mutation fault detection for replace, schedule and totinfo, 
Overall, the differences between the two are not as respectively. For replace, t-way testing performed as good 
significant as one would have probably expected. As shown as or better than random testing when t = 2 and 3, whereas 
in Table IV, random test sets provided on average a very
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Table XIV Mutation faults detection of replace 

Strength Method Min Q1 Median Q3 Max Spread RelStdDev 

T-way Testing 101 101 101 101 128 27 7.94 

2 Random Testing 101 101 101 101 128 27 7.94 

T-way Testing 101 102 127.5 128 128 27 10.63 

3 Random Testing 101 101 127 128 128 27 11.54 

Combinatorial testing 101 128 128 128 128 27 3.88 

4 Random Testing 127 128 128 128 128 1 0.20 

 

Table XV Mutation faults detection of schedule 

Strength Method Min Q1 Median Q3 Max Spread RelStdDev 

T-way Testing 71 71 71 71 71 0 0 

2 Random Testing 71 71 71 71 71 0 0 

T-way Testing 71 71 71 71 71 0 0 

3 Random Testing 71 71 71 71 71 0 0 

T-way Testing 71 71 71 71 71 0 0 

4 Random Testing 71 71 71 71 71 0 0 

T-way Testing 71 71 71 71 71 0 0 

5 Random Testing 71 71 71 71 71 0 0 

 

Table XVI Mutation faults detection of totinfo 

Strength Method Min Q1 Median Q3 Max Spread RelStdDev 

T-way Testing 61 63 67 68 117 56 25.32 

2 Random Testing 61 63 66 100 121 60 29.02 

T-way Testing 63 114 121 122 122 54 17.30 

3 Random Testing 73 115 121 122 122 49 7.80 

T-way Testing 122 122 122 122 122 0 0 

4 Random Testing 115 122 122 122 122 7 1.46 

T-way Testing 122 122 122 122 122 0 0 

5 Random Testing 122 122 122 122 122 0 0 

 

high level of combinatorial coverage, almost always in observed in our experiments. For example, all the faults that 
excess of 80% and frequently over 95%. All test sets have come with totinfo in the Siemens suite have a degree of at 
some degree of t-way coverage, regardless of how they are least three. However, one of the 2-way test sets generated in 
generated.  The fact that the randomly generated tests had a our experiments was able to detect 11 of these faults. 
very high level of t-way coverage can partially explain why Another example is the tcas program, for which all of the 
there is little difference between the two techniques. Siemens faults are more than 5-way. Five 5-way test sets 

generated in our experiments detected all these faults.   Although there was little difference between 
combinatorial and random tests at a particular interaction V. Threats to validity strength t, fault detection increased rapidly with increasing 
t.  For practical testing, the results suggest that higher levels Threats to internal validity are factors that may be 
of combinatorial coverage significantly improve fault responsible for the experimental results, without our 

knowledge. We have tried to automate the experimental detection, regardless of whether the combinatorial coverage 
procedure as much as possible, as an effort to remove is produced by t-way or random test generation, 
human errors. In particular, we build a tool that 

A t-way test set covers all t-way combinations and thus automatically compares the results of the error-free version 
guarantees to detect all t-way faults. Moreover, a t-way test and a faulty version to evaluate each test run. Further, the 
set also covers many combinations whose size is greater consistency of the results are checked manually to 
than t. Thus, a t-way test set may also detect faults of higher determine whether the tool works correctly or not. 
strength, but without guarantee. This phenomenon has been 
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Threats to external validity occur when the experimental 
results could not be generalized to other programs. We use 
subject programs from the Siemens suite [16]; these 
programs are created by a third party, but the subject 
programs are programs of relatively small size and with a 
small number of seeded faults. To mitigate this threat, the 
mutation faults are added to the experiments. But more 
experiments on larger programs with real faults can further 
reduce this threat. 

VI. Related work 
A number of studies have been reported that evaluates 

the effectiveness of t-way testing. In this section, we focus 
on related work that compares the effectiveness of t-way 
and random testing. 

Schroeder et al. in [1] conducted an experiment to 
compare the fault detection effectiveness of combinatorial 
and random test sets. The subject programs are two real-life 
programs in C++, including the Data Management Analysis 
System (DMAS) and the Loan Arranger System (LAS), 
only one functionality of each program is tested. Their 
results show that there is no significant difference in t-way 
and random testing in terms of fault detection. 

DMAS and LAS have 8.7 and 6.2 KLOC, and their 
input models are represented as (216 × 5 × 8) and 
(27 × 310 × 42), respectively. For each program, and for 
each strength t, where t is from 1 to 4, 10 t-way test sets are 
generated using a tool called TVG [1]. For each t-way test 
set, a random test set of the same size is generated. Mutants 
are created manually to generate faulty versions. Mutants 
that are killed by all the 1-way sets are removed. A total of 
88 mutants for DMAS and a total of 82 mutants for LAS 
are used in their experiments. 

In [1], a random test is generated by randomly selecting 
a test from all possible tests. This is different from our 
approach in which a random test is generated by giving 
each parameter a random value in its domain. This 
difference may slightly affect the combinatorial test 
coverage achieved by a random test set. Note that the 
approach in [1] assumes that all possible tests are first 
generated, which may not be practical for large input 
models. 

Ellimis et al. [8][10] report an experiment that tests 10 
different functions of a system called Wallace that controls 
a large industrial engine. A mutation tool is used to 
generate faulty versions. For each function, three test sets 
are generated, one t-way test set, one pure random test set, 
and one manually generated test set. Pure random tests are 
generated without using an input model. 

Their results show that 2-way test sets are not as 
effective as manually generated tests in term of fault 
detection. But a t-way test set of a higher strength could be 
as effective as a manually generated test set. Their results 
also show that random test sets may often provide good 
results. For example, for 5 out of 10 programs, random and 
t-way test sets provide the same results, and in one case 

random test sets even produce better results than t-way test 
sets. 

Several studies are reported that compare t-way testing 
and random testing for testing logical expressions 
[6][7][11]. The logical expressions are either taken from a 
program such as TCAS II or generated randomly. Mutants 
are generated to create faulty versions. The results 
consistently show that t-way testing is always more 
effective, and sometimes significantly more, than random 
testing 

Kuhn et al. [5] report a study that applies t-way testing 
and random testing to detect deadlocks in a network 
simulator called Simured. The input model for the 
simulator is (23 × 3 × 49 × 5). T-way test sets are 
generated by ACTS with t = 2 to 4. For each t-way test set, 
eight random test sets of the same size are generated 
corresponding to each combinatorial set. Their experiments 
show that (1) random testing has better results than 2-way 
testing; (2) no significant difference exists between random 
and 3-way testing; (3) 4-way testing is more effective than 
random testing. 

Bell and Vouk reported applied 2-way testing and 
random testing to a network-centric software [9]. They 
found that 2-way testing is more effective in fault detection. 
In particular, when there is at least one parameter with 
more than 10 values, random testing does not detect about 
75% of faults that are detected by 2-way testing 

Bryce et al. compared the coverage of combinatorial 
and random testing on a system called Flight Guidance 
System (FGS) [2]. The FGS system has 40 input 
parameters, each of which has 2 values. Four t-way test sets 
with t = 2 to 5, as well four random test sets of the same 
size, are generated. Their results show that t-way testing is 
more effective than random testing for the FGS system. 

Finally we note that Czerwonka reported a study [3], 
that applies t-way testing to four utility program in 
Windows 7, including attrib.exe, fc.exe, find.exe and 
findstr.exe. The focus of the study is to investigate the 
stability of t-way testing in terms of line and branch 
coverage. The results show that t-way test sets provide 
stable coverage when t >= 2. This study, however, does not 
make a comparison with random testing. 

VII. Conclusion 
In this paper, we report a study that compares the 

effectiveness of t-way testing to that of random testing in 
terms of both code coverage and fault detection. In 
particular, we investigated the stability of the two 
techniques. Our results show that in most cases, t-way 
testing performed as good as or better than random testing. 
There are few cases where random testing performed better, 
but with a very small margin. Overall, the differences 
between the two are not as significant as one would have 
probably expected. A possible explanation is that most 
random test sets seem to achieve a high level of t-way 
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coverage. More studies are needed to better understand the	 Proceeding of the ACS/ IEEE International Conference on 
Computer Systems and Applications, pp. 301-311, 2001. effectiveness of the two testing techniques. 

We plan to conduct more empirical studies to further 
evaluate the effectiveness and stability of combinatorial 
testing. We plan to use programs that are larger and/or 
more complex than the Siemens programs. We also plan to 
conduct studies where the degree of fault can be better 
controlled. This will help us to better study the relationship 
between the combinatorial coverage of a test set and the 
faults the test set is able to detect. 
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