

An Empirical Comparison of Combinatorial and Random

Testing

Laleh Sh. Ghandehari1, Jacek Czerwonka2, Yu Lei1, Soheil Shafiee1, Raghu Kacker3, Richard Kuhn3

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA

2 Microsoft Research, Redmond, Washington 98052, USA

3Information Technology Laboratory National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

Abstract- Some conflicting results have been reported on the
comparison between t-way combinatorial testing and random
testing. In this paper, we report a new study that applies t-way
and random testing to the Siemens suite. In particular, we
investigate the stability of the two techniques. We measure
both code coverage and fault detection effectiveness. Each
program in the Siemens suite has a number of faulty versions.
In addition, mutation faults are used to better evaluate fault
detection effectiveness in terms of both number and diversity
of faults. The experimental results show that in most cases, t-
way testing performed as good as or better than random
testing. There are few cases where random testing performed
better, but with a very small margin. Overall, the differences
between the two techniques are not as significant as one would
have probably expected. We discuss the practical implications
of the results. We believe that more studies are needed to
better understand the comparison of the two techniques.

Keywords- Combinatorial Testing, Random Testing,
Software Testing.

I. Introduction
Software failures are often caused by interactions of a

few input parameters. A technique called t-way
combinatorial testing, or t-way testing, employs a test set
that covers all t-way interactions, i.e. interactions that
involve no more than t parameters. If parameters and values
are modeled correctly, a t-way test set guarantees to expose
all failures that involve no more than t parameters. In
practical applications, t is typically a small integer that is no
more than six [13].

Many empirical studies show that t-way testing can be
very effective in fault detection while significantly reducing
the number of tests. However, a question that is often asked
by the research community is about the comparative
effectiveness of t-way testing. That is, how does t-way
testing compare to other testing techniques? In particular,
how does t-way testing compare to random testing?

Some conflicting results have been reported in the
literature. The studies such as [5][8][9][11] find that t-way
testing is more effective than random testing. However,
other studies such as [1][4][6][7] suggest that there is no
significant difference between t-way testing and random
testing. This lack of consensus suggests a need for more
studies to better understand the effectiveness of these two
techniques.

In this paper, we report a new study that responds to the
above need. In particular, we investigate the stability of the
two testing techniques. For a given test strength t, multiple
test sets can be generated to satisfy t-way coverage.

Similarly, multiple random test sets of the same size can be
generated. The notion of stability refers to the degree to
which the effectiveness of such multiple test sets varies. In
practice, testers normally execute only one test set that is
essentially an arbitrary selection among multiple possible
test sets. The more stable a testing technique, the more
confidence one has about the effectiveness of the test set
that is actually executed.

In our study, we use the Siemens suite as our subject
programs. The Siemens suite has been used a benchmark to
evaluate the effectiveness of many testing techniques. The
suite consists of seven programs, each of which has a
number of faulty versions. Our earlier work modeled the
input space of these programs [17]. In this current study, for
a given test strength t, a total of 100 t-way test sets are
generated for each program. For each t-way test set, a
random test set of the same size is also generated. Both t-
way and random test sets are generated using the same input
models in [17].

The effectiveness of an individual test set is measured in
terms of code coverage and fault detection. Code coverage
data are collected by running test sets on the error-free
version of each program. For fault detection, we run test sets
on the error-free version and the faulty versions of each
program. A fault is detected if the faulty version produces a
different output than the error-free version. A mutation test
tool called Milu [18] is used to generate additional faulty
versions for three programs in the Siemens suite. Mutation
faults increase the number and diversity of the faults used in
our experiments and thus helps to better evaluate fault
detection effectiveness.

The results of our study suggest that in most cases, t-way
testing performed as good as or better than random testing.
There are few cases where random testing performed better
but with a very small margin. Overall, the differences
between the two are not as significant as one would have
probably expected. This can be partially explained by the
fact that most random test sets have a high percentage of t-
way coverage. That is, while a random test set does not
cover all the t-way combinations, it covers most of them. A
small number of combinations being missing does not
always make a difference on code coverage and fault
detection results.

It is important to make several notes about the results of
our study. First, we used the same input model for t-way and
random testing. While t-way test generation is
computationally more expensive than random test

1

Table I. Characteristics of subject programs

Programs LOC Number of Number of faulty

functions versions

printtokens 472 18 7

printtokens2 399 19 10

replace 512 21 32

schedule 292 18 9

schedule2 301 16 10

tcas 141 9 41

totinfo 440 7 23

Model

(22)	× (24) 	× (5) × (8) × (2 × 7)3 *

(47 × 22)
(22)	× (24) 	× (5) × (8) × (2 × 7)3 *

(47 × 22)
(24 × 416)

(21 × 38 × 82)
(21 × 38 × 82)

(27 × 32 × 41 × 102)
(33 × 52 × 61)

Number of

constraints

4**

14

4**

14

36

0

0

0

0
∗	 The model of the replace program has two levels; sub level consists of 7 sub models and the top model with 9

parameters. Three out of 7 sub models share the same model, two parameters with 2 and 7 values.

** The second sub model with (24)	 input model, has 4 constraints and the other does not have any constraints.

generation, both procedures are automated. Thus the
advantage of random testing in terms of reducing test
generation cost is not as significant in practice as one would
probably have perceived. Second, in our experiments, the
size of a random test set is set to be the same as its
corresponding t-way test. However, when we apply random
testing in practice, we need to decide when to stop, i.e., how
many tests are sufficient. This can be a difficult decision. In
this respect, t-way testing has an advantage in that it has a
well-defined stopping point, i.e., achieving full t-way
coverage. Finally, we must acknowledge that our study is
limited in terms of both the number and sizes of the subject
programs, and the number and types of faults. More studies
are needed to obtain a better understanding.

The remainder of this paper is organized as follows. In
section II, we describe our experimental design. Section III
reports experimental results. Section IV provides some
general discussion about the experimental results. Section V
describes threats to validity. Section VI gives an overview
of work that is related to ours. Section VII provides
concluding remark.

II. Experimental Design
This section describes the design of our experiments,

including the subject programs, the evaluation metrics, and
the test generation procedure used by our experiments.

A. Subject Programs

Our experiments use the Siemens suite from the
Software Infrastructure Repository [16]. This suite contains
7 programs. Two programs, printtokens and printtokens2,
have the same specification but different implementations.
They tokenize a text file and determine the type of each
token. The replace program takes three inputs, pattern,
substitute and input text, and it replaces every match of
pattern in input text with substitute. Two programs,
schedule and schedule2, provide two different
implementations of a scheduling scheme that determines the
execution order of a set of processes based on their
priorities. The tcas program is an aircraft collision

avoidance system. The totinfo program takes as input a file
containing one or more tables, and computes the total
degree of freedom and chi-square of rows and columns.

In the Siemens suite, each program has an error-free
version and several faulty versions. There also exists a test
set for each program. These test sets are not used in our
experiments. Table I shows some characteristics of the
subject programs. The second column shows the number of
lines of (uncommented) code. The third column shows the
number of functions. The fourth column shows the number
of faulty versions. The fifth column shows the input models
used for test generation. The input models are shown in an
exponential format. For example, totinfo has six parameters,
where three, two and one of them have a domain size of 3, 5
and 6, respectively. The model of this program is shown in
an exponential format by (33 × 52 × 61). The last column
shows the number of constraints in the input model. The
details of the models are explained in [17].

In addition to the faulty versions that come with the
Siemens suite, a mutation testing tool called Milu [18] is
used to generate additional faulty versions. This helps to
better evaluate fault detection effectiveness both in terms of
number and diversity of faults. The number of mutants
generated by Milu is typically large, and running hundreds
of test sets over them is very time consuming. In our
experiments, we select three programs, replace, schedule
and totinfo, and for each of the three programs, we select a
few functions, for mutant generation.

We refer to faults in the faulty versions provided by the
Siemens suite as Siemens faults, and faults that are
generated by mutation as mutation faults.

 Table II shows some characteristics of generated
mutants. The second column shows the number of functions
selected for each program. Note that schedule is smaller
than the other two programs, the mutants are generated for
the entire program. The third column indicates the number
of mutants generated. The fourth column shows that the
number of terminating mutants that are used by our

2

Table II Characteristics of generated mutants

Programs Number of Number of Number of

functions used for mutants terminating

mutants mutants

generation

replace 4 143 128

schedule 18 94 93

totinfo 2 151 149

experiments. Mutants that did not terminate after 1 minute
were excluded in our experiments.1)

We do not select printtokens and printtokens2 for mutant
generation because of the hierarchical nature of their input
models. We do not select schedule2 since it has the same
model as schedule. Also tcas is not selected because it has
complex decision logic and its mutants are likely to
represent faults with strength of more than 6.

B. Evaluation Metrics

We measure the effectiveness of an individual test set in
two dimensions, i.e., code coverage and fault detection.

For code coverage, line and branch coverage collected
for each test set run with the error-free version of each
program. A tool called gcov is used to gather coverage data.
The tool is executed with the “branch-probabilities” option,
and the “line executed” output is taken for line coverage and
the “taken at least once” output is used for branch coverage.

For fault detection, we check how many faults can be
detected by a test set. A fault is detected if the output of a
faulty version is different from the output of the error-free
version by one or more tests in a test set.

For code coverage and fault detection data collected
from a group of test sets, we compute minimum, first
quartile, median, third quartile, maximum, spread and
relative standard deviation. The first five measures
summarize the effectiveness of the test sets as a group,
whereas the latter two summarize how stable the results are
across different test sets in the group.

C. Test Generation

For each subject program, we generate 100 t-way test
sets for each strength t, where t is from 2 to 5. There are a
total of 400 t-way test sets for each program. We use PICT
[20] to generate t-way test sets. PICT uses a greedy, random
algorithm for t-way test generation and allows the user to
specify a seed. In order to obtain different test sets, a
different seed is given each time a test set is generated. Test
sets are compared to ensure that no two test sets are exactly
the same. In our experiments no redundant test sets are
detected.

For replace, we did not generate 5-way test sets as they
are very large, and take too much time to execute. On

1 In retrospect, this exclusion is not necessary. Instead, non-terminating

mutants should be considered killed. Due to insufficient time we were not
able to re-do the experiments by the time of this submission. If this paper
is accepted, we will re-do the experiments without this exclusion.

average, there are 12604.22 tests in a 5-way test set for
replace and it takes 3.22 seconds to execute each test
(against all the 32 faulty versions in the Siemens suite).
Thus it takes about 11.27 hours to execute each test set. The
time needed to execute 100 test sets is prohibitive and thus
we did not conduct 5-way testing for replace in our
experiments. Note that our experiments are conducted on a
PC that has a Pentium (R) 4 (2.40 GHZ) processor and 2
GB memory and that runs Ubuntu 12.04 LTS (32bit).

For each t-way test set, we generate a random test set of
the same size. The same input model used by t-way test
generation is used for random test generation. If the input
model of a program does not have any constraint, a random
test is generated by simply giving each parameter a random
value of its domain. Otherwise, additional care needs to be
taken to ensure that all the constraints are satisfied. More
details about random test generation with the presence of
constraints can be found in [17].

III. EXPERIMENTAL RESULTS
In this section, we first present the test generation

results, i.e., some important properties and statistics of the
test sets generated in our experiments. Then we present the
test execution results in terms of code coverage and fault
detection that are achieved by these test sets.

A. Test generation result

Table III shows some statistics about the sizes of the
generated test sets including minimum, maximum, average

Table III Test sets’ size

Program Strength Min Max Average RelStdDev

printtokens 2 42 47 44.46 2.72

3 113 127 119.6 2.17

4 307 330 319.97 1.64

5 763 791 776.38 0.80

2 200 220 210.86 2.18

replace 3 904 955 928.66 1.10

4 3730 3805 3773.07 0.41

2 64 64 64 0

3 244 259 251.22 1.45
schedule

4 1060 1088 1075.30 0.57

5 3788 3806 3812.26 0.26

tcas 2 100 100 100 0

3 400 409 403.38 0.47

4 1401 1447 1423.28 0.65

5 4240 4321 4277.85 0.36

totinfo 2 31 35 32.41 3.10

3 150 158 153.26 0.92

4 532 560 544.5 1.05

5 1554 1613 1586.35 0.72

3

http:12604.22

Table IV Combinatorial coverage of random sets Table V Maximum line and branch coverage results

Program Strength Min Max Average RelStdDev Programs Max of line coverage Max of branch coverage

2 52.94 82.58 72.03 7.88 (46.15) (46.67) (45.13) (35.78) (36.7) (38.53)

3 54.29 88.54 76.95 11.45 (43.08) (74.36) (35.38) (40.37) (57.8) (27.52)
printtokens printtokens (47.69) (35.78) 4 61.10 94.27 86.31 9.24

69.74 55.05 5 73.68 95.31 91.76 4.13

2 89.38 96.06 94.85 0.95 (58.5) (58.5) (57) (71) (45.68) (46.91) (46.3)
replace (73.5) (56.5) (74.5) (58.02) (67.9) (40.74) 3 89.27 96.41 94.46 1.73 printtokens2

(70.99)
2 91.15 96.53 93.64 1.06

80.5 76.54
3 92.51 94.07 93.43 0.39

schedule replace 88.93 80.56
4 94.85 95.68 95.30 0.17 schedule 94.74 80.30

5 95.66 96.19 95.89 0.08 schedule2 94.57 75

tcas 2 92.23 96.18 94.25 0.74 tcas 89.23 90.91*

totinfo 92.68 84.09 3 93.51 95.19 94.30 0.34
* In this program maximum branch coverage is greater than

4 95.15 96.00 95.52 0.17 maximum line coverage, the reason is that || and && operators (in
an if statement) introduce new branches, in gcov. 5 96.05 96.45 96.26 0.08

totinfo 2 75.78 88.67 82.64 2.96 by a random test set. The exceptions are for printtokens with
3 83.18 88.86 86.20 1.31 t = 2 and 3, where the average t-way coverage is more than

70% but lower than 80%. ACTS was not able to compute
4 83.47 87.15 85.05 0.79

the t-way coverage for replace when t = 4. The reason is
5 81.92 83.73 82.96 0.46 that replace has a relative large and complex input model

 while the option for computing t-way coverage in ACTS is
mainly experimental and is thus not optimized. and relative standard deviation. Note that printtokens and

printtokens2 use the same input model and thus have the B. Test execution result
same test sets, and so do schedule and schedule2. Also note

The test execution results are presented in three parts, that printtokens and printtokens2 have a hierarchical input
including code coverage results, Siemens fault detection model. Due to limited space, we only show statistics for the
results, and mutation fault detection results. test sets generated from the top model.
Code Coverage: Code coverage is collected by running Table IV shows the statistics of the t-way coverage
each test set on the error-free version of each subject achieved by the random test sets. The t-way coverage of a
program. Table V shows the maximum line and branch test set is computed using the ACTS tool with a special
coverage achieved by these test sets. Maximum coverage option on the command line interface [19]. For most cases,
indicates to certain degree the quality of the input model. more than 80% (on average) of t-way coverage is achieved
For printtokens and printtokens2, the maximum line and

Table VI Coverage results of replace

Metric Strength Method Min Q1 Median Q3 Max Spread RelStdDev

T-way Testing 88.84 88.84 88.84 88.84 88.84 0 0

2 Random Testing 88.84 88.84 88.84 88.84 88.84 0 0

Line T-way Testing 88.84 88.84 88.84 88.84 88.84 0 0

Coverage 3 Random Testing 88.84 88.84 88.84 88.84 88.84 0 0

T-way Testing 88.84 88.84 88.84 88.84 88.84 0 0

4 Random Testing 88.84 88.84 88.84 88.84 88.84 0 0

T-way Testing 79.44 79.44 79.44 80.56 80.56 1.12 0.69

2 Random Testing 79.44 79.44 79.44 80.56 80.56 1.12 0.70

Branch T-way Testing 79.44 80.56 80.56 80.56 80.56 1.12 0.39

Coverage 3 Random Testing 79.44 80.56 80.56 80.56 80.56 1.12 0.24

T-way Testing 80.56 80.56 80.56 80.56 80.56 0 0

4 Random Testing 80.56 80.56 80.56 80.56 80.56 0 0

4

Table VII Coverage results of schedule

Metric Strength Method Min Q1 Median Q3 Max spread RelStdDev

T-way Testing 94.74 94.74 94.74 94.74 94.74 0 0

2 Random Testing 94.74 94.74 94.74 94.74 94.74 0 0

T-way Testing 94.74 94.74 94.74 94.74 94.74 0 0

Line 3 Random Testing 94.74 94.74 94.74 94.74 94.74 0 0

Coverage T-way Testing 94.74 94.74 94.74 94.74 94.74 0 0

4 Random Testing 94.74 94.74 94.74 94.74 94.74 0 0

T-way Testing 94.74 94.74 94.74 94.74 94.74 0 0

5 Random Testing 94.74 94.74 94.74 94.74 94.74 0 0

T-way Testing 80.3 80.3 80.3 80.3 80.3 0 0

2 Random Testing 80.3 80.3 80.3 80.3 80.3 0 0

T-way Testing 80.3 80.3 80.3 80.3 80.3 0 0

Branch 3 Random Testing 80.3 80.3 80.3 80.3 80.3 0 0

Coverage T-way Testing 80.3 80.3 80.3 80.3 80.3 0 0

4 Random Testing 80.3 80.3 80.3 80.3 80.3 0 0

T-way Testing 80.3 80.3 80.3 80.3 80.3 0 0

5 Random Testing 80.3 80.3 80.3 80.3 80.3 0 0

Table VIII Coverage results of totinfo

Metric Strength Method Min Q1 Median Q3 Max Spread RelStdDev

T-way Testing 26.83 28.46 41.46 73.17 86.99 60.16 41.37

2 Random Testing 26.83 26.83 38.21 73.17 86.99 60.16 47.17

T-way Testing 39.84 77.24 78.86 89.23 92.68 52.84 17.23

Line 3 Random Testing 28.46 75.61 77.24 88.62 92.68 64.22 15.61

Coverage T-way Testing 78.86 92.68 92.68 92.68 92.68 13.82 5.47

4 Random Testing 77.24 78.86 92.68 92.68 92.68 15.44 6.94

T-way Testing 92.68 92.68 92.68 92.68 92.68 0 0

5 Random Testing 78.86 92.68 92.68 92.68 92.68 13.82 1.49

T-way Testing 27.27 30.68 42.615 68.18 77.27 50 34.92

2 Random Testing 27.27 29.55 38.64 67.05 77.27 50 39.32

T-way Testing 39.77 72.73 75 80.11 84.09 44.32 14.78

Branch 3 Random Testing 30.68 71.59 72.73 78.41 84.09 53.41 13.36

Coverage T-way Testing 75 84.09 84.09 84.09 84.09 9.09 3.94

4 Random Testing 72.73 75 84.09 84.09 84.09 11.36 5.03

T-way Testing 84.09 84.09 84.09 84.09 84.09 0 0

5 Random Testing 75 84.09 84.09 84.09 84.09 9.09 1.08

branch coverage are shown for the top model and all the programs are included since they are selected for mutation
sub-models. The maximum line and branch coverage testing. Orange cells show cases where random testing
achieved by t-way and random test sets are the same. This is performs better than t-way testing.
consistent with the fact that both types of test set use the For the replace program, t-way and random testing
same input model. produce the same results for line coverage. However, when

Tables VI, VII and VIII show some statistics of the code t = 3, random testing has a slightly smaller relative standard
coverage results for three programs, replace, schedule and deviation for branch coverage than t-way testing (Table
totinfo. Due to limited space, we do not show statistics for VI). For the totinfo program, t-way testing outperforms
the other programs, which can be found in [21]. These three random testing in many cases. For example the minimum

5

line and branch coverage of t-way testing are greater,
Table IX Maximum number of Siemens faults detected

sometimes significantly greater, than random testing for t =
3, 4, and 5 (Table VII). When t = 3, random testing has a Programs Total Max number of faults detected

smaller standard deviation than t-way testing for both line
printtokens 7 2

and branch coverage. However t-way testing has higher min,
printtokens2 10 7 Q1, median and Q2 than random testing. For the schedule
replace 32 32 programs, t-way and random testing have exactly the same

statistics (Table VII). schedule 9 7

schedule2 10 3 For t-way test sets, spread and standard deviation are
tcas 41 41 non - increasing as t increases. This indicates that as t
totinfo 23 12 increases, code coverage becomes more stable for t-way

test sets. This is true for the other four programs whose
maximum number of faults that are detected by the t-way results are not shown in the paper. This is, however, not
and random test sets generated in our experiments. For true for random test sets. For example, for totinfo (Table
printtokens and printtokens2, the results are shown for the VIII), the spreads of both line and branch coverage when t
top model and all the sub-models. The faults detected by the = 3 are greater than when t =2.
different models may overlap. For example, the fifth sub-

Note on programs whose results are not shown here: model detected faulty versions 1, 2, 4, and 7, whereas the
For schedule2 and printtokens, t-way and random testing sixth and seventh sub-models detected faulty versions 4 and
had exactly the same results. For printtokens2, t-way 7. However, all the faulty versions are killed by all the
testing had better result than random testing in all cases. In models together.
addition, t-way test sets achieved the maximum coverage

Tables X, XI, and XII show the results for three when t = 2, while random test sets achieve the maximum
programs, i.e., replace, schedule and totinfo respectively. coverage when t = 4. For tcas, random testing performed
Again, due to limited space, the results for the other better than t-way testing when t = 2, while t-way testing
programs are not shown. Instead, they are made available in performed better when t > 2.
[21]. Also, orange cells show cases where random test sets

Siemens Faults: Each program has a number of faulty have better results than t-way testing.
versions in the Siemens suite in SIR [16]. Table IX show the

Table X Siemens faults detection of replace

Strength Method Min Q1 Median Q3 Max Spread RelStdDev

T-way Testing 16 16 18 32 32 16 32.34

2 Random Testing 16 18 32 32 32 16 25.46

T-way Testing 18 32 32 32 32 14 8.61

3 Random Testing 18 32 32 32 32 14 6.21

T-way Testing 32 32 32 32 32 0 0

4 Random Testing 32 32 32 32 32 0 0

Table XI Siemens fault detection of schedule

Strength Method Min Q1 Median Q3 Max Spread RelStdDev

T-way Testing 7 7 7 7 7 0 0

2 Random Testing 7 7 7 7 7 0 0

T-way Testing 7 7 7 7 7 0 0

3 Random Testing 7 7 7 7 7 0 0

T-way Testing 7 7 7 7 7 0 0

4 Random Testing 7 7 7 7 7 0 0

T-way Testing 7 7 7 7 7 0 0

5 Random Testing 7 7 7 7 7 0 0

6

Table XII Siemens faults detection of totinfo

Strength Method Min Q1 Median Q3 Max Spread RelStdDev

T-way Testing 1 3 5 6 11 10 45.84

2 Random Testing 1 3 3 6 9 8 48.35

T-way Testing 4 9 10 11 12 8 19.88

3 Random Testing 4 9 10 11 12 8 17.97

T-way Testing 10 12 12 12 12 2 4.02

4 Random Testing 9 12 12 12 12 3 7.04

T-way Testing 12 12 12 12 12 0 0

5 Random Testing 12 12 12 12 12 0 0

For replace, random testing has better Q1, Median, and Table XIII Maximum number of mutation faults detected

RelStdDev when t = 2, and better RelStdDev when t = 3
(Table X). For schedule, random and t-way testing have Programs Total Max number of faults detected

exactly the same results (Table XI). For totinfo, when t = 2,
replace 128 128

random testing has a smaller Spread but it has a higher
schedule 93 71

Median and Maximum. When t = 3, random testing has a
totinfo 149 122 smaller RelStdDev, but all the other measures are the same.

When t = 4, t-way testing clearly outperforms random
random testing performed better when t = 4. More testing, and when t = 5 both reach the maximum results.
discussion on the latter case is discussed later. For schedule,

For both t-way and random test sets, spread and t-way and random testing have the same results. For totinfo,
RelStdDev are non-increasing as t increases. This suggests when t = 2, t-way testing have better results in all measures
that the fault detection results become more stable as t except for Q3 and Max. When t = 3, random testing seems
increases. to perform better as it has better results in Min, Q1, Spread,

Note on programs whose results are not shown here: and RelStdDev. However, when t = 4, t-way testing clearly
For printtokens2 and schedule2, t-way and random testing outperforms, and also it reaches the maximum point where
have exactly the same results. For printtokens, t-way and the maximum number of faults are detected by all test sets.
random testing have exactly the same results in all the When t = 5, both t-way and random testing reach the
models except for the second sub-model t-way testing maximum point.
outperforms random testing. For tcas, random testing For replace, when t = 4, the minimum number of faults
performs better when t = 2 and 3, whereas t-way testing detected by a t-way test is 26 less than that by a random test
performs better when t = 4 and 5. For tcas, the fault set. We randomly selected 4 out of these 26 mutants and
detection results do not become stable as t increases. The analyzed their degrees of faults.
reason is probably because the degree of all the faults in tcas

Our investigation showed that all these faults are more than is more than 5 [17].
9-way, i.e., they involve more than 9 parameters. Whereas

Mutation Faults: Only the first 30 (out of 100) test sets the probability is not high, we conjecture that the reason
are executed on each mutant. This is because running all test why there exists a t-way test set that detects none of these
sets for each mutant is prohibitively time consuming. For 26 mutants is because this test set does contain any
example, it takes 13.19 hours to execute (and evaluate) a 4 combinations that trigger these higher-degree faults. In
way test set on all the 128 mutants of the replace program. contrast, it happens to be that all the random tests happen to

Table XIII show the maximum number of mutants contain at least one triggering combination for each of these
detected by t-way and random testing. For the replace 26 mutants.
program all 128 mutants are detected. For schedule and

IV. Discussion totinfo, 22 and 27 mutants could not be detected,
respectively. In most cases, t-way testing performed as good as or better

than random testing. There are few cases where random Tables XIV, XV, and XVI show some statistics of
testing performed better but with a very small margin. mutation fault detection for replace, schedule and totinfo,
Overall, the differences between the two are not as respectively. For replace, t-way testing performed as good
significant as one would have probably expected. As shown as or better than random testing when t = 2 and 3, whereas
in Table IV, random test sets provided on average a very

7

Table XIV Mutation faults detection of replace

Strength Method Min Q1 Median Q3 Max Spread RelStdDev

T-way Testing 101 101 101 101 128 27 7.94

2 Random Testing 101 101 101 101 128 27 7.94

T-way Testing 101 102 127.5 128 128 27 10.63

3 Random Testing 101 101 127 128 128 27 11.54

Combinatorial testing 101 128 128 128 128 27 3.88

4 Random Testing 127 128 128 128 128 1 0.20

Table XV Mutation faults detection of schedule

Strength Method Min Q1 Median Q3 Max Spread RelStdDev

T-way Testing 71 71 71 71 71 0 0

2 Random Testing 71 71 71 71 71 0 0

T-way Testing 71 71 71 71 71 0 0

3 Random Testing 71 71 71 71 71 0 0

T-way Testing 71 71 71 71 71 0 0

4 Random Testing 71 71 71 71 71 0 0

T-way Testing 71 71 71 71 71 0 0

5 Random Testing 71 71 71 71 71 0 0

Table XVI Mutation faults detection of totinfo

Strength Method Min Q1 Median Q3 Max Spread RelStdDev

T-way Testing 61 63 67 68 117 56 25.32

2 Random Testing 61 63 66 100 121 60 29.02

T-way Testing 63 114 121 122 122 54 17.30

3 Random Testing 73 115 121 122 122 49 7.80

T-way Testing 122 122 122 122 122 0 0

4 Random Testing 115 122 122 122 122 7 1.46

T-way Testing 122 122 122 122 122 0 0

5 Random Testing 122 122 122 122 122 0 0

high level of combinatorial coverage, almost always in observed in our experiments. For example, all the faults that
excess of 80% and frequently over 95%. All test sets have come with totinfo in the Siemens suite have a degree of at
some degree of t-way coverage, regardless of how they are least three. However, one of the 2-way test sets generated in
generated. The fact that the randomly generated tests had a our experiments was able to detect 11 of these faults.
very high level of t-way coverage can partially explain why Another example is the tcas program, for which all of the
there is little difference between the two techniques. Siemens faults are more than 5-way. Five 5-way test sets

generated in our experiments detected all these faults. Although there was little difference between
combinatorial and random tests at a particular interaction V. Threats to validity strength t, fault detection increased rapidly with increasing
t. For practical testing, the results suggest that higher levels Threats to internal validity are factors that may be
of combinatorial coverage significantly improve fault responsible for the experimental results, without our

knowledge. We have tried to automate the experimental detection, regardless of whether the combinatorial coverage
procedure as much as possible, as an effort to remove is produced by t-way or random test generation,
human errors. In particular, we build a tool that

A t-way test set covers all t-way combinations and thus automatically compares the results of the error-free version
guarantees to detect all t-way faults. Moreover, a t-way test and a faulty version to evaluate each test run. Further, the
set also covers many combinations whose size is greater consistency of the results are checked manually to
than t. Thus, a t-way test set may also detect faults of higher determine whether the tool works correctly or not.
strength, but without guarantee. This phenomenon has been

8

 	

	

Threats to external validity occur when the experimental
results could not be generalized to other programs. We use
subject programs from the Siemens suite [16]; these
programs are created by a third party, but the subject
programs are programs of relatively small size and with a
small number of seeded faults. To mitigate this threat, the
mutation faults are added to the experiments. But more
experiments on larger programs with real faults can further
reduce this threat.

VI. Related work
A number of studies have been reported that evaluates

the effectiveness of t-way testing. In this section, we focus
on related work that compares the effectiveness of t-way
and random testing.

Schroeder et al. in [1] conducted an experiment to
compare the fault detection effectiveness of combinatorial
and random test sets. The subject programs are two real-life
programs in C++, including the Data Management Analysis
System (DMAS) and the Loan Arranger System (LAS),
only one functionality of each program is tested. Their
results show that there is no significant difference in t-way
and random testing in terms of fault detection.

DMAS and LAS have 8.7 and 6.2 KLOC, and their
input models are represented as (216 × 5 × 8) and
(27 × 310 × 42), respectively. For each program, and for
each strength t, where t is from 1 to 4, 10 t-way test sets are
generated using a tool called TVG [1]. For each t-way test
set, a random test set of the same size is generated. Mutants
are created manually to generate faulty versions. Mutants
that are killed by all the 1-way sets are removed. A total of
88 mutants for DMAS and a total of 82 mutants for LAS
are used in their experiments.

In [1], a random test is generated by randomly selecting
a test from all possible tests. This is different from our
approach in which a random test is generated by giving
each parameter a random value in its domain. This
difference may slightly affect the combinatorial test
coverage achieved by a random test set. Note that the
approach in [1] assumes that all possible tests are first
generated, which may not be practical for large input
models.

Ellimis et al. [8][10] report an experiment that tests 10
different functions of a system called Wallace that controls
a large industrial engine. A mutation tool is used to
generate faulty versions. For each function, three test sets
are generated, one t-way test set, one pure random test set,
and one manually generated test set. Pure random tests are
generated without using an input model.

Their results show that 2-way test sets are not as
effective as manually generated tests in term of fault
detection. But a t-way test set of a higher strength could be
as effective as a manually generated test set. Their results
also show that random test sets may often provide good
results. For example, for 5 out of 10 programs, random and
t-way test sets provide the same results, and in one case

random test sets even produce better results than t-way test
sets.

Several studies are reported that compare t-way testing
and random testing for testing logical expressions
[6][7][11]. The logical expressions are either taken from a
program such as TCAS II or generated randomly. Mutants
are generated to create faulty versions. The results
consistently show that t-way testing is always more
effective, and sometimes significantly more, than random
testing

Kuhn et al. [5] report a study that applies t-way testing
and random testing to detect deadlocks in a network
simulator called Simured. The input model for the
simulator is (23 × 3 × 49 × 5). T-way test sets are
generated by ACTS with t = 2 to 4. For each t-way test set,
eight random test sets of the same size are generated
corresponding to each combinatorial set. Their experiments
show that (1) random testing has better results than 2-way
testing; (2) no significant difference exists between random
and 3-way testing; (3) 4-way testing is more effective than
random testing.

Bell and Vouk reported applied 2-way testing and
random testing to a network-centric software [9]. They
found that 2-way testing is more effective in fault detection.
In particular, when there is at least one parameter with
more than 10 values, random testing does not detect about
75% of faults that are detected by 2-way testing

Bryce et al. compared the coverage of combinatorial
and random testing on a system called Flight Guidance
System (FGS) [2]. The FGS system has 40 input
parameters, each of which has 2 values. Four t-way test sets
with t = 2 to 5, as well four random test sets of the same
size, are generated. Their results show that t-way testing is
more effective than random testing for the FGS system.

Finally we note that Czerwonka reported a study [3],
that applies t-way testing to four utility program in
Windows 7, including attrib.exe, fc.exe, find.exe and
findstr.exe. The focus of the study is to investigate the
stability of t-way testing in terms of line and branch
coverage. The results show that t-way test sets provide
stable coverage when t >= 2. This study, however, does not
make a comparison with random testing.

VII. Conclusion
In this paper, we report a study that compares the

effectiveness of t-way testing to that of random testing in
terms of both code coverage and fault detection. In
particular, we investigated the stability of the two
techniques. Our results show that in most cases, t-way
testing performed as good as or better than random testing.
There are few cases where random testing performed better,
but with a very small margin. Overall, the differences
between the two are not as significant as one would have
probably expected. A possible explanation is that most
random test sets seem to achieve a high level of t-way

9

coverage. More studies are needed to better understand the	 Proceeding of the ACS/ IEEE International Conference on
Computer Systems and Applications, pp. 301-311, 2001. effectiveness of the two testing techniques.

We plan to conduct more empirical studies to further
evaluate the effectiveness and stability of combinatorial
testing. We plan to use programs that are larger and/or
more complex than the Siemens programs. We also plan to
conduct studies where the degree of fault can be better
controlled. This will help us to better study the relationship
between the combinatorial coverage of a test set and the
faults the test set is able to detect.

VIII. References
1. P.J.	 Schroeder, P. Bolaki, V. Gopu, "Comparing the fault

detection effectiveness of n-way and random test suites," In
Proceeding of the International Symposium on Empirical
Software Engineering, pp.49,59, 2004.

2. R.C. Bryce, A. Rajan, M.P.E. Heimdahl, "Interaction Testing in
Model-Based Development: Effect on Model-Coverage," In
Proceeding of the 13th Asia Pacific Software Engineering
Conference, pp.259,268, 2006.

3. J.	 Czerwonka, “On Use of Coverage Metrics in Assessing
Effectiveness of Combinatorial Test Deigns”, In Proceedings of
the IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops, pp. 257-266, 2013.

4. J. Bach, P. J. Schroeder, “Pairwise testing: A best practice that
isn’t”, In Proceeding of the 22nd Annual Pacific Northwest
Software Quality Conference, pp. 180-196, 2004.

5. D.R.	 Kuhn, R. Kacker, Y.Lei. “Random vs. Combinatorial
Methods for Discrete Event Simulation of a Grid Computer
Network”, In Proceedings of ModSim World, pp. 83-88, 2009.

6. S. Vilkomir, O. Starov and R. Bhambroo, “Evaluation of t-wise
approach for testing logical expression in Software”,
In Proceedings of the IEEE Sixth International Conference on
Software Testing, Verification and Validation Workshops,
pp.249-256, 2013.

7. W.	 A. Ballance, S. Vilkomir, W. Jenkins, “Effectiveness of
Pair-Wise Testing for Software with Boolean Inputs”,
In Proceedings of the IEEE Fifth International Conference on
Software Testing, Verification and Validation, pp.580-586,
2012.

8.	 M. Ellims , D. Ince, M. Petre, "The effectiveness of t-way test
data generation", In Proceedings of the 27th international
conference on Computer Safety, Reliability, and Security, pp.
16-29, 2008.

9. K.	 Z. Bell, M. A. Vouk, "On effectiveness of pairwise
methodology for testing network-centric software". In
Proceeding of the ITI 3rd International Conference on
Information and Communications Technology, pp.221,235, 2005

10. M.	 Ellims, D. Ince, and M. Petre, "AETG vs. Man: an
Assessment of the Effectiveness of Combinatorial Test Data
Generation," Technical Report 2007/08, Dept. Computer
Science, Open University, Milton Keynes, June 2007.

11. N. Kobayashi, T. Tsuchiya, T. Kikuno, "Applicability of non
specification-based approaches to logic testing for software", In
Proceeding of the International Conference on Dependable
Systems and Networks,pp. 337-346, 2001.

12. D. R. Wallace, D. R. Kuhn, “Failure Modes in Medical Device
Software: an Analysis of 15 Years of Recall Data”, In

13. D.R.	 Kuhn, D.R. Wallace, and A.M. Gallo. “Software Fault
Interactions and Implications for Software Testing”, IEEE
Transaction on Software Engineering 30(6):418-421, 2004.

14. M.	 N. Borazjany, Y. Linbin, Y. Lei, R. Kacker, and D. R.
Kuhn, “T-way testing of ACTS: A Case Study”, In Proceedings
of the IEEE fifth International Conference on Software Testing,
Verification and Validation, pp.591-600, 2012.

15. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott,
G. C. Patton, and B. M. Horowitz. 1999. Model-based testing in
practice. In Proceedings of the 21st international conference on
Software engineering, pp. 285-294, 1999.

16. H. Do, S. Elbaum, and G. Rothermel. “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and
its Potential Impact”, Empirical Software
Engineering. 10(4):405-435, 2005.

17. L. S. Ghandehari, M. N. Bourazjany, Y. Lei, R.N. Kacker and
D.R. Kuhn, "Applying T-way testing to the Siemens
Suite", In Proceedings of the IEEE Sixth International
Conference on Software Testing, Verification and Validation
Workshops, pp. 362-371, 2013.

18. Y.	 Jia and M. Harman. “Milu: A Customizable, Runtime-
Optimized Higher Order Mutation Testing Tool for the Full C
Language”, TAIC PART '08. Testing: Academic & Industrial
Conference, pp. 94-98, 2008.

19. Advanced T-way testing System (ACTS), http://csrc.nist.gov/
groups/SNS/acts/documents/comparison-report.html, 2013.

20. J.	 Czerwonka, “Pairwise testing in real world. Practical
extensions to test case generators”, In Proceedings of 24th
Pacific Northwest Software Quality Conference, pp. 419-430,
2006.

21. http://barbie.uta.edu/~laleh/BEN/ben.html

10

http://barbie.uta.edu/~laleh/BEN/ben.html
http:http://csrc.nist.gov

