
True Randomness Can’t be Left to Chance: Why entropy is important for
information security

Introduction and Motivation

Cryptography is fundamentally important for securing data, whether that data is in transit over the
internet or at rest on a storage device. In the past, cryptography relied on algorithms and codes that
were kept secret. This, however, proved impractical when parties who did not know each other in
advance wanted to communicate securely. Modern encryption and authentication algorithms are public
and have been extensively analyzed. Today, the security of cryptography depends primarily on having
strong keys and keeping them secret. A key is strong only to the degree that it is hard to guess or – to
put it another way – that it is random. Information security standards [1] require at least 112-bits of
security strength for cryptographic keys, meaning that the effort for breaking them would be equivalent
to trying at least 2112 possible keys as the best available attack. Although other factors such as
cryptographic algorithm soundness and secure implementation play a big role in the security
cryptography provides we focus our attention on the randomness of keys – an issue often
misunderstood or neglected by the crypto community at large.

Deterministic random bit generators (DRBGs), also known as pseudo-random bit or number generators,
are used to generate keys, but the sequence of numbers they generate can be traced predictably to the
seed (initial value) that was supplied to the generator in the beginning. In other words, knowing the
seed one can reconstruct the sequence of numbers a particular DRBG produces. Thus, DRBGs must be
seeded with sufficient entropy from a reliable entropy source. Entropy sources that provide true
randomness are usually based on non-deterministic physical processes or unpredictable events. Ring
oscillators are an example of the first, and human driven mouse movements and keyboard stroke
timings are examples of the second.

The importance of obtaining and using highly unpredictable keys is not just an academic question. There
are many practical examples showing that failure to obtain sufficient entropy destroys any security
provided by long keys and sound algorithms. Even the best algorithms cannot compensate for weak
keys generated using insufficient entropy. Such systems are vulnerable to attackers – with potentially
disastrous results. A study [2] revealed that thousands of network devices had generated easily
guessable keys because of insufficient entropy from the entropy source used. Some keys on different
systems were even identical, making it very easy for attackers to unlock the supposedly secret data
protected by these keys.

Background

What is entropy? Entropy in the information theoretic sense is a measure of randomness or uncertainty
in a signal. The typical units of measure are bits for entropy and bits per sample for entropy rate.

Cryptography is usually considered part of the realm of mathematics but today many of the critical
issues in this discipline span the domains of computer science and engineering. Codes, ciphers and
algorithms are the stock in trade for cryptographers, cryptologists, software developers and hardware
engineers. They are implemented in the deterministic media of digital circuits and software. Computers
are designed to be deterministic dynamic systems that execute well-defined instructions in order to
produce predictable outcomes. This makes it hard to obtain good entropy from real computer systems
because the sources of unpredictable behavior are minimized by design. Therefore, in order to obtain
good entropy one needs to find sources of true randomness, those which run contrary to the nature of
the typical computer system and thus may be difficult to use.

Though easy to understand intuitively, the notion of true randomness is hard to define and quantify.
One might approach it by studying infinite sequences of bits or samples and measure their properties,
some statistical such as bias, others non-statistical such as lack of computable correlations. Three of the
most frequently used characteristics of true randomness are i) unpredictability, which is a measure of
the strong non-computability of the bits in the sequence; ii) uniform distribution of the bits in the
sequence; iii) lack of patterns in the sequence. It is worth pointing out that iii) implies both i) and ii).
However, i) does not imply ii) and similarly ii) does not guarantee i).

Random numbers are used in other scientific and engineering fields, but the goals and needs are
different. In simulation and modeling, one or more pseudorandom number generators (PRNGs) are
used to generate values according to a given probability distribution, for example, modeling an arrival
process with a Poisson distribution. The PRNG is seeded with a different initial value for each run of the
simulation. The initial seed may be saved in order to repeat or recreate individual runs of interest. For
many simulation uses, the only requirement on the seed is that it does not repeat or, equivalently, that
it is unique across runs of the simulation. The current time or the tick count of a system clock can serve
as a suitable source of seed values. Such applications do not pose any challenge to modern computing
in terms of obtaining unpredictable outcomes from deterministic rules.

In cryptographic applications the requirements for seeding a DRBG are much more precise and
stringent. The seed must possess sufficient entropy as illustrated by Heninger et al [2]. NIST SP 800-90A
requires the seed to have at least the number of bits of entropy as the rated security strength of the
DRBG mechanism. For example, a block cipher counter mode DRBG (CTR_DRBG) using AES-256 requires
at least 256 bits of entropy input in order to achieve its maximum security strength of 256 bits [3].

We define an entropy source as comprising a noise source, sampling and quantization if needed, and
minimal conditioning, such as unbiasing. The noise source is the physical process or observable activity
that has true randomness. Sampling and quantization may be needed if the source is continuous. In
most cases the output from a particular source contains bias and correlations – symptoms of non-
randomness - due to imperfections in measurement or design. While eliminating correlation is very
difficult in practice, bias can be mitigated. Von Neumann unbiasing is a common and useful simple

conditioner. Often the entropy source output is then passed through a pseudorandom function (PRF)
conditioner to distribute entropy uniformly across the bits of output samples. Hash functions and block
ciphers are common PRFs used.

There are a several types of entropy and noise sources on computing systems but they can be divided in
two broad categories: hardware and software. Hardware entropy sources rely on processing variation in
individual gates or circuit elements or on putting circuit elements in an undefined or unstable state.
Examples of this type are ring oscillators, noisy diodes and techniques for using flash memory.
Hardware entropy sources of this type, often called hardware random number generators, can be
incorporated directly into devices and systems and provide entropy on-demand. Dedicated high-quality
entropy sources such as those that use quantum effects are usually physically separate from the systems
that use them. The NIST Randomness Beacon [4] is an example of this type, though it is not
recommended for use in generating private keys since it is a public source.

Software entropy sources or software random number generators can run stand-alone or be
incorporated into software applications directly. The name “software” is misleading, as the randomness
comes from exploiting physical device phenomena such as the drift between the operating system (OS)
timer and processor clock. Additional randomness may come from variation in events and processes in
the system. TrueRand and the CPU Jitter Random Number Generator [5] are examples of this kind of
entropy source1.

Modern OSes have system-level entropy sources that provide entropy as a service to calling programs or
system components. This relieves each application from the burden of needing a built-in entropy source
or having a dependency on an external source that is not guaranteed to be on every system. OS-level
sources typically use an entropy pool that is fed by multiple sources, such as system, network and user
activity. /dev/random on Linux [6] and CryptoAPI on Windows are examples. Even though OS-level
sources provide a convenient source of entropy to applications, they must be used with caution. The
quality of a particular OS-level source is a function of a specific test configuration, which may include
environment elements such as human-computer interactivity through peripheral devices. Therefore it is
important to understand the dependencies of a given OS-level source on its environment and retest it
when it is ported to a different environment. In fact, the recent discovery of weak keys found on
network devices [2] resulted from improper use of an otherwise reasonable OS-level entropy source
ported to a new environment where the assumed operating conditions (noise sources) did not hold.

Testing

Estimating the entropy rate or measuring the true randomness of an entropy source is difficult. For
example, to show the unpredictability of a sequence of bits one has to establish that no Turing machine
can compute more than finitely many scattered bits of the sequence. Since computability implies

1 The identification of any commercial product or trade name does not imply endorsement or recommendation by
the National institute of Standards and Technology.

predictability, the unpredictability depends not only on the impossibility to compute but also on the
strength of that impossibility. In general, no bit sequence is absent of all possible patterns and this is the
reason why it is hard to characterize true randomness in practice. Moreover, as mentioned above,
assessing and eliminating correlation in the output from a source is practically impossible. Therefore, all
known practical techniques for measuring true randomness are limited and imperfect. Still, objective,
repeatable estimation methods are preferred, such as statistical estimators run on sample datasets. In
addition to requiring good tests, such methods require careful data collection. For some noise source
mechanisms, operating conditions are significant. Those based on physical processes may be
temperature dependent and subject to degradation over time. Those based on network or user activity
are heavily dependent on the presence and level of such activity.

To evaluate an entropy source and estimate its entropy rate current popular approaches use a battery
or suite of tests, each test using a different method. For example, a suite may combine tests looking for
bit patterns with tests trying to fit sample statistics to a particular distribution model for the sequence.
The lowest estimate out of all the tests is typically used as the overall entropy estimate for the source [7,
8, 9, 10].

This approach is essentially ad hoc and has limitations. Widely varying estimates among the individual
tests do not inspire confidence in the final estimate and provide little or no qualitative understanding.

A different class of methods computes entropy estimates from the spectral characteristics of digital
signals. Spectral methods are widely used in digital signal processing and provide not only good
quantitative results but also insight into the nature of the signal. The relationship between power
spectral density and entropy for stochastic signals is well known in the literature [11]. However, spectral
methods have not been used much in estimating the entropy for cryptographic purposes. Any bit or byte
sequence produced by a true random number generator may be viewed as a digital signal. Then spectral
techniques may be applied to calculate the power spectral density of that signal and from it an estimate
for the entropy of the source. This insight is particularly useful for designers of hardware entropy
sources as it allows them to identify non-random components in the output sequence and remove them
by fine-tuning the design.

Because entropy sources can drift over time and are subject to malfunction due to aging or errors,
health tests need to be performed in the field, in addition to the initial testing and entropy rate
estimation performed. The health tests for entropy sources are of a different nature than those for
cryptographic algorithms. Simple known-answer tests cannot be used. Instead, a set of samples must
be collected and simple statistic tests run on the fly to determine whether the entropy source has
degraded. The health tests are thus computationally demanding but too important to skip [8].

Naturally, the quality of a given random source is determined in large part by its ability to produce high
rates of entropy consistently to meet the demand of all of its consumers without degradation of service
resulting in locking or inability to provide cryptographic services. Generators with high entropy rate tend
to tolerate health tests without noticeable performance degradation.

References:

1. NIST Special Publication (SP) 800-131A, “Transitions: Recommendation for Transitioning the Use
of Cryptographic Algorithms and Key Lengths”, January 2011,
(http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf)

2. N. Heninger, Z. Durumeric, E. Wustrow and J. A. Halderman, “Mining Your Ps and Qs: Detection
of Widespread Weak Keys in Network Devices”, Proceedings of the 21st USENIX Security
Symposium, August 2012.

3. NIST Special Publication (SP) 800-90A, “Recommendation for Random Number Generation Using
Deterministic Random Bit Generators”, January 2012,
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.

4. NIST Randomness Beacon, http://www.nist.gov/itl/csd/ct/nist_beacon.cfm.
5. CPU Jitter Random Number Generator, http://www.chronox.de
6. “The Linux Pseudorandom Number Generator Revisited”, P. Lacharme, A. Röck, V. Strubel and

M. Videau, Cryptology ePrint Archive, Report 2012/251, 2012 (http://eprint.iacr.org)
7. NIST Special Publication (SP) 800-22 Rev. 1a, “A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic Applications”, Rev. 1, April 2010
(http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf).

8. NIST Special Publication (SP) 800-90B, “Recommendation for the Entropy Sources Used for
Random Bit Generation”, DRAFT, August 2012, NIST
(http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf)

9. DIEHARD Battery of Tests of Randomness: http://www.stat.fsu.edu/pub/diehard.
10. D. Knuth, “The art of computer programming”, vol. 2, 3rd ed., 1997, Adison-Wesley, ISBN 0-201-

89684-2.
11. S. Haykin, “Adaptive filter theory”, 2nd ed., 1991, Prentice-Hall, ISBN 0-13-013236-5.

http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://www.nist.gov/itl/csd/ct/nist_beacon.cfm
http://www.chronox.de/
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://www.stat.fsu.edu/pub/diehard

	True Randomness Can’t be Left to Chance: Why entropy is important for information security

