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Introduction and Motivation 

Cryptography is fundamentally important for securing data, whether that data is in transit over the 
internet or at rest on a storage device. In the past, cryptography relied on algorithms and codes that 
were kept secret. This, however, proved impractical when parties who did not know each other in 
advance wanted to communicate securely.  Modern encryption and authentication algorithms are public 
and have been extensively analyzed.  Today, the security of cryptography depends primarily on having 
strong keys and keeping them secret.  A key is strong only to the degree that it is hard to guess or – to 
put it another way – that it is random. Information security standards [1] require at least 112-bits of 
security strength for cryptographic keys, meaning that the effort for breaking them would be equivalent 
to trying at least 2112 possible keys as the best available attack. Although other factors such as 
cryptographic algorithm soundness and secure implementation play a big role in the security 
cryptography provides we focus our attention on the randomness of keys – an issue often 
misunderstood or neglected by the crypto community at large. 

Deterministic random bit generators (DRBGs), also known as pseudo-random bit or number generators, 
are used to generate keys, but the sequence of numbers they generate can be traced predictably to the 
seed (initial value) that was supplied to the generator in the beginning. In other words, knowing the 
seed one can reconstruct the sequence of numbers a particular DRBG produces. Thus, DRBGs must be 
seeded with sufficient entropy from a reliable entropy source.  Entropy sources that provide true 
randomness are usually based on non-deterministic physical processes or unpredictable events.  Ring 
oscillators are an example of the first, and human driven mouse movements and keyboard stroke 
timings are examples of the second. 

The importance of obtaining and using highly unpredictable keys is not just an academic question. There 
are many practical examples showing that failure to obtain sufficient entropy destroys any security 
provided by long keys and sound algorithms.  Even the best algorithms cannot compensate for weak 
keys generated using insufficient entropy.  Such systems are vulnerable to attackers – with potentially 
disastrous results.  A study [2] revealed that thousands of network devices had generated easily 
guessable keys because of insufficient entropy from the entropy source used.  Some keys on different 
systems were even identical, making it very easy for attackers to unlock the supposedly secret data 
protected by these keys. 

 

Background 



What is entropy?  Entropy in the information theoretic sense is a measure of randomness or uncertainty 
in a signal.  The typical units of measure are bits for entropy and bits per sample for entropy rate. 

Cryptography is usually considered part of the realm of mathematics but today many of the critical 
issues in this discipline span the domains of computer science and engineering.  Codes, ciphers and 
algorithms are the stock in trade for cryptographers, cryptologists, software developers and hardware 
engineers.  They are implemented in the deterministic media of digital circuits and software. Computers 
are designed to be deterministic dynamic systems that execute well-defined instructions in order to 
produce predictable outcomes. This makes it hard to obtain good entropy from real computer systems 
because the sources of unpredictable behavior are minimized by design.   Therefore, in order to obtain 
good entropy one needs to find sources of true randomness, those which run contrary to the nature of 
the typical computer system and thus may be difficult to use.  

Though easy to understand intuitively, the notion of true randomness is hard to define and quantify. 
One might approach it by studying infinite sequences of bits or samples and measure their properties, 
some statistical such as bias, others non-statistical such as lack of computable correlations.  Three of the 
most frequently used characteristics of true randomness are  i) unpredictability, which is a measure of 
the strong non-computability of the bits in the sequence; ii) uniform distribution of the bits in the 
sequence; iii) lack of patterns in the sequence. It is worth pointing out that iii) implies both i) and ii). 
However, i) does not imply ii) and similarly ii) does not guarantee i). 

Random numbers are used in other scientific and engineering fields, but the goals and needs are 
different.  In simulation and modeling, one or more pseudorandom number generators (PRNGs) are 
used to generate values according to a given probability distribution, for example, modeling an arrival 
process with a Poisson distribution.  The PRNG is seeded with a different initial value for each run of the 
simulation. The initial seed may be saved in order to repeat or recreate individual runs of interest.  For 
many simulation uses, the only requirement on the seed is that it does not repeat or, equivalently, that 
it is unique across runs of the simulation. The current time or the tick count of a system clock can serve 
as a suitable source of seed values.  Such applications do not pose any challenge to modern computing 
in terms of obtaining unpredictable outcomes from deterministic rules. 

In cryptographic applications the requirements for seeding a DRBG are much more precise and 
stringent.  The seed must possess sufficient entropy as illustrated by Heninger et al [2].  NIST SP 800-90A 
requires the seed to have at least the number of bits of entropy as the rated security strength of the 
DRBG mechanism.  For example, a block cipher counter mode DRBG (CTR_DRBG) using AES-256 requires 
at least 256 bits of entropy input in order to achieve its maximum security strength of 256 bits [3]. 

We define an entropy source as comprising a noise source, sampling and quantization if needed, and 
minimal conditioning, such as unbiasing.  The noise source is the physical process or observable activity 
that has true randomness.  Sampling and quantization may be needed if the source is continuous.  In 
most cases the output from a particular source contains bias and correlations – symptoms of non-
randomness - due to imperfections in measurement or design. While eliminating correlation is very 
difficult in practice, bias can be mitigated. Von Neumann unbiasing is a common and useful simple 



conditioner.  Often the entropy source output is then passed through a pseudorandom function (PRF) 
conditioner to distribute entropy uniformly across the bits of output samples.  Hash functions and block 
ciphers are common PRFs used. 

There are a several types of entropy and noise sources on computing systems but they can be divided in 
two broad categories: hardware and software.  Hardware entropy sources rely on processing variation in 
individual gates or circuit elements or on putting circuit elements in an undefined or unstable state.  
Examples of this type are ring oscillators, noisy diodes and techniques for using flash memory.  
Hardware entropy sources of this type, often called hardware random number generators, can be 
incorporated directly into devices and systems and provide entropy on-demand.  Dedicated high-quality 
entropy sources such as those that use quantum effects are usually physically separate from the systems 
that use them.  The NIST Randomness Beacon [4] is an example of this type, though it is not 
recommended for use in generating private keys since it is a public source. 

Software entropy sources or software random number generators can run stand-alone or be 
incorporated into software applications directly.  The name “software” is misleading, as the randomness 
comes from exploiting physical device phenomena such as the drift between the operating system (OS) 
timer and processor clock.  Additional randomness may come from variation in events and processes in 
the system.  TrueRand and the CPU Jitter Random Number Generator [5] are examples of this kind of 
entropy source1. 

Modern OSes have system-level entropy sources that provide entropy as a service to calling programs or 
system components.  This relieves each application from the burden of needing a built-in entropy source 
or having a dependency on an external source that is not guaranteed to be on every system.  OS-level 
sources typically use an entropy pool that is fed by multiple sources, such as system, network and user 
activity. /dev/random on Linux [6] and CryptoAPI on Windows are examples. Even though OS-level 
sources provide a convenient source of entropy to applications, they must be used with caution. The 
quality of a particular OS-level source is a function of a specific test configuration, which may include 
environment elements such as human-computer interactivity through peripheral devices. Therefore it is 
important to understand the dependencies of a given OS-level source on its environment and retest it 
when it is ported to a different environment. In fact, the recent discovery of weak keys found on 
network devices [2] resulted from improper use of an otherwise reasonable OS-level entropy source 
ported to a new environment where the assumed operating conditions (noise sources) did not hold. 

 

Testing 

Estimating the entropy rate or measuring the true randomness of an entropy source is difficult. For 
example, to show the unpredictability of a sequence of bits one has to establish that no Turing machine 
can compute more than finitely many scattered bits of the sequence. Since computability implies 
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predictability, the unpredictability depends not only on the impossibility to compute but also on the 
strength of that impossibility. In general, no bit sequence is absent of all possible patterns and this is the 
reason why it is hard to characterize true randomness in practice.   Moreover, as mentioned above, 
assessing and eliminating correlation in the output from a source is practically impossible. Therefore, all 
known practical techniques for measuring true randomness are limited and imperfect. Still, objective, 
repeatable estimation methods are preferred, such as statistical estimators run on sample datasets.   In 
addition to requiring good tests, such methods require careful data collection.  For some noise source 
mechanisms, operating conditions are significant.  Those based on physical processes may be 
temperature dependent and subject to degradation over time.  Those based on network or user activity 
are heavily dependent on the presence and level of such activity. 

To evaluate an entropy source and estimate its entropy rate current popular approaches use a battery 
or suite of tests, each test using a different method.  For example, a suite may combine tests looking for 
bit patterns with tests trying to fit sample statistics to a particular distribution model for the sequence. 
The lowest estimate out of all the tests is typically used as the overall entropy estimate for the source [7, 
8, 9, 10]. 

This approach is essentially ad hoc and has limitations.  Widely varying estimates among the individual 
tests do not inspire confidence in the final estimate and provide little or no qualitative understanding. 

A different class of methods computes entropy estimates from the spectral characteristics of digital 
signals. Spectral methods are widely used in digital signal processing and provide not only good 
quantitative results but also insight into the nature of the signal.  The relationship between power 
spectral density and entropy for stochastic signals is well known in the literature [11]. However, spectral 
methods have not been used much in estimating the entropy for cryptographic purposes. Any bit or byte 
sequence produced by a true random number generator may be viewed as a digital signal. Then spectral 
techniques may be applied to calculate the power spectral density of that signal and from it an estimate 
for the entropy of the source. This insight is particularly useful for designers of hardware entropy 
sources as it allows them to identify non-random components in the output sequence and remove them 
by fine-tuning the design. 

Because entropy sources can drift over time and are subject to malfunction due to aging or errors, 
health tests need to be performed in the field, in addition to the initial testing and entropy rate 
estimation performed.  The health tests for entropy sources are of a different nature than those for 
cryptographic algorithms.  Simple known-answer tests cannot be used.  Instead, a set of samples must 
be collected and simple statistic tests run on the fly to determine whether the entropy source has 
degraded. The health tests are thus computationally demanding but too important to skip [8]. 

Naturally, the quality of a given random source is determined in large part by its ability to produce high 
rates of entropy consistently to meet the demand of all of its consumers without degradation of service 
resulting in locking or inability to provide cryptographic services. Generators with high entropy rate tend 
to tolerate health tests without noticeable performance degradation. 
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