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Abstract
The resonance frequency, amplitude, and phase response of the first two eigenmodes of two contact-resonance atomic force

microscopy (CR-AFM) configurations, which differ in the method used to excite the system (cantilever base vs sample excitation),

are analyzed in this work. Similarities and differences in the observables of the cantilever dynamics, as well as the different effect

of the tip–sample contact properties on those observables in each configuration are discussed. Finally, the expected accuracy of

CR-AFM using phase-locked loop detection is investigated and quantification of the typical errors incurred during measurements is

provided.
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Introduction
A number of atomic force microscopy (AFM) variants have

emerged since the introduction of the original technique in 1986

[1]. Besides topographical acquisition and spectroscopy, an

important application nowadays is the measurement of con-

servative and dissipative interactions across nanoscale surfaces,

which is highly relevant for viscoelastic materials such as poly-

mers and biological samples. These measurements can be

carried out through a combination of contact and dynamic AFM

modes. Within the force modulation method [2], the tip and the

sample are brought into contact at a prescribed tip–sample force

setpoint (cantilever deflection setpoint, as in contact mode

imaging) and the sample is excited with a sinusoidal oscillation

in the vertical direction (atomic force acoustic microscopy

(AFAM) configuration [3]), such that the tip oscillation ampli-

tude and its phase with respect to the excitation can be

measured and converted into a loss and storage modulus. In

contact resonance AFM (CR-AFM) [3-9] a similar setup is

used, supplying the sinusoidal excitation either at the base of

the cantilever (in the so-called ultrasonic atomic force

microscopy (UAFM) configuration [4]) or to the sample stage

(in the AFAM configuration [3]). In both cases, the effective

resonance frequency, amplitude, and phase of various eigen-
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modes of the cantilever–tip system are generally measured

through excitation frequency “sweeps” for quantitative

determination of the same elastic and viscous responses of the

material. More recently, other methods have been introduced to

more rapidly infer the frequency response (amplitude vs

frequency curves) of the tip–sample contact. In the band excita-

tion (BE) method, a time-dependent signal containing a band of

frequencies around the desired resonance is applied at each

pixel of the scan, such that the frequency response at that loca-

tion can be rapidly obtained through a Fourier transform of the

cantilever tip response and a fit to a Lorentzian curve [10,11].

This calculation allows mapping of the resonance frequency and

quality factor across the sample, from which viscoelastic prop-

erties can also be inferred. In contrast, in the dual-amplitude

resonance tracking (DART) method, the frequency response

curve is rapidly inferred from the phase and amplitude response

at two frequencies around the resonance frequency during a

real-time scan [12].

Intermittent-contact methods have also been used to charac-

terize conservative and dissipative tip–sample interactions

simultaneously with topographical acquisition. This was origi-

nally performed using the tapping-mode (amplitude modula-

tion) technique [13], within which variations in the phase

contrast can be directly related to changes in energy dissipation

[14,15]. Conservative and dissipative interactions are generally

expressed in terms of the virial (Vts) and the dissipated power

(Pts), respectively [15-20]. In the last ten years, intermittent-

contact measurements have been enhanced through multifre-

quency excitation methods [21-27]. In multifrequency AFM,

the fundamental cantilever eigenmode is typically controlled in

conventional AM- or FM-AFM mode for topographical

measurement, while one or more higher eigenmodes are driven

simultaneously in order to also map compositional

(viscoelastic) contrast. Since the higher eigenmodes are not

directly affected by the topographical acquisition controls, they

can be tuned independently to map Vts and Pts with high sensi-

tivity. However, with the exception of small-amplitude

FM-AFM [28,29] in which the tip–sample force gradient can be

measured directly, the mapping of Vts and Pts in intermittent-

contact imaging generally only provides a qualitative map of

surface viscoelasticity.

In this work the focus is on the CR-AFM technique. Specifi-

cally, we analyzed the response variables for the two configura-

tions currently in use (UAFM and AFAM), and restricted our

analysis to the first two cantilever eigenmodes. Similarities and

notable differences were observed in the signals and calculated

variables (frequency, amplitude and phase) for the two cases,

which require careful analysis for proper experimental setup

and interpretation. As an example, we analyzed the errors intro-

Figure 1: a) UAFM configuration with a mechanical vibration applied to
the base of the cantilever and signal detection at the end of the
cantilever. b) AFAM configuration with a mechanical vibration applied
to the sample and signal detection at the end of the cantilever.

duced during resonance frequency tracking through the use of a

phase-locked loop (PLL), which leads to different results in

both configurations. This is a highly relevant practical consider-

ation, since PLL techniques offer versatility and speed of char-

acterization when they can be implemented accurately.

Results and Discussion
Equation of motion for a cantilever beam in
UAFM and AFAM configurations
In this work two CR-AFM configurations will be analyzed:

UAFM [4], with the cantilever vibrated from its base

(Figure 1a), and AFAM [3], with the sample vibrated from

underneath (Figure 1b). In both configurations the vibration is

in the form of a mechanical oscillation of variable frequency

and the detection is performed at the end of the cantilever where

the tip is located. The dynamics of the cantilever–tip–sample

system in each of these configurations was discussed by Rabe in

[30]. We limit ourselves to briefly reviewing the equations

necessary for our analysis. For simplicity, the vertical
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tip–sample coupling was modelled as a spring in parallel with a

dashpot (Kelvin–Voigt model) and no lateral contact coupling

was considered; vertical and lateral refer here to the normal and

parallel directions to the sample surface, respectively.

The Euler–Bernoulli equation of motion for damped flexural

vibrations of a cantilever beam in air is

(1)

where the cantilever is described by its Young’s modulus E,

second moment of area of its cross section I, mass density ρ,

and cross-sectional area A, and ηair characterizes the damping of

the oscillations in air. The general solution of Equation 1 is in

the form of y(x,t) = y(x)eiωt, with

(2)

with A1, A2, A3, and A4 constants and α the complex wave

number of a flexural oscillation, .

For the UAFM and AFAM configurations shown in Figure 1,

the following boundary conditions are imposed to the general

solution:

(3)

(4)

(5)

and

(6)

where L is the length of the cantilever, Ad the driven amplitude,

and Θ(α) is given by

(7)

Here kc = 3EI/L3 is the cantilever spring constant, k* the contact

stiffness, γ* the contact damping constant, and 

the dimensionless contact damping constant. With the above

specified boundary conditions the solution further simplifies to

(8)

with the following constants for the two configurations:

(9)

(10)

(11)

(12)

and

(13)

with M± = sin αL cosh αL ± sinh αL cos αL, N(α) = (αL)3 (1 +

cos αL cosh αL) + Θ(α)M−, and Θ(α) given by Equation 7. In

particular, the deflection of the end of the cantilever reduces to



Beilstein J. Nanotechnol. 2014, 5, 278–288.

281

(14)

The magnitude of the deflection and phase are given by:

(15)

and

(16)

respectively.

We illustrate our analysis with a rectangular Si cantilever of

length L = 225.03 µm, width w = 30.00 µm, and thickness

T = 4.89 µm. With mass density ρSi = 2329.00 kg/m3 and

Young’s modulus ESi = 130.00 GPa, the cantilever’s spring

constant was calculated as kc = 10.00 N/m. Using these parame-

ters and considering ηair = 2.50 s−1 in Equation 1, the first two

eigenmodes are characterized by the dynamic parameters given

in Table 1. The frequency dependences of the amplitude ratio

and phase around resonance are shown in Figure 2 for the first

two free eigenmodes of the cantilever. For calculations of the

free-eigenmodes, the cantilever was vibrated in the UAFM con-

figuration. In the following analysis we will characterize the

contact damping by the dimensionless contact damping constant

p rather than the actual contact damping constant γ*. The

discussion is focused on the dynamics of the cantilever in the

two CR-AFM configurations only and further consideration of

various contact geometries would be required to convert the

measured dynamic parameters into the elastic and viscous prop-

erties of the materials and structures probed [8,9,31-33].

Table 1: Cantilever parameters.

Mode 1 Mode 2

Resonance frequency (kHz) 116.54 730.37
Amplitude ratioa 458.69 1593.10
Phase (degree) 90.05 270.01
Quality factor Q 292.90 1835.64

aThe amplitude ratio refers to the amplitude at resonance, A, normal-
ized to the driven amplitude, Ad.

Figure 2: Amplitude ratio and phase of the a) first and b) second free
eigenmodes of a cantilever vibrated in the UAFM configuration,
measured at the tip.

Amplitude and phase along the cantilever
In Figure 3 are shown the amplitude ratio and phase of the first

eigenmode along the cantilever for the UAFM (Figure 3a) and

AFAM (Figure 3c) configurations for the same contact stiff-

ness, k* = 20 N/m, and three different contact damping values:

mild (p = 0.10), medium (p = 0.25), and strong (p = 0.50)

contact damping. In both configurations, the calculated dis-

placement along the cantilever shows the deformed shape of the

first eigenmode with a node at the base of the cantilever (x = 0)

and an antinode at the end of the cantilever (x = L), with smaller

and smaller displacement values as the contact damping

increases. In contrast to the displacements, the phase response is

quite different in magnitude and shape. Thus, in the UAFM

configuration, the phase of the first eigenmode (refer to

Figure 3a) goes from 0 at the base of the cantilever to around

90 degrees at the end of the cantilever. The resonance state at

the end of the cantilever for the UAFM configuration is detailed

in Figure 3b in terms of amplitude and phase. From this, little

change in the phase can be observed for the range of consid-

ered contact damping, from 91.1 degrees for p = 0.10 to

95.5 degrees for p = 0.50. Interestingly, as can be seen in

Figure 3a, the phase is about 90 degrees at 87% of the length of

cantilever, independent of the contact damping values. The key

observation here is that the phase at the end of the cantilever in
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the UAFM configuration varies by a few degrees around

90 degrees depending on the magnitude of the contact damping.

However, a completely different response in phase is shown in

Figure 3c and 3d for the AFAM configuration. First, the phase

of the first AFAM eigenmode is essentially constant (very small

variation) along the cantilever. Second, its magnitude changes

significantly with the considered contact damping. It decreases

from essentially 90 degrees when no contact damping is present

to 82.6 for p = 0.10, to 72.1 degrees for p = 0.25, and to

57.1 degrees for p = 0.50.

An analogous analysis can be carried out for the amplitude and

phase of the second eigenmode shown in Figure 4. The shape of

the second eigenmode of the cantilever exhibits two nodes (at

the base of the cantilever and at 77% of the length of the

cantilever) and two antinodes (at 46% of the length of the

cantilever and at the end of the cantilever). Both the UAFM and

AFAM configurations impose the same shape for the second

eigenmode but the amplitude is about one order of magnitude

larger in UAFM than in AFAM. As in the case of the first

eigenmode discussed above, the phase of the second eigen-

mode differs substantially between the two configurations. In

the UAFM configuration, the phase is 0 at the cantilever base,

shows a 90 degrees plateau around the first antinode, goes

through 180 degrees at the second node, and shows another

plateau of 270 degrees at the end of the cantilever; 270 degrees

is equivalent here to a resonance at −90 degrees. As observed in

Figure 4a at the end of the cantilever and also in Figure 4b from

the frequency dependences around the resonance, the phase of

the second eigenmode at the end of the cantilever experiences

small variations as a function of contact damping: 269.1 degrees

for p = 0.10 to 265.4 degrees for p = 0.50. In the AFAM con-

figuration, the phase resembles the shape of a two-step function

with a sharp transition at the second node. At the end of the

cantilever, the phase of the second AFAM eigenmode shown in

Figure 4c and 4d varies substantially with the contact damping

considered: From 72.6 degrees for p = 0.10, to 52.0 degrees for

p = 0.25, and to 32.6 degrees for p = 0.50.

From the above discussion of the amplitude and phase of the

first and second eigenmodes of the cantilever, we can conclude

that for a given contact stiffness, the amplitude changes signifi-

cantly with the contact damping and this change is qualitatively

and quantitatively similar in UAFM and AFAM. However, the

phases of the two configurations differ significantly from each

other. In the UAFM configuration the phase experiences small

variations as a function of contact damping, with values around

90 degrees (first eigenmode) or −90 degrees (second eigen-

mode). On the other hand, in the AFAM configuration, the

phase is very sensitive to changes in contact damping and

exhibits large variations. This analysis indicates that both the

Figure 3: Amplitude ratio and phase of the first eigenmode along the
cantilever in a) the UAFM and c) AFAM configurations, respectively.
Frequency dependence of the amplitude ratio and phase of the first
eigenmode at the end of the cantilever in b) the UAFM and
d) AFAM configurations, respectively.

UAFM and AFAM amplitudes but only the AFAM phase are

good measurable quantities for determining the contact

damping of the tip–sample coupling. On the other hand, the

UAFM phase is quite insensitive to the contact damping and it
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Figure 4: Amplitude ratio and phase of the second eigenmode along
the cantilever in a) the UAFM and c) AFAM configurations, respective-
ly. Frequency dependence of the amplitude ratio and phase of the
second eigenmode at the end of the cantilever in b) the UAFM and
d) AFAM configurations, respectively.

would not be a good measurement for it. However, as discussed

later, the invariance of the UAFM phase to contact damping can

be used to track the resonance state by phase-control tech-

niques (i.e., PLLs) [34,35].

Contact resonance frequency, amplitude,
and phase
To retrieve the contact stiffness and contact damping responses

of a material, measurements are made in terms of resonance

frequency, amplitude, and phase in any of the CR-AFM

configurations. In the following we will analyze these

various signals at the end of the cantilever as a function

of contact stiffness and contact damping in UAFM and AFAM

configurations and examine the differences between these two

configurations.

The amplitude ratio, resonance frequency, and phase of the first

eigenmode are shown as a function of the contact stiffness in

Figure 5 for a small p = 0.05 contact damping and in Figure 6

for a medium p = 0.25 contact damping, respectively. All the

cantilever parameters were taken to be the same as above, with

kc = 10.00 N/m. As can be seen in Figure 5 and Figure 6, for

each of the contact damping values considered, there is no

significant difference between the UAFM and AFAM reso-

nance frequencies (red and grey continuous lines) over the

investigated contact stiffness range. This shows that in terms of

contact stiffness measurements based on the shift in the reso-

nance frequency the UAFM and AFAM configurations provide

the same result. The differences between the two configura-

tions are notable in terms of amplitude and phase. In the UAFM

configuration, the amplitude (green continuous line in Figure 5

and Figure 6) slowly increases with the increase in contact stiff-

ness. For the two contact damping values considered in Figure 5

and Figure 6, the overall increase in UAFM amplitude was

about 40% between the initial value at k* = 0 N/m and end

value at k* = 50 N/m. A more abrupt increase can be observed

for the AFAM amplitude (green dotted lines in Figure 5 and

Figure 6). In the AFAM configuration the amplitude is zero at

k* = 0 N/m when the tip and the sample are basically uncou-

pled. In practice, however, small oscillations are induced in the

cantilever when it is brought close to but still not in contact with

the vibrated sample. So, in this case of very small contact stiff-

nesses, the theoretical AFAM configuration might not be repro-

duced in experiments. It is interesting to observe that the

UAFM and AFAM amplitudes become comparable towards

large contact stiffness couplings in both cases of small and

medium contact damping. The phase variation as a function of

contact stiffness is similar to the amplitude variation in each

configuration. Thus, over the considered contact stiffness range,

the UAFM phase (blue continuous line in Figure 5 and

Figure 6) changes within one degree from its free value

(90 degrees) in the case of a small p = 0.05 contact damping and

within 4 degrees in the case of a medium p = 0.25 contact

damping. However, a much larger variation is experienced by

the AFAM phase (dotted blue line in Figure 5 and Figure 6)

with the increase in the contact stiffness. From essentially zero
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Figure 5: Amplitude ratio, frequency shift, and phase of the first eigenmode versus contact stiffness in UAFM and AFAM configurations when a small
contact damping of p = 0.05 was considered.

Figure 6: Amplitude ratio, frequency shift, and phase of the first eigenmode versus contact stiffness in UAFM and AFAM configurations when a
medium contact damping of p = 0.25 was considered.

degrees, in the absence of tip–sample coupling, the AFAM

phase increases sharply in the range of small contact stiffnesses

and has an asymptotical increase for contact stiffnesses compa-

rable or larger than the cantilever stiffness. These asymptotic

values of the AFAM phase however depend strongly on the

actual contact damping. For the examples shown in Figure 5

and Figure 6, the AFAM phase approaches 87 degrees for a

contact stiffness of p = 0.05 and 80 degrees for a contact stiff-
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Figure 7: a) Frequency shift, b) normalized amplitude, c) phase, and d) quality factor Q of the first eigenmode in the UAFM configuration as a func-
tion of contact stiffness and contact damping. e) Frequency shift, f) normalized amplitude, g) phase, and h) quality factor Q of the first eigenmode in
the AFAM configuration as a function of contact stiffness and contact damping.

Figure 8: a) Frequency shift, b) normalized amplitude, c) phase, and d) quality factor Q of the second eigenmode in the UAFM configuration as a
function of contact stiffness and contact damping. e) Frequency shift, f) normalized amplitude, g) phase, and h) quality factor Q of the second eigen-
mode in the AFAM configuration as a function of contact stiffness and contact damping.

ness of p = 0.25. This reiterates the above observation that the

AFAM phase is sensitive to contact damping and could be used

as a measure of the tip–sample contact damping.

The variations of the contact resonance frequency, amplitude,

and phase as a function of both contact stiffness and contact

damping were fully analyzed in the maps shown in Figure 7 for

the first eigenmode and in Figure 8 for the second eigenmode of

UAFM and AFAM, respectively. In terms of contact resonance

frequency, large shifts were observed over the range of consid-

ered contact stiffness and damping: about 130 kHz for the first

eigenmode (Figure 7a and 7e) and about 50 kHz for the second
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eigenmode (Figure 8a and 8e). As can be seen, the frequency

shifts are almost insensitive to contact damping and mainly

responsive to contact stiffness variations only. On the other

hand, a pronounced contact damping dependence and moderate

contact stiffness dependence can be observed in the amplitude

maps (Figure 7b and 7f for the first eigenmode and Figure 8b

and 8f for the second eigenmode), especially for the UAFM

configuration. With the exception of the small contact stiffness

range, the UAFM and AFAM amplitude values are comparable

for the first eigenmode (Figure 7b and 7f). In the case of the

second eigenmode, the UAFM amplitudes are consistently

larger than the AFAM amplitudes, exhibiting a better ampli-

tude detection of the second UAFM eigenmode than its counter-

part in the AFAM configuration. A concurrent dependence on

contact stiffness and contact damping can be observed in the

maps of the phase at resonance (Figure 7c and 7g for the first

eigenmode and Figure 8c and 8g for the second eigenmode).

The UAFM phase response to the considered contact stiffness

and contact damping variations is of order of a few degrees

around 90 degrees for the first eigenmode and few degrees

below 270 degrees (−90 degrees) for the second eigenmode.

Thus, the UAFM phase of the first eigenmode (Figure 7c) is

less than 90 degrees for compliant materials with either low or

high contact damping and stiff materials with low contact

damping. The phase goes above 90 degrees in the less realistic

case of stiff materials with high damping. An even smaller vari-

ation of only 5 degrees below the free resonance phase was

observed for the second UAFM eigenmode (Figure 8c). As

inferred from the above discussion, the AFAM phase, either for

the first eigenmode (Figure 7g) or second eigenmode

(Figure 8g) exhibits large variation as a function of contact stiff-

ness and contact damping. Thus, the AFAM phase is around

zero degrees at small contact stiffnesses and goes asymptoti-

cally towards 90 degrees as the contact stiffness increases. This

asymptotic trend is progressively delayed with the increase in

contact damping. An interesting behaviour is observed also in

the maps of quality factor Q (Figure 7d and 7e for the first

eigenmode and Figure 8d and 8e for the second eigenmode),

calculated as the ratio of the resonance frequency to the width

of the resonance peak, ωn/Δω. In general, the quality factor is

directly associated with the damping response of the system.

However, as it can be seen in Figure 7d and 7h, it depends on

both the contact stiffness and contact damping. The Q-factor is

almost independent of contact stiffness for the second UAFM

and AFAM eigenmodes, in which case it can be used as a direct

measurement of the tip–sample contact damping. Explicit rela-

tionships between the Q-factors of various contact eigenmodes

and contact damping were intuitively proposed [36] and rigor-

ously derived [37] previously for the AFAM configuration. The

results shown in Figure 7h and Figure 8h are in agreement,

within the common range of contact stiffness, with the Q-factor

versus contact damping dependences shown in Figure 2 of [37]

for the first two eigenmodes.

Phase-locked loop detection
By considering their specific dependences in either UAFM or

AFAM configurations, the measured contact resonance

frequency, amplitude, and phase can be converted into the stiff-

ness and damping of the tip–sample contact coupling. One way

of observing the fast change in the dynamics of a cantilever

used in CR-AFM point measurements or scanning is to track the

resonance state by PLL detection, similar with what is used in

non-contact frequency modulation AFM. In non-contact AFM,

PLL tracking has been implemented in either constant-excita-

tion frequency modulation [17,18] or constant-amplitude

frequency-modulation [19,20]. In the following we will refer

only to the constant-excitation PLL setup in which the driving

amplitude is constant and the frequency is adjusted continu-

ously to maintain a constant phase difference between drive and

response, φPLL. In the case of an AFM cantilever brought into

contact from air, the PLL reference phase would be the phase of

the free oscillation of the selected eigenmode. However, as we

discussed above, the phase of a vibrated cantilever that is in

contact with a sample, even when it is driven at the resonance,

is not constant but varies in accordance with the magnitudes of

the contact stiffness and contact damping. This means that in

PLL detection the true resonance condition will not be

retrieved. Instead one would obtain the state having the prede-

fined PLL phase, φPLL. The error introduced by the PLL in

measuring the resonance frequency will then by Δf = fresonance −

fPLL, where fresonance is the dynamic resonance frequency and

fPLL is the frequency at which the phase of the detected signal is

φPLL.

Based on its weak dependence on contact stiffness and contact

damping, the UAFM phase can be used in a PLL detection

[35,38] to maintain the cantilever–tip–sample system at the

resonance and track the changes in the resonance frequency and

amplitude. Figure 9 shows the errors introduced by the PLL in

measuring the resonance frequency of the first and second

eigenmodes when the locked phase was that of the free reso-

nance of the respective eigenmode. As can be seen in Figure 9,

the errors introduced by the PLL in determining the true reso-

nance frequencies of the first two UAFM eigenmodes are

within 1 kHz for low and medium contact damping (p < 0.25)

over the contact stiffness range considered. In the case of very

large contact damping, these errors extend to about 2 kHz or

3 kHz for some particular values of contact stiffness. Consid-

ering that these errors are for shifts of about 150 kHz for the

resonance frequency of the eigenmode (refer to Figure 7a) and

50 kHz for the resonance frequency of the second mode (refer

to Figure 8a), respectively, they result in negligible errors in the
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Figure 9: The frequency error introduced by a PLL in measuring the
shift of the contact resonance frequency of (a) the first and (b) second
eigenmodes in the UAFM configuration as a function of contact stiff-
ness and contact damping. The corresponding frequency shifts over
the investigated contact stiffness and contact damping ranges are
shown in Figure 7a and Figure 8a for the two eigenmodes, respective-
ly.

conversion of measured contact resonance frequencies into ma-

terial elastic moduli.

A particular situation arises in the case of using PLL detection

in the AFAM configuration. As was discussed above, large

variations are experienced by the AFAM phase from out of

contact to contact states. In the AFAM configuration the phase

was found to be very sensitive to the stiffness and damping of

the tip–sample contact. This phase sensitivity could be used

directly for contact damping measurements [8] but would make

impractical the PLL detection of the contact resonance of an

AFAM eigenmode with respect to its free resonance. However,

a moderate variation is experienced by the AFAM phase for

contact stiffness comparable or greater than the stiffness of the

cantilever (e.g., contact stiffnesses about or greater than 10 N/m

in the examples considered in Figure 5 and Figure 6). It is there-

fore possible to perform PLL tracking even in the AFAM con-

figuration by choosing a reference contact resonance state with

respect to which moderate phase variations are experienced

during contact measurements or scanning. This type of

measurement has been performed also in the UAFM configur-

ation of CR-AFM on Cu-low-k dielectric materials, with the

PLL locked on the phase of a contact resonance state, after the

tip was brought into contact at the desired applied force [35].

From a practical point of view, it is worth mentioning here that

in the case of UAFM, the detection is very sensitive to the

transfer function of the cantilever used and in some cases,

depending on the cantilever used and tip–sample couplings,

spurious resonances can mask or distort the real tip–sample

coupling resonances [39,40]. On the other hand, in AFAM con-

figuration, the frequency spectra are heavily overwritten by the

transfer function of the excitation actuator (underneath the

sample), which can provide cleaner spectra at the expense of a

more aggressive tip–sample coupling.

Conclusion
The resonance frequency, amplitude, and phase of the first two

eigenmodes of two contact resonance AFM (CR-AFM) con-

figurations, namely a setup with sample stage excitation

(AFAM) and one with cantilever base excitation (UAFM), were

analyzed in detail. This allowed observing similarities and

differences among the dynamic parameters of each of the

CR-AFM configurations as a function of the mechanical

coupling on different materials. Thus, while the contact reso-

nance frequency is mostly sensitive to contact stiffness and less

sensitive to contact damping, the resonance amplitude and

phase exhibit a concurrent dependence on both contact stiffness

and contact damping. Also, it was found that the two CR-AFM

configurations differ greatly through their phase response. Thus,

while the UAFM phase shows a reduced variation over a large

range of material parameters, the AFAM phase is very sensi-

tive to both contact stiffness and contact damping. These results

suggest that, from an experimental point of few, UAFM would

be the preferred CR-AFM configuration in phase-control detec-

tion applications. However, with appropriate use of their

specific frequency dependences, both amplitude and phase are

theoretically available for elastic modulus and dissipation

measurements in both UAFM and AFAM configurations.
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