A Simulated Sensor-based Approach for Kit
Building Applications

Zeid Kootbally!, Craig Schlenoff?, Teddy Weisman?®, Stephen Balakirsky?,
Thomas Kramer®, and Anthony Pietromartire?

! University of Maryland, College Park, MD 20740, USA,
zeid.kootbally@nist.gov,
WWW home page: www.nist.gov/el/isd/ks/kootbally.cfm
2 Intelligent Systems Division, National Institute of Standards and Technology,
Gaithersburg, MD, USA,
craig.schlenoff@nist.gov, anthony.pietromartire@nist.gov,
WWW home page: www.nist.gov/el/smartcyber.cfm
3 Yale University, New Haven, CT 06520,
tjweisman@gmail.com
4 Georgia Tech Research Institute, Atlanta, GA 30332, USA,
stephen.balakirsky@gtri.gatech.edu,
WWW home page: unmannedsystems.gtri.gatech.edu
5 Department of Mechanical Engineering, Catholic University of America,
Washington, DC, USA,
thomas .kramer@nist.gov,
WWW home page: http://www.nist.gov/el/isd/ks/kramer.cfm

Abstract. Kit building or kitting is a process in which separate but
related items are grouped, packaged, and supplied together as one unit
(kit). This paper describes advances in the development of kitting simu-
lation tools that incorporate sensing/control and parts detection capabil-
ities. To pick and place parts and components during kitting, the kitting
workcell relies on a simulated sensor system to retrieve the six-degree of
freedom (6DOF) pose estimation of each of these objects. While the use
of a sensor system allows objects’ poses to be obtained, it also helps de-
tecting failures during the execution of a kitting plan when some of these
objects are missing or are not at the expected locations. A simulated kit-
ting system is presented and the approach that is used to task a sensor
system to retrieve 6DOF pose estimation of specific objects (objects of
interest) is given.

Keywords: simulation, manufacturing, robotics, kitting, sensor system

1 Introduction

The effort presented in this paper is designed to support the IEEE Robotics
and Automation Society’s Ontologies for Robotics and Automation Working
Group. Kitting is the process in which several different, but related items are

placed into a container and supplied together as a single unit (kit). Kitting itself
may be viewed as a specialization of the general bin-picking problem. Industrial
assembly of manufactured products is often performed by first bringing parts
together in a kit and then moving the kit to the assembly area where the parts
are used to assemble products. Agile and flexible kitting, when applied properly,
has been observed to show numerous benefits for the assembly line, such as
cost savings [7] including saving manufacturing or assembly space [20], reducing
assembly worker walking and searching time [27], and increasing line flexibility [6]
and balance [16].

Applications for assembly robots have been primarily implemented in fixed
and programmable automation. Fixed automation is a process using mechanized
machinery to perform fixed and repetitive operations in order to produce a high
volume of similar parts. Although fixed automation provides high efficiency at
a low unit cost, drastic modifications of the machines are required when parts
need major changes or become too complicated in design. In programmable
automation, products are made in batch quantities ranging from several dozen
to several thousand units at a time. However, each new batch requires long
set up times to accommodate the new product style. The time, and therefore
the cost, of developing applications for fixed and programmable automation is
usually quite high. The opportunity to expand the industrial use of robots is
through agile and flexible automation where minimized setup times can lead to
more output and generally better throughput.

The effort presented in this paper describes an approach based on a simulated
sensor system in an attempt to move towards an agile system. Tasking a sensor
system to retrieve information about objects of interest should be performed in
a timely manner before the robot carries out actions that involve these objects
of interest. Objects in a kitting workcell are likely susceptible to be moved by
external agents, parts trays may be depleted, and objects of different types can
be unintentionally mixed with other types. Consequently, the system should be
able to detect any of the aforementioned cases by tasking the sensor system to
retrieve pose estimations of objects of interest.

Pose estimation is an important capability for grasping and manipulation.
A wide variety of solutions have been proposed in order to extend the current
structure of the systems to an agile system. Most of the efforts in the literature
have focused primarily on solutions for robots whose mobility is restricted to
the ground plane. Lysenkov et al. [19] presented new algorithms for segmen-
tation, pose estimation, and recognition of transparent objects. Their system
showed that a robot is able to grasp 80% of known transparent objects with the
proposed algorithm and this result is robust across non-specular backgrounds
behind the objects. Dzitac and Mazid [11] proposed a flexible and inexpensive
object detection and localization method for pick-and-place robots based on the
Xtion and Kinect. The authors relied on depth sensors to provide the robots
with flexible and powerful means of locating objects, such as boxes, without
the need to hard code the exact coordinates of the box in the robot program.
Rusu et al. [25] presented a novel 3D feature descriptor, the Viewpoint Fea-

ture Histogram (VFH), for object recognition and 6DOF pose identification for
applications where a priori segmentation is possible.

The organization of the remainder of this paper is as follows. Section 2
presents an overview of the knowledge driven methodology used in this effort.
Section 3 describes the simulation environment used for kitting applications.
Section 4 details the approach that tasks a sensor system to retrieve information
on objects of interest, and Section 5 concludes this paper and analyzes future
work.

2 Knowledge Driven Methodology

Sense
Canonical
Robot Command|
Robot Language Plan
Language |
-T Plan Instance| .
File
I Connectors to
. - Predicate Evaluation
M PDDL Domain| PDDL Problem
| File File MySQL Database
Planning |
Language |

Ontology ?

|
% | Sensor Processing™ |
Dom?"‘ Ground Truth |
Specific !
Information |
'

Fig. 1. Knowledge Driven Design extensions — In this figure, green shaded boxes with
curved bottoms represent hand generated files while light blue shaded boxes with
curved bottoms represent automatically created boxes. Rectangular boxes represent
processes and libraries.

The knowledge driven methodology presented in this section is not intended
to act as a stand-alone system architecture. Rather it is intended to be an exten-
sion to well-developed hierarchical, deliberative architectures such as 4D/RCS
(Real-time Control Systems) [1]. The overall knowledge driven methodology of
the system is depicted in Figure 1. The figure is organized vertically by the
representation that is used for the knowledge and horizontally by the classical
sense-model-act paradigm of intelligent systems. The remainder of this section
gives a brief description of each level of the hierarchy to help the reader under-
stand the basic concepts implemented within the system architecture in order
that the reader may better grasp the main effort described in this paper. The
reader may find a more detailed description of each component and each level
of the architecture in other publications [5].

2.1 Domain Specific Information

On the vertical axis, knowledge begins with Domain Specific Information (DSI).
DSI includes sensors and sensor processing that are specifically tuned to operate
in the target domain. Examples of sensor processing may include pose determi-
nation and object identification. It is important to note that the effort described
in this paper assumes perfect data from the sensor system that do not include
noise. A detailed description of the simulated sensor system is given in Section 3.
For the knowledge model, a scenario driven approach is taken where the DSI
design begins with a domain expert creating one or more use cases and specific
scenarios that describe the typical operation of the system. This includes infor-
mation on items ranging from what actions and attributes are relevant, to what
the necessary conditions (preconditions) are for an action to occur and what the
likely results (effects) of the action are. The authors have chosen to encode this
basic information in a formalism known as a state variable representation [22].

2.2 Ontology

The information encoded in the DSI is then organized into a domain independent
representation.

— A Web Ontology Language (OWL)/Extensible Markup Language (XML)
base ontology (OWL/XML Kitting) contains all of the basic information that
was determined to be needed during the evaluation of the use cases and
scenarios. The knowledge is represented in a compact form with knowledge
classes inheriting common attributes from parent classes.

— The OWL/XML SOAP ontology describes the links between States, Ordering
constructs, Actions, and Predicates (the SOAP ontology) that are relevant to
the scenario. A State is composed of one to many state relationships, which
is a specific relation between two objects (e.g., Object 1 is on top of Object
2). An Ordering construct defines the order in which the state relationships
need to be represented for a specific State. In classical representation, States
are represented as sets of logical atoms (Predicates) that are true or false

within some interpretation. Actions are represented by planning operators
that change the truth values of these atoms. In the case of the kit building
domain, it was found that 10 actions and 16 predicates were necessary.

— The instance files describe the initial and goal states for the system through
the Kitting Init Conditions File and the Kitting Goal Conditions File, respec-
tively. The initial state file must contain a description of the environment
that is complete enough for a planning system to be able to create a valid
sequence of actions that will achieve the given goal state. The goal state
file only needs to contain information that is relevant to the end goal of the
system. For the case of building a kit, this may simply be that a complete
kit is located in a bin designed to hold completed kits.

Since both the OWL and XML implementations of the knowledge represen-
tation are file-based, real time information proved to be problematic. In order
to solve this problem, an automatically generated MySQL Database [10] was in-
troduced as part of the knowledge representation. A description of the MySQL
Database is given in the following subsection.

2.3 Planning Language

Aspects of the knowledge previously described are automatically extracted and
encoded in a form that is optimized for a planning system to utilize (the Plan-
ning Language). The planning language used in the knowledge driven system is
expressed with the Planning Domain Definition Language (PDDL) [14] (version
3.0). The PDDL input format consists of two files that specify the domain and
the problem. As shown in Figure 1, these files are automatically generated from
the ontology. From these two files, a domain independent planning system [9]
was used to produce a static Plan Instance File.

While the knowledge representation presented in this paper provides the
“slots” necessary for representing dynamic information, the static file structure
makes the utilization of these slots awkward. It is desirable to be able to represent
the dynamic information in a dynamic database. For this reason, the authors
developed a technique to automatically generate tables for storing, and access
functions for obtaining, the data from the ontology in a MySQL Database.

Reading data from and to the MySQL Database instead of the ontology file
offers the community easy access to a live data structure. Furthermore, it is more
practical to modify the information stored in a database than if it was stored
in an ontology, which in some cases, requires the deletion and re-creation of the
whole file. A literature review reveals many efforts and methodologies that were
designed to produce SQL databases from ontologies. Our effort builds upon the
work of Astrova et al. [2]

In addition to generating and filling the database tables, the authors created
tools that automatically generate a set of C++ classes for reading and writing
information to the kitting MySQL Database. The choice of C++ was a team
preference and we believe that other object-oriented languages could have been
used in this project.

2.4 Robot Language

Once a plan has been formulated, the knowledge is transformed into a represen-
tation that is optimized for use by a robotic system. The interpreter combines
knowledge from the plan with knowledge from the MySQL Database to form a
set of sequential actions that the robot controller is able to execute. The authors
devised a canonical robot command language (CRCL) in which such lists can be
written. The purpose of the CRCL is to provide generic commands that imple-
ment the functionality of typical industrial robots without being specific either
to the language of the planning system that makes a plan or to the language
used by a robot controller that executes a plan.

3 Simulation Environment

In order to experiment with robotic systems, a researcher requires a controllable
robotic platform, a control system that interfaces to the robotic system and
provides behaviors for the robot to carry out, and an environment to operate
in. Our kitting application relies on an open source (the game engine is free,
but license restrictions do apply), freely available framework capable of fulfilling
all of these requirements. This framework is the Unified System for Automation
and Robot Simulation (USARSim) [28]. It provides the robotic platform and
environment.

3.1 The USARSim Framework

USARSim [8,29] is a high-fidelity physics-based simulation system based on
the Unreal Developers Kit (UDK) [13] from Epic Games. USARSim was orig-
inally developed under a National Science Foundation grant to study Robot,
Agent, Person Teams in Urban Search and Rescue [18]. Since that time, it has
been turned into a National Institute of Standards and Technology (NIST)-led,
community-supported, open source project that provides validated models of
robots, sensors, and environments. Altogether, the Karma Physics engine [12]
and high-quality 3D rendering facilities of the Unreal game engine allow the
creation of realistic simulation environments that provide the embodiment of
a robotic system. Furthermore, USARSim comes with tools to develop objects
and environments and it is possible to control the objects in the game through a
Transmission Control Protocol/Internet Protocol (TCP/IP) socket with a host
computer.

Through its usage of UDK, USARSim utilizes the physX physics engine [23]
and high-quality 3D rendering facilities to create a realistic robotic system sim-
ulation environment. The current release of USARSim consists of various model
environments, models of commercial and experimental robots, and sensor mod-
els. High fidelity at low cost is made possible by building the simulation on
top of a game engine. By delegating simulation specific tasks to a high volume
commercial platform (available for free to most users) which provides superior

(a) Test Room.

(c) Factory, (d) Road course.

Fig. 2. Sample of 3D environments in USARSim.

visual rendering and physical modeling, full user effort can be devoted to the
robotics-specific tasks of modeling platforms, control systems, sensors, interface
tools, and environments. These tasks are in turn accelerated by the advanced
editing and development tools integrated with the game engine. This leads to a
virtuous spiral in which a wide range of platforms can be modeled with greater
fidelity in a short period of time.

USARSim was originally based upon simulated environments in the (Ur-
ban Search and Rescue) USAR domain. Realistic disaster scenarios as well as
robot test methods were created (Figure 2(a)). Since then, USARSim has been
used worldwide and more environments have been developed for different pur-
poses. Other environments such as the NIST campus (Figure 2(b)) and factories
(Figure 2(c)) have been used to test the performance of algorithms in different
efforts [30,3,17]. The simulation is also widely used for the RoboCup Virtual
Robot Rescue Competition [24], the IEEE Virtual Manufacturing and Automa-
tion Challenge [15], and has been applied to the DARPA Urban Challenge (Fig-
ure 2(d)).

USARSim was initially developed with a focus on differential drive wheeled
robots. However, USARSim’s open source framework has encouraged wide com-
munity interest and support that now allows USARSim to offer multiple robots,
including humanoid robots (Figure 3(a)), aerial platforms (Figure 3(b)), robotic
arms (Figure 3(c)), and commercial vehicles (Figure 3(d)). In USARSim, robots
are based on physical computer aided design (CAD) models of the real robots
and are implemented by specialization of specific existing classes. This structure
allows for easier development of new platforms that model custom designs.

(a) Aldebaran Robotics
Nao.

(¢) Kuka KR60, (d) Kiva Robot.

Fig. 3. Sample of vehicles in USARSim.

All robots in USARSim have a chassis, and may contain multiple wheels,
sensors, and actuators. The robots are configurable (e.g., specify types of sen-
sors/end effectors) through a configuration file that is read at run-time. The
properties of the robots can also be configured, such as the battery life and the
frequency of data transmission.

3.2 The Simulated Sensor System

Poses of objects in the virtual environment are retrieved with the USARTruth
tool. USARTruth is capable of reading information about objects in USARSim
by connecting as a client to TCP socket port 3989. The simulator USARTruth-
Connection object listens for incoming connections on port 3989 and receives
queries over a socket in the form of strings formatted into key-value pairs.

The USARTruth connection accepts two different keys, “class” and “name”.
When USARSim receives a new string over the connection, it sends a sequence
of key-value formatted strings back over the socket, one for each Unreal Engine
Actor object that matches the requested class and object names. An example
of the strings returned by USARSim is given below along with a description for
each key.

{Name P3AT_0} {Class P3AT} {Time 29.97} {Location 0.67,2.30,1.86}
{Rotation 0.00,0.46,0.00} where:

— Name: The internal name of the object in USARSim.
— Class: The name of the most specific Unreal Engine class the object belongs
to.

— Time: The number of seconds that have elapsed since the simulator started,
as a floating-point value.

— Location: The comma-separated position of the object in global coordinates.

— Rotation: The comma-separated orientation of the object in global coordi-
nates, in roll, pitch, yaw form.

4 System Operation

As seen previously, Section 3.2 describes how a simulated sensor system operates
to retrieve 6DOF poses of objects in the kitting workcell. This section describes
when the simulated sensor system is used. Figure 4 is a flowchart that represents
some of the steps used for kitting, from parsing the Plan Instance File to the
execution of each action from this file. Since the focus of this paper is on the
sensor system, the authors have limited the representation and description of
Figure 4 around the sensor system and did not include the steps prior to the
Plan Instance File generation. The reader may find this missing information in
the description of Figure 1 in Section 2. The different steps depicted in Figure 4
are categorized into main components that are numbered. A description of each
main component is given in the following subsections.

4.1 Read Plan Instance File

As described in Section 2, the Plan Instance File is generated by the Domain
Independant Planning System from the PDDL Domain File and the PDDL Problem
File. An example of a plan is given in Figure 5. This plan describes the PDDL
actions that a robot will need to execute in order to build a kit that consists of
one part of type D and one part of type E. At the beginning of the plan (line 1),
the end effector that is capable of grasping parts is taken from the end effector
changing station and attached to the robot. Lines 2 and 4 display the actions
for picking up a part of type E and D, respectively. Lines 3 and 5 display the
actions for putting parts E and D in the kit, respectively. Finally, at line 6, the
end effector is put back in the end effector changing station.

4.2 Generate CRCL Commands

Each action of the plan is sequentially interpreted and then directly executed by
the robot. The Interpreter takes as input a PDDL action from the Plan Instance
File and outputs a set of CRCL commands for this action. To facilitate late
binding, the PDDL actions within the plan do not specify the exact locations
of the parts and components that are involved. This kind of knowledge detail
is maintained by sensor processing and is stored in the MySQL Database. As
described in Section 2, the generation of the tables in the MySQL Database is
followed by data insertion in these tables for all the objects in the environment.
However, there is no guarantee that the poses of these objects are still accurate
as they may have been altered in different ways. At this point, the sensor system

10

1. Read Plan Instance File

g

] ¢ Action exists 7
)
IWS &
set

q—lr My5QL Database | «——

2. Generate CRCL commands

Robot Controller et

3. Predicate Evaluation

Preconditions

— J
- o . Sensor System | |—i

H |CIWLjXML SOAP Ontnlugyl

3(:.

5. Predicate Evaluation @

y(s

.

Fig. 4. Flowchart diagram for tasking the simulated sensor.

is tasked to retrieve information about objects of interest. Objects of interest
are the ones for which the poses are needed to execute some CRCL commands.
Before tasking the sensor to retrieve the poses of objects of interest via the get
message, the external shape of each object of interest must be retrieved from the
ExternalShape MySQL table.

11

1 (attach-endeffector robot_1 part_gripper part_gripper_holder changing_station_1)
2(take-part robot_1 part_el pitr_e part_gripper)

s(put-part robot_1 part_el kit_a2b3c3diel work_table_1 ptr_e)

1(take-part robot_1 part_dl ptr_d part_gripper)

s(put-part robot_1 part_-dl kit_a2b3c8dlel work_table_1 ptr_d)

6 (remove-endeffector robot_1 part_gripper part_gripper_holder changing_station_1)

Fig. 5. Excerpt of the PDDL solution file for kitting.

An external shape is a shape defined in an external file. An external shape has
a model format name, stored in the field hasExternalShape_ModelName of the on-
tology, a model type name, stored in the field hasExternalShape_Model TypeName,
and a model file name which is the name of the file containing the model, stored in
the field hasExternalShape_ModelFileName. Using the information retrieved from
the aforementioned fields for each object of interest, the system then parses the
data coming in from USARTruth and updates the relative pose in the MySQL
Database for each object returned. This is performed via the set message. Since
USARTruth returns object locations in global coordinates, the relative pose for
each object is updated without changing its transformation tree; that is, the
object of reference for its physical location is unchanged.

The actual updated relative pose is computed according to Equation 1.

L' =LG'G’ (1)

where L’ is the updated relative transformation, L is the old relative trans-
formation (read from the MySQL Database), GG is the old global transformation
(computed from the transformation tree in the MySQL Database), and G’ is the
updated global transformation (retrieved from USARTruth).

Once the above process is performed, the Interpreter uses the new data to

generate a set of CRCL commands for the current action, as depicted by @ in
Figure 4. The take-part action at line 2 in Figure 5 is interpreted as the sequence
of CRCL commands displayed in Table 1, where the numerical data used in the
MoveTo commands are computed with the new 6DOF poses. The reader may
find more information about the whole set of CRCL commands in [4].

Once a set of CRCL commands is generated for a PDDL action, it is sent
to the Robot Controller to be executed by the robot. The Predicate Evaluation
process is then called before and after each set of CRCL commands is carried
out by the robot.

4.3 Predicate Evaluation (Preconditions)

As mentioned in Section 2, a PDDL action consists of one precondition section
and one effect section that are defined in the OWL/XML SOAP Ontology. Pre-
conditions and effects consist of a set of predicates. For instance, the predicates
in the precondition and effect for the action take-part(robot_1,part_el,
ptr_e,part_gripper) are defined in Table 2.

12

Table 1. A set of CRCL commands for the action take-part.

initCannon()

Message (‘‘take part part_el’’)

MoveTo({{-0.03, 1.62, -0.25}, {0, 0, 1}, {1, 0, O}}
Dwell (0.05)

MoveTo({{-0.03, 1.62, 0.1325}, {0, 0, 1}, {1, 0, O}})
CloseGripper ()

MoveTo({{-0.03, 1.62, -0.25}, {0, 0, 1}, {1, 0, O}})
Dwell (0.05)

endCannon ()

Table 2. The precondition and the effect for the action take-part.

precondition effect
part-location-partstray(part_el ,ptr_e) —part-location-partstray(part_el ,ptr_e)
robot-empty(robot_1) —robot-empty(robot_1)

endeff-location-robot(part_gripper,robot_1)|part-location-robot(part_el ,robot_1)
robot-with-endeff (robot_1,part_gripper) robot-holds-part(robot_1 ,part_el)
endeff-type-part(part_gripper,part_el)
partstray-not-empty(ptr_e)

Spatial Relations — The evaluation of the predicates in the precondition
section assures that all the requirements are met in the environment before the
robot carries out the action. As such, the output of the Predicate Evaluation
process is a Boolean value. The kitting system relies on the representation of
spatial relations that are stored in the OWL/XML SOAP Ontology to compute
the truth-value of each predicate. A brief description of each spatial relation
is given below. A thorough analysis of spatial relations used for kitting is well
documented in [26].

— Predicates: These are domain-specific states that are of interest to the current
activity. The truth-value of predicates can be determined through the logical
combination of intermediate state relations.

— Intermediate state relations: These are generic, re-usable level state relations
that can be inferred from the combination of Region Connected Calculus
(RCCB) [31] and cardinal direction relations.

— RCCS8 relations: RCC8 is a well-known and cited approach for representing
the relationship between two regions in Euclidean space or in a topological
space. RCC8 was initially developed for a two-dimensional space, but has
been extended for the purpose of the kitting effort to a three-dimensions
space by applying it along all three planes (x-y, x-z, y-z). Each of the inter-
mediate state relations consists of a set of logical rules that associate these
RCCS8 relations to them. There are 24 RCCS8 relations and 6 cardinality
direction operators.

13

Sensor System — To evaluate the truth-value of any given predicate, the
sensor system is tasked to retrieve the 6DOF pose estimation of the predicate’s
parameters. This is performed the same way it is described in Section 4.2 and is

represented by in Figure 4. The Predicate Evaluation process then proceeds
as follows:

In the OWL/XML SOAP Ontology:
1. Identify the predicate.
2. Identify the intermediate state relation for the predicate from step 1.
3. Identify the set of logical rules that associate RCCS8 relations to the
intermediate state relation from step 2.

RCCS8 Evaluation — Next, the poses of the predicate’s parameters are used to
compute the truth-value of the identified set of logical rules of RCCS relations for
this predicate. The predicates developed for the kitting effort have at least one
parameter and at most two parameters. To evaluate the set of RCCS8 relations,
two methods are used.

1. In the case the predicate has two parameters, the poses of these two param-
eters are used to compute the truth-value of the set of RCCS8 relations. For
instance, the predicate part-location-partstray(part_el ,ptr_e) from Table 2 is
true if and only if the part part_el is Partially-In the parts tray pir_e.
Partially-In (formula 2) is a state relation that represents an object fully
inside of a second object in two dimensions and partially in the third di-
mension. Please note that the state relation presented in formula 2 is used
to demonstrate how the parameters of a predicate are used to compute the
truth-value of a set of RCCS relations. Descriptions of each state relation
and each RCCS relation (Z-Plus, Z-NTPP, Z-NTPPi, etc) are available in [26].

Partially-In(part_el, ptr_e) — (2)
(z-Plus(part-el, ptr_e) A (Z-NTPP(part_el, ptr_e) V Z-NTPPi(part_el, ptr_e)V
Z-PO(part_el, ptr_e) V Z-TPP(part_el, ptr_e) V Z-TPPi(part_el, ptr_e)))A
(X-NTPP(part_el, ptr_e) V X-NTPPi(part_el, ptr_e) V X-TPP(part_el, ptr_e)V
X-TPPi(part_el, ptr_e)) A (Y-NTPP(part_el, ptr_e) V Y-NTPPi(part_el, ptr_e)V
Y-TPP(part_el, ptr_e) V Y-TPPi(part_el, ptr_e))

2. In the case the predicate has only one parameter, a second object is needed
to compute the truth-value of the predicate between the parameter and the
other object. The authors remind the reader that RCCS relations necessarily
require two objects. In this case, the sensor system is tasked to retrieve
the pose for each other object in the workcell to be used as the second
object. Depending on the predicate, the search space for the other object
can be narrowed down. For instance, the predicate partstray-not-empty(ptr_e)
(Table 2) is true if and only if at least one part of type E is in the parts tray

14

ptr_e. It is not necessary to extend the search for the second object among the
other types of object present in the workcell. It is not relevant, for instance, to
check if the parts tray contains an end effector. On the other hand, to check
the truth value of the predicate robot-empty(robot_1) (Table 2), which is true
if and only if the robot robot_1 is not holding anything in the end effector
attached to the robot, the predicate evaluation needs to scan a wider search
space than the one described for the predicate partstray-not-empty(pir_e),
i.e., the search space includes all parts of each type, all types of kit trays,
etc. Once the search space has been defined, the external shape for each
object in the search space is retrieved from the appropriate table from the
MySQL Database. As described previously, the external shape is used by the
sensor system to retrieve the 6DOF pose for the corresponding object. The
truth-value of the set of logical rules that associate RCCS8 relations to the
intermediate state relation for the predicate is then computed for these two
objects, that is the predicate parameter and the searched object.

If all the predicates within the precondition section are true, the MySQL
Database is updated with the current poses of these predicates’ parameters. It
is important that all the predicates are true in order to update the MySQL
Database. This ensures that a complete (stable) state of the environment is
stored in the MySQL Database. If at least one predicate is evaluated to false, it
is considered a failure and the kitting process is terminated.

4.4 Execute Action

When all the predicates within the precondition of an action have been evaluated
to true, this action is executed by the robot. To confirm that the action was suc-
cessfully accomplished, the Predicate Evaluation process evaluates the predicates
within the effect section for this action. The effect section consists of predicates
that are expected to be true after performing a PDDL action. The evaluation
of the predicates within the effect section is performed to confirm that these
expectations are attained.

4.5 Predicate Evaluation (Effects)

The methodology previously described to evaluate the predicates within the
precondition section of an action is also used to evaluate the predicates within

the effect section of this action. This is depicted by © in Figure 4. As mentioned
earlier, all the predicates within the effect section must be evaluated to true to
define the action as successful. In the case of a successful action, the next action
within the Plan Instance File is processed. Once all the actions within the Plan
Instance File have been executed by the robot, the kitting process is complete.

5 Conclusions and Future Work

This paper describes the approach that uses a simulated sensor system to retrieve
6DOF pose estimations of objects of interest during kit building applications.

15

The approach is mainly used during the predicate evaluation process. The use
of a simulated sensor system allows the current kitting system to move towards
an agile system where the current observations on parts and components are fed
into the predicate evaluation process, i.e., before and after action executions.

It is also intended to apply contingency plans once an action failure occurs.
One of the contingency plans is to re-plan from a state of the environment that
is stable. Information on this stable state is retrieved from the MySQL Database
that was updated from the latest poses of objects of interest. During the re-
planning process, the new initial state becomes the stable state while the goal
state stays unchanged.

As mentioned in Section 2.1, pose information coming from USARTruth is
assumed to be perfect. In a future effort, the authors will attempt to present
a model for the different sources of noise relative to each sensor-based pose
estimation step (similar to the one described in [21]), and use measurements of
real sensor data to validate the model. Noisy sensor data can be used during the
simulation of failures and the application of contingency plans.

The current kitting workcell involves objects that are originally placed on
a non-movable surface and also involves a pedestal-based articulated arm. To
move towards an agile and flexible manufacturing system, the authors will need
to address more challenging scenarios where parts come into the workcell via
conveyor belts and where the robotic arm can be of gantry type. These new
settings will need to be simulated and tested for kitting applications.

Disclaimers

This publication was prepared by a Guest Researcher with the United States
Government, was funded in part through Government support, and is, therefore,
a work of the U.S. Government and not subject to copyright.

Certain commercial software and tools are identified in this paper in order to
explain our research. Such identification does not imply recommendation or en-
dorsement by the authors, nor does it imply that the software tools identified
are necessarily the best available for the purpose.

Acknowledgement

The authors would like to extend our gratitude to Grayson Moses, who worked
at NIST as a Poolesville High School student volunteer and helped with the
development of algorithms to task a sensor system to provide updated pose
information.

References

1. J. Albus. 4-D/RCS Reference Model Architecture for Unmanned Ground Vehicles.
In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 32603265, 2000.

16

10.
11.

12.
13.
14.

15.

16.

17.

18.

19.

20.

. L. Astrova, N. Korda, and A. Kalja. Storing OWL Ontologies in SQL Relational

Databases. World Academy of Science, Engineering and Technology, 29:167-172,
2007.

B. Balaguer, S. Balakirsky, S. Carpin, M. Lewis, and C. Scrapper. USARSim: a
Validated Simulator for Research in Robotics and Automation. In IEEE/RSJ IROS
2008 Workshop on Robot Simulators: Awvailable Software, Scientific Applications
and Future Trends, 2008.

S. Balakirsky, T. Kramer, Z. Kootbally, and A. Pietromartire. Metrics and Test
Methods for Industrial Kit Building. NISTIR 7942, National Institute of Standards
and Technology (NIST), 2012.

S. Balakirsky, C. Schlenoff, T. Kramer, and S. Gupta. An Industrial Robotic
Knowledge Representation for Kit Building Applications. In Proceedings of
the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1365-1370, October 2012.

Y. A. Bozer and L. F. McGinnis. Kitting Versus Line Stocking: A Conceptual
Framework and Descriptive Model. International Journal of Production FEco-
nomics, 28:1-19, 1992.

O. Carlsson and B. Hensvold. Kitting in a High Variation Assembly Line. Master’s
thesis, Lulea University of Technology, 2008.

S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff. Robocup 2005: Robot Soc-
cer World Cup IX, LNAI, volume 4020, chapter High Fidelity Tools for Rescue
Robotics: Results and Perspectives, pages 301-311. Springer, 2006.

A. J. Coles, A. Coles, M. Fox, and D. Long. Forward-Chaining Partial-Order Plan-
ning. In 20th International Conference on Automated Planning and Scheduling,
ICAPS 2010, pages 42-49, Toronto, Ontario, Canada, May 2010. AAAT 2010.
Oracle Corporation. Mysql. www.mysql.com, November 2012.

P. Dzitac and A. Md. Mazid. A Depth Sensor to Control Pick-and-Place Robots for
Fruit Packaging. In 12" International Conference on Control Automation Robotics
& Vision (ICARCYV), pages 949-954, 2012.

Epic Games. MathEngine Karma ™ User Guide, March 2002.

Epic Games. Unreal Development Kit. http://udk.com, 2011.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. Pddl-the planning domain definition language. Technical Report
CVC TR98-003/DCS TR-1165, Yale, 1998.

IEEE. Virtual Manufacturing and Automation Home Page. http://www.vma-
competition.com, 2011.

J. Jiao, M. M. Tseng, Q. Ma, and Y. Zou. Generic Bill-of-Materials-and-Operations
for High-Variety Production Management. Concurrent Engineering: Research and
Applications, 8(4):297-321, December 2000.

Z. Kootbally, C. Schlenoff, and R. Madhavan. Performance Assessment of PRIDE
in Manufacturing Environments. ITEA Journal, 31(3):410-416, 2010.

M. Lewis, K. Sycara, and I. Nourbakhsh. Developing a Testbed for Studying
Human-Robot Interaction in Urban Search and Rescue. In Proceedings of the
10" International Conference on Human Computer Interaction, pages 22-27, 2003.
I. Lysenkov, V. Eruhimov, and G. Bradski. Recognition and Pose Estimation
of Rigid Transparent Objects with a Kinect Sensor. In Proceedings of Robotics:
Science and Systems, Sydney, Australia, July 2012.

L. Medbo. Assembly Work Execution and Materials Kit Functionality in Parallel
Flow Assembly Systems. International Journal of Industrial Ergonomics, 31:263—
281, 2003.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

17

L. Meeden. Bridging the Gap between Robot Simulations and Reality with Im-
proved Models of Sensor Noise. In J.R. Koza et al., editor, Proceedings of the
37 Annual Genetic Programming Conference, pages 824-831, San Francisco, CA,
USA, 1998.

D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

Nvidia. PhysX Description. http://www.geforce.com/Hardware/Technologies/physx,
2011.

RoboCup. RoboCup Rescue Homepage. hitp://www.robocuprescue.org, 2011.

R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3D Recognition and Pose
Using the Viewpoint Feature Histogram. In Proceedings of the 23"* IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
October 2010.

C. Schlenoff, A. Pietromartire, Z. Kootbally, S. Balakirsky, and S. Foufou.
Ontology-based State Representations for Intention Recognition in Human-robot
Collaborative Environments. Robotics and Autonomous Systems, 61(11):1224—
1234, November 2013.

G. F. Schwind. How Storage Systems Keep Kits Moving. Material Handling
Engineering, 47(12):43-45, 1992.

USARSim. USARSim Web. http://www.usarsim.sourceforge.net, 2011.

J. Wang, M. Lewis, and J. Gennari. A Game Engine Based Simulation of the NIST
Urban Search and Rescue Arenas. In Proceedings of the 2003 Winter Simulation
Conference, volume 1, pages 1039-1045, 2003.

J. Wang, M. Lewis, S. Hughes, M. Koes, and S. Carpin. Validating USARSim
for use in HRI Research. In Proceedings of the Human Factors and Ergonomics
Society 49" Annual Meeting, pages 457-461, 2005.

F. Wolter and M. Zakharyaschev. Spatio-temporal Representation and Reasoning
Based on RCC-8. In Proceedings of the 7'" Conference on Principles of Knowledge
Representation and Reasoning, KR2000, pages 3—14. Morgan Kaufmann, 2000.

