
An Ontology Based Approach to Action
Verification for Agile Manufacturing

Stephen Balakirsky1 and Zeid Kootbally2

1 Georgia Tech Research Institute, Atlanta, GA 30332, USA,
stephen.balakirsky@gtri.gatech.edu,

WWW home page: unmannedsystems.gtri.gatech.edu
2 University of Maryland, College Park, MD 20740, USA,

zeid.kootbally@umd.edu,
WWW home page: www.nist.gov/el/isd/ks/kootbally.cfm

Abstract. Many of today’s robotic work cells are unable to detect when
an action failure has occurred. This results in faulty products being sent
down the line, and/or downtime for the cell as failures are detected and
corrected. This article examines a novel knowledge-driven system that
provides added agility by detecting and correcting action failures. The
system also provides for late binding of action parameters, thus providing
flexibility by allowing plans to adapt to changing environmental condi-
tions. The key feature of this system is its knowledge base that contains
the necessary relationships and representations to allow for failure de-
tection and correction. This article presents the ontology that stores this
knowledge as well as the overall system architecture. The manufacturing
domain of kit construction is examined as a sample test environment.

Keywords: failure detection, manufacturing, ontology, robotics, Plan-
ning Domain Definition Language

1 Introduction

A failure is any change, design, or manufacturing error that renders a component,
assembly, or system incapable of performing its intended function [6]. In kitting,
as described in Section 2, failures can occur for multiple reasons that include
equipment not being set up properly, tools and/or fixtures not being properly
prepared, and improper equipment maintenance. Part/component availability
failures can be triggered by inaccurate information on the location of the part,
part damage, incorrect part types, or part shortage due to delays in internal
logistics. In order to prevent or minimize failures, a disciplined approach needs
to be implemented to identify the different ways a process design can fail and to
allow for corrective actions to be taken before the failure impacts productivity.

Even though today’s state-of-the-art industrial robots are capable of sub-
millimeter accuracy [7], they often lack the sensing necessary to detect failures
and the programming required to cope with and correct the failure. This is
due to the fact that they are often programmed by an operator using imprecise

2

positional controls from a teach pendant. These teach pendant programs are
highly repeatable, which provides utility for large-batch, error-free operation.
However, the cyclic program that repeats identical operations does not lend
itself well to adaptation for failure mitigation. In fact, producing a program
to correct a perceived failure would require that the cell be taken off-line for
additional human-led teach pendant programming. In addition, most cells lack
the ability to sense that a failure occurred and lack programming (that would
have had to be teach pendant entered) to cope with failure conditions, thus
making it impossible for the cell to recover from failures. This leads to faulty
products being sent down the line, and/or downtime for the cell as failures are
detected and corrected.

For small batch processors or other customers who must frequently change
their line configuration or desire to perform complex operations with their robots,
this frequent downtime and lack of failure correction/detection may be unaccept-
able. The robotic systems of tomorrow need to be capable, flexible, and agile.
These systems need to perform their duties at least as well as human coun-
terparts, be quickly re-tasked to other operations, cope with a wide variety of
unexpected environmental and operational changes, and be able to detect and
correct errors in operation. To be successful, these systems need to combine do-
main expertise, knowledge of their own skills and limitations, and both semantic
and geometric environmental information.

The IEEE Robotics and Automation Society’s Ontologies for Robotics and
Automation Working Group has taken the first steps in creating the infrastruc-
ture necessary for such a system, while the Industrial Subgroup has applied this
infrastructure to create a sample kit building system. This work is presented in
Balakirsky et al. [2] which describes the construction of a robotic kit building
system that is able to cope with environmental and task changes without opera-
tor intervention. This article extends that work to utilize the same infrastructure
to allow for the detection and correction of action failures in the system.

The organization of the remainder of this paper is as follows. Section 2 de-
scribes the domain of kit building. Section 3 presents an overview of the soft-
ware system architecture as well as details of the ontology and world model for
the robot cell. Section 4 discusses the detailed operation of cell, and Section 5
discusses how failures are handled by the ontology. Finally, Section 6 presents
conclusions and future work.

2 Kitting

Today’s advanced manufacturing plants utilize mixed-model assembly where
multiple product variants are built on the same line. According to Jim Tetreault,
Ford’s vice president of North America Manufacturing, new Ford3 assembly fa-

3 No approval or endorsement of any commercial product by the authors is intended or
implied. Certain commercial software systems are identified in this paper to facilitate
understanding. Such identification does not imply that these software systems are
necessarily the best available for the purpose.

3

cilities are able to build a full spectrum of vehicles on the same assembly line
[9]. One of the technologies that makes this possible is the use of assembly kits.
Bozer and McGinnis [4] describe a kit as “a specific collection of components
and/or subassemblies that together (i.e., in the same container) support one or
more assembly operations for a given product or shop order”. These kits provide
a synchronous material flow, where parts and components move to assembly
stations in a just-in-time manner. The kits provide workers with the parts and
tools that they need (which may vary from vehicle model to vehicle model) in
the sequence that they need them. The use of kitting also allows a single delivery
system to feed multiple assembly stations thus saving manufacturing or assembly
space [10] and provides an additional inspection opportunity that allows for the
detection of part defects before they impact assembly operations. The individual
operations of the station that builds the kits may be viewed as a specialization
of the general bin-picking problem [11] where parts are picked from one or more
part bins or trays and placed into specific slots in a kit tray.

For our sample implementation, we assume that the robot cell is building
one of several possible kit configurations. At execution time, the cell has a set
kit to build, but does not know the precise location of the kit tray, the part
trays, or the location of individual parts in the part tray. When a human builds
a kit, they are able to inspect each part before adding it to the kit tray. This
provides an additional level of quality control and is an aspect that is desirable to
have in our robotic system. During kit construction, a robot performs a series of
pick-and-place operations in order to construct the kit. These operations include:

1. Pick up an empty kit and place it on the work table.
2. Pick up multiple component parts, inspect them, and place them in the kit.
3. Pick up the completed kit and place it in the full kit storage area.

Each of these steps may be a compound action that includes other actions such
as end-of-arm tool changes, path planning, and obstacle avoidance. The items
that are being placed in the kit may be of varying size and shape and have
various grasping and inspection requirements.

3 System Overview

The kitting system that has been implemented as part of this work is a deliber-
ative intelligent system based on the 4D/RCS reference model architecture [1].
This architecture is a hierarchical architecture in which each echelon or level
follows a sense-model-act paradigm. The basic structure of the system may be
seen in Figure 1.

3.1 Sense

In order to sense action failures associated with kit building, it is necessary
to be able to detect the six-degree of freedom pose of relevant objects in the
world. One issue with pose detection is the large number of potential target

4

Fig. 1. Major components that make up the Sense–Model–Act paradigm of the kitting
station.

objects and object classes in the world. Both the number of objects and potential
classes can be reduced by intelligently selecting critical objects of interest that
are tagged with predicted locations and object classes for the sensor system
to track. This object selection, also known as focus of attention, is guided by
the Executor process with knowledge obtained from preconditions and effects of
planned actions. Actual algorithm development for pose and object detection is
an active research area, and is beyond the scope of this article. For our purposes,
we have assumed the use of a high-quality system that is capable of recognizing
a limited variety of items in a controlled environment and then determining each
item’s pose.

3.2 Model

The world model that is being utilized is shown in Figure 2. The model contains
knowledge that is structured specifically for reasoning, planning, and execution.
All of the concepts necessary for the manufacturing domain under test are en-
coded in the ontology that resides in the reasoning section of the model. The
planning and execution sections of the model are automatically generated from
this section.

Ontology – The reasoning portion of the world model is designed to contain
all of the information needed to reason over and solve complex manufacturing
problems. The knowledge is represented in a Web Ontology Language (OWL)
ontology that is structured in three parts. The first part of the ontology contains
generic information and classes that are needed for the domain of kit build-
ing. This area of the ontology contains information on basic elements such as a

5

OWL/XML Kitting
Ontology

OWL/XML SOAP
Ontology

OWL/XML Kitting
Goal Conditions File

OWL/XML Kitting
Init Conditions File

Contains information
on basic classes needed
for kitting domain

Contains classes:
 - Action - State relations
 - Effect - RCC8 relations
 - Predicate - Precondition

Contains specifics
about current problem

Reasoning

MySQL
Database
Generator

MySQL Interface
Library

MySQL
Database

Execution

PDDL Domain
File

PDDL Problem
File

Plan Instance
File

PDDL
Domain File
Generator

PDDL
Problem File
Generator

Domain
Independent

Planning System

Planning

Fig. 2. System World Model - The world model contains a Reasoning section that is
based on an ontology shown in green, a Planning section that is based on a Planning
Domain Definition Language (PDDL) specification shown in blue, and an Execution
section that is based on a relational database (MySQL) shown in orange.

“point” which is defined as a class that contains a name and a three-dimensional
quantity, as well as complex types such as a “part”, which is shown in Figure 3,
and contains elements such as the part’s location and a name that references a
stock keeping unit. The stock keeping unit contains static information on classes
of parts such as the part’s shape, weight, and the end effector that should be
used for grasping the part. This information is utilized to create parameters for
the Planning World Model and the skeleton tables for the MySQL database of
the Execution World Model.

Both static and dynamic information is represented in this ontology and is
automatically transitioned into the Planning and Execution areas of the world
model. During system operation, dynamic information is updated in the Exe-
cution World Model. More information on this portion of the ontology may be
found in [3].

6

Fig. 3. Description of the PartType class that is designed to contain both static and
dynamic information about particular parts and the StockKeepingUnitType class that
contains static information about classes of parts.

The second part of the ontology (known as States, Ordering constraints,
Actions, and Predicates or SOAP) contains the high-level concept of an action
and all of the concepts that are required to support an action. In this case, a
PDDL [8] action is being represented, and this action is defined as an operator
that causes one or more properties of an instance to change. Before this action
may be performed, certain preconditions must be satisfied, and after the action
is performed, certain effects will take place. The action accepts parameters that
specify the particular instances that will be affected, where an instance refers to
a physical object or piece of grounded data in the world. All of the necessary
information for the automatic generation of the PDDL domain file required by
the planning system is contained in this section of the ontology. The classes
used to represent the actions in the ontology are provided in the enumerated list
shown below.

7

1. Action – An Action is the basic type that is used by a planning system to
produce changes on the world. It has an ActionPrecondition that must be
valid before the action may be executed and an ActionEffect that is expected
to be produced by the action. Each action requires parameters that are used
to specify which objects are being operated upon. These parameters are
contained in the ActionParameterList. An Action has a unique name.

2. ActionParameterList – Actions may have multiple parameters of different
types that are represented by a class in the upper ontology. The ActionPa-
rameterList contains the particular action’s parameters that are instances
from the upper ontology. The order of the parameters in an action also needs
to be represented in the ontology. OWL has no built-in structure to represent
an ordered list. In order to maintain parameter ordering, the parameter uses
hasNextParameter and hasPreviousParameter to point to the next and the
previous parameter in ParameterList, respectively.

3. ActionPrecondition – An ActionPrecondition specifies necessary conditions
that must be true in order for an action to be undertaken. It can consist of
an ActionPredicate, an ActionFunction, an ActionFunctionBool, or a combi-
nation of these three classes. An ActionPrecondition belongs to one Action.

4. ActionEffect – An ActionEffect specifies the results that are anticipated to
occur as a result of a particular action. It can consist of an ActionPredicate,
an ActionFunction, an ActionFunctionBool, or a combination of these three
classes. An ActionEffect belongs to one Action. A negative ActionPredicate
is represented with the declaration of hasEffect Predicate within the OWL
built-in property assertion owl:NegativePropertyAssertion.

5. ActionPredicate – A predicate is used to specify a binary property of a single
object, or a relationship between two objects. For example, the predicate
(robot-empty ?robot) is true if the robot ?robot is not holding anything.
The predicate (part-location-robot ?part ?robot) is true only if the
reference parameter ?part is being held by the target parameter ?robot.
An ActionPredicate represents these predicates. It has a unique name of type
string, a reference parameter and an optional target parameter. The refer-
ence parameter is the first parameter in the predicate’s parameter list and
the target parameter is the second parameter in the predicate’s parameter
list. An ActionPredicate cannot have more than two parameters due to the
inherent definition of predicates. In the case where an ActionPredicate has
only one parameter, it is assigned to the reference parameter.

6. ActionFunction – In version 3 of the PDDL language, it is possible to use
numeric functions that contain one or two parameters. For example, the
function (quantity-partstray ?partstray - PartsTray) will return the
number of parts that are contained in the parts tray ?partstray, and the
function (quantity-kit ?kit - Kit ?partstray - PartsTray) will re-
turn the number of parts from parts tray ?partstray that are currently
in the kit ?kit. The class ActionFunction is used to represent these func-
tions. It has a unique name of type string along with a reference parameter
and a target parameter. The same rules apply to the definition and use of
these two types of parameters as defined for ActionPredicate.

8

7. ActionFunctionBool – In version 3 of the PDDL language, it is also possible
to compare the results returned by two functions. The class ActionFunction-
Bool is used to represent these relationships. It has one or more subclasses
that represent the type of relation (mathematical operator) between two Ac-
tionFunctions. Subclasses of ActionFunctionBool have a first ActionFunction
that represents the ActionFunction on the left side of the operator and a sec-
ond ActionFunction that represents the ActionFunction on the right side of
the operator.

The third part of the ontology contains specific instances needed for a par-
ticular kitting domain. For example, it will contain the definition of the finished
kits that may be constructed and specific information on the individual parts.
One of the goals of this framework is to introduce additional agility into the kit
building process. Therefore, partial information is accepted and even encouraged
for this area of the ontology. For the example of a part shown in Figure 3, infor-
mation on the SKU, grasp points (part of the ExternalShape or InternalShape),
and name would be expected to be available at runtime. Information on the lo-
cation of the part (PrimaryLocation) may not become valid until after a sensor
processing system has identified and located the particular part.

Planning – PDDL is an attempt by the domain independent planning commu-
nity to formulate a standard language for planning. A community of planning
researchers has been producing planning systems that comply with this for-
malism since the first International Planning Competition held in 1998. This
competition series continues today, with the seventh competition being held in
2011. PDDL is constantly adding extensions to the base language in order to
represent more expressive problem domains. The representation in the world
model is based on PDDL Version 3.

By placing the knowledge in a PDDL representation, the use of an entire
family of open source planning systems such as the forward-chaining partial-
order planning system from Coles et al. [5] is enabled. In order to operate, the
PDDL planners require a PDDL file-set that consists of two files that specify
the domain and the problem. From these files, the planning system creates an
additional static plan file. Both the domain and problem file are able to be
auto-generated from the ontology.

The generated static plan file contains a sequence of actions that will tran-
sition the system from the initial state to the goal state. In order to maintain
flexibility, it is desired that detailed information that is subject to change should
be “late-bound” to the plan. In other words, specific information is acquired di-
rectly before that information needs to be used by the system. This allows for
last minute changes in this information. For example, the location of a kit tray
on a work table may be different from run to run. However, one would like to
be able to use the same planning sequence for constructing the kit independent
of the tray’s exact position. To compensate for this lack of exact knowledge, the
plans that are generated by the PDDL planning system contain only high-level
actions.

9

As seen in Figure 2, the planning world model framework contains generators
that read the ontology and create a standard PDDL domain and PDDL prob-
lem files. Any of the family of PDDL Version 3 compatible planning systems
is then able to be run on these files to create the static plan instance file. A
representation of this plan may be stored in the ontology for future use.

Execution – The execution world model is also built automatically from the
ontology. This world model consists of a MySQL database and C++ interfaces
that provide for easy access to the data. The table skeletons are generated from
the kitting ontology, and the tables are initially populated with information
from the initial condition file. During plan execution, the Executor guides the
sensor processing system in updating the information in this section of the world
model. All of the data structures encoded in the ontology are included in this
representation.

3.3 Act

The actions that take place in the kitting work cell are coordinated by the Ex-
ecutor as illustrated in Figure 1. The Executor reads PDDL actions as input and
outputs a standardized set of low-level robot commands encoded in a language
developed at the National Institute of Standards and Technology (NIST) known
as the Canonical Robotic Command Language (CRCL) [3].

Before and after each high-level command is executed, the Executor sends
focus of attention information into the sensor processing system. This allows the
sensor processing system to compute the appropriate predicate relations that
are required to verify the conditions necessary to carry out an action and that
an action’s execution has been successful. Information on predicates is written
to the world model by the sensing system and read from the world model by the
Executor.

4 System Operation

In order to construct a kit, the kitting system steps through each action in
the precomputed PDDL plan. Failures are searched for both before and after
execution of each action. The overall process, known as BuildKit is shown in
Figure 4.

This process begins by retrieving a planning instance that has been precom-
puted to solve the construction of the requested kit (Line 1 of Figure 4). This
is a high-level PDDL plan that is not grounded to actual part instances or loca-
tions. It contains information on the named storage location for classes of parts
(individual SKU numbers), the quantity of each SKU that is required by the
kit, and a build order (a sequence of SKUs to be added to the kit). Additional
information on the appropriate end-of-arm tooling required to grip each part is
also included.

10

Data: kitToBuild
Result: reports success or failure
retrieve instance PDDLInstance to construct kit kitToBuild;1

for each action A in PDDLInstance do2

for each precondition P of action A do3

if PredicateEvaluation(P) = false then4

report failure;5

end6

end7

create set S of Canonical Robot Control Language Commands;8

send set S to Robot Controller for execution;9

for each effect E of action A do10

if PredicateEvaluation(E) == false then11

report failure;12

end13

end14

report action success;15

end16

report plan success;17

Fig. 4. BuildKit – Sequences the actions necessary to build a kit.

This planning instance is decomposed into individual actions that must be
successfully carried out to complete the construction of the kit (the for loop
beginning at Line 2 of Figure 4). At this point, preconditions of the action are
examined to assure that the action to be attempted is valid. If any of the action’s
preconditions are not able to be validated, a failure is reported; otherwise, the
action is approved for execution.

Data: PredicateIn
Result: true or false
determine predicted pose PoseR of PredicateIn.ReferenceParameter and1

PoseT of PredicateIn.TargetParameter ;
send PredicateIn, pose PoseR, and PoseT as focus of attention command to2

SensorProcessing;
if Eval(PredicateIn) == true then3

return true;4

else5

return false ;6

end7

Fig. 5. PredicateEvaluation – Returns the truth value of the predicate ex-
pression.

11

4.1 Precondition Validation

Each precondition is a predicate expression that must be validated prior to ac-
tion execution. The procedure for validating predicates is shown in Figure 5. In
Line 1 of this algorithm, the world model is queried for the pose and class of
each relevant parameter of the predicate. The information returned is the latest
knowledge that has been recorded by the sensor processing system and is not
guaranteed to be up-to-date. This possibly out-of-date information is used as a
prediction of the object’s current pose and the knowledge is sent as a focus of
attention indicator to the sensor processing system. The sensor processing sys-
tem is instructed to update the world model with current observations and to
compute the supporting relationships necessary for predicate evaluation. Figure

Data: PredicateIn, PoseR, PoseT
determine actual pose APoseR of PredicateIn.ReferenceParameter;1

determine actual pose APoseT of PredicateIn.TargetParameter;2

determine RCC8 relations between APoseR and APoseT ;3

determine Intermediate State Relations based on RCC8 relations;4

determine truth value of PredicateIn and write to MySQL database;5

Fig. 6. SensorProcessing – Updates the MySQL database in the Execution
world model to contain the latest evaluation of predicates related to PredicateIn.

6 depicts the algorithm that is followed by sensor processing in the computa-
tion of predicate values. As may be seen from this figure, the computation of
predicates is a three step process that involves the computation of increasingly
complex forms of spatial relations. These relationships; Region Connection Cal-
culus (RCC8) relations, intermediate state relations, and predicate relations, are
each represented as a separate class in the ontology.

RCC8 Relation – RCC8 [12] is an approach for representing the relationship
between two regions in Euclidean or topological space. The class RCC8 Relation
is based on the definition of RCC8 and consists of eight possible relations that in-
clude Tangential Proper Part (TPP), Non-Tangential Proper Part(NTPP), Dis-
connected (DC), Tangential Proper Part Inverse (TPPi), Non-Tangential Proper
Part Inverse (NTPPi), Externally Connected (EC), Equal (EQ), and Partially
Overlapping (PO). In order to represent these relations in all three dimensions
for the kitting domain, RCC8 has been extended to a three-dimensional space
by applying it along all three planes (x-y, x-z, y-z) and by including cardinal
direction relations “+” and “-”. In the ontology, RCC8 relations and cardinal
direction relations are represented as subclasses of the class RCC8 Relation.

Intermediate State Relation – These relations can be inferred from the
combination of RCC8 and cardinal direction relations. For instance, the inter-

12

mediate state relation In-Contact-With is used to describe that object obj1 is
in contact with object obj2. This is true if obj1 is externally connected to obj2
in the x-direction, the y-direction, or the z-direction, and is represented with the
following combination of RCC8 relations:

In-Contact-With(obj1, obj2) →
x-EC(obj1, obj2) ∨ y-EC(obj1, obj2) ∨ z-EC(obj1, obj2)

In the ontology, intermediate state relations are represented with the OWL built-
in property owl:equivalentClass that links the description of the class Inter-
mediate State Relation to a logical expression based on RCC8 relations from the
class RCC8 Relation.

Predicate Relation – The truth-value of predicates can be determined through
the logical combination of intermediate state relations. The predicate endeffector-
location-endeffectorholder(endeffector, endeffectorholder) is true if and only if
the location of the end effector endeffector is in the end effector holder endeffec-
torholder and is not attached to a robot. This predicate can be described using
the following combination of intermediate state relations:

endeffector-location-endeffectorholder(endeffector, endeffectorholder) →
In-Contact-With(endeffector, enfectorholder)∧

¬In-Contact-With(endeffector, robot)

As with state relations, the truth-value of predicates is captured in the ontology
using the owl:equivalentClass property that links the description of the class
Predicate to the logical combination of intermediate state relations from the class
Intermediate State Relation.

Truth Value Determination – As seen in Section 3.2, a predicate can have a
maximum of two parameters. In the case where a predicate has two parameters,
the parameters are passed to the intermediate state relations defined for the
predicate, and are in turn passed to the RCC8 relations where the truth-value
of these relations are computed. If the predicate has only one parameter, the
truth-value of intermediate state relations, and by inference, the truth-value of
RCC8 relations will be tested with this parameter and with every object in the
environment in lieu of the second parameter. Our kitting domain consists of only
one predicate that has no parameters. This predicate is used as a flag in order
to force some actions to come before others during the formulation of the plan.
Predicates of this nature are not treated in the concept of “Spatial Relation”.

These truth values may be retrieved from the ontology for use in Line 3 of
Figure 5 which will then propagate back up to BuildKit. If the predicates are
successfully evaluated, the action will be cleared for execution and a set of CRCL
Commands will be generated.

13

Fig. 7. Description of the KitType class that is designed to bring together a container
(the KitTray), a design for the kit creation, and specific parts that populate the kit.

4.2 Canonical Robot Command Language Generation

Up to this point, the PDDL actions are not fully grounded to specific instances
that exist in the world. For example, the action put-part is designed to place
the part that is currently being held by the robot into a kit that is specified as
one of the action’s input parameters. However, the precise location for this part
to be placed is not specified at the time of plan creation. It is up to the Executor,
working with the world model, to find an empty slot in the kit that can receive
the part. The structure of the ontology is specifically designed to support this
grounding, and this structure is automatically replicated in the MySQL database
that resides in the Execution portion of the world model.

14

Continuing with the example of the put-part command, the Executor needs
to find an empty slot in the target kit to place the specific part that the robot
is holding. As shown in Figure 7, the KitType class contains zero to many
Slot classes that in turn contain specific location and part identification infor-
mation. The Executor is able to read this information from the world model and
determine the precise global pose where the part should be placed. The robot
controller must now be commanded to complete this action.

While the action is an atomic element in PDDL, it will decompose into a
series of actions in CRCL. The robot will need to follow a safe trajectory to
achieve the slot in the kit, and the gripper will need to be controlled in order to
release the part. This one-to-many mapping is performed in the Executor and is
currently hand-coded for each of the PDDL commands that exists in the system.

4.3 Effect Validation

The purpose of performing an action is to achieve results in the world. These
results are represented in the PDDL effects. Each effect is a predicate expression
that must be validated to assure proper action execution. The technique for
validating the effect predicates is identical to the evaluation of the precondition
predicates described in Section 4.1. If all of the effects are able to be validated,
the system will report the action’s success and begin performing the next action
in the plan.

5 Failure Analysis

As seen in Figure 5, failures are identified during the evaluation of preconditions
and effects. In addition to recognizing failures, it is desired to be able to respond
to them. In order to properly model this response, additional information must
be modeled in the ontology. As shown in Figure 8, the class ActionFailureType
has been added to the ontology. This class is composed of a PredicateType class
and a FailureModeType class. It contains all of the information required to be
able to diagnose and remediate any failures that are detected by the system.

The PredicateType class contains a list of predicates whose truth values
caused the detection of the current failure condition. Examination of the in-
stances pointed to by the ReferenceParameter and the TargetParameter allow
the system to understand exactly which components were involved in the failure.

The FailureModeType class provides various known failure modes that could
exist for the combination of PredicateTypes that were found deficient. It provides
the consequences of such a failure occurring, information on how to remediate
such a failure, and the chance that this kind of failure could occur. Understanding
the consequences of the failure mode is important if one would like to be able
to pinpoint the correct cause of the failure. For example, assume that the action
take-part failed, and the predicate that indicated the failure was part-location-
robot.

15

Fig. 8. Description of the FailureType Class that is used to store information on action
failures.

Understanding where the part is actually located is critical to understanding
the root cause of the failure. If the part is still in the parts tray, it would indicate
a grasp related failure. If the part is on the floor of the cell, it would indicate a
part handling error. This kind of information is represented in the Effect class of
the consequences. Being able to pinpoint the effects of the failure also allows for
judgment on the failure severity. A missed grasp will likely lead to a new grasp

16

attempt and will have little impact on operation. A dropped part may cause
damage to the part and have a higher severity level.

Failure remediation is described by the FailureRemediation class. This class
contains information on what notifications need to be sent as a result of the fail-
ure as well as what actions should be taken. Continuing our example from above,
the grasp failure may cause grasping information to be sent to the enginering
department for algorithm refinement while the dropped part may notify logis-
tics that an additional component will be required. Recovery from the failure is
possible by executing the Plan that accompanies the detected failure.

6 Conclusions and Future Work

The framework described in this paper has been applied to the domain of kit
building, which is a simple, but practically useful manufacturing/assembly do-
main. Through its use, we have been able to demonstrate agility in both kit
construction through late binding of part locations, and in recovery from ac-
tion failures through the detection of failures and ability to compensate for the
failure’s effects.

There are several areas in the system that still utilize hand-coding of data. It
is desired that extensions to the ontology be created that will allow for the auto-
matic application of knowledge and eliminate code that is specifically tuned to a
particular set of predicates or actions. The hand-coded areas include the conver-
sion of PDDL actions to CRCL sequences as well as the retrieval of instance data
from the MySQL database for predicate evaluation. Work is currently underway
to correct for these deficiencies.

Extensions are also possible that will expand this work to the realm of general
assembly. We hope to apply this knowledge based framework to simple assembly
tasks (growing towards more complex tasks) on a real robot workcell in the near
future.

References

1. J. Albus. 4-d/rcs reference model architecture for unmanned ground vehicles. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 3260–3265, 2000.

2. S. Balakirsky, Z. Kootbally, T. Kramer, A. Pietromartire, C. Schlenoff, and
S. Gupta. Knowledge driven robotics for kitting applications. Robotics and Au-
tonomous Systems, pages –, 2013.

3. S. Balakirsky, T. Kramer, Z. Kootbally, and A. Pietromartire. Metrics and test
methods for industrial kit building. NISTIR 7942, National Institute of Standards
and Technology (NIST), 2012.

4. Y. A. Bozer and L. F. McGinnis. Kitting versus line stocking: A conceptual frame-
work and descriptive model. International Journal of Production Economics, 28:1–
19, 1992.

17

5. A. J. Coles, A. Coles, M. Fox, and D. Long. Forward-chaining partial-order plan-
ning. In 20th International Conference on Automated Planning and Scheduling,
ICAPS 2010, pages 42–49, Toronto, Ontario, Canada, May 12–16 2010. AAAI
2010.

6. J. Collins. Failure of Materials in Mechanical Design: Analysis, Prediction, Pre-
vention. Wiley Interscience, 1993.

7. Control and Montreal Robotics Lab at the ETS. Measur-
ing the absolute accuracy of an abb irb 1600 industrial robot.
http://www.youtube.com/watch?v=d3fCkS5xFlg, 2011.

8. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. Pddl–the planning domain definition language. Technical Report
CVC TR98-003/DCS TR-1165, Yale, 1998.

9. T. James. Ford’s michigan eco car plant: one size fits all. Engineering and Tech-
nology Magazine, 7, July 2011.

10. L. Medbo. Assembly work execution and materials kit functionality in parallel
flow assembly systems. International Journal of Industrial Ergonomics, 31:263–
281, 2003.

11. A. Schyja, A. Hypki, and B. Kuhlenkotter. A modular and extensible framework
for real and virtual bin-picking environments. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 5246 –5251, may 2012.

12. F. Wolter and M. Zakharyaschev. Spatio-temporal representation and reasoning
based on rcc-8. In Proceedings of the 7th Conference on Principles of Knowledge
Representation and Reasoning, KR2000, pages 3–14. Morgan Kaufmann, 2000.

